帳號:guest(3.137.219.237)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):潘冠儒
作者(外文):Pan, Kuan-Ju
論文名稱(中文):雙向直流/直流轉換器研製
論文名稱(外文):Design and Implementation of Bi-directional DC/DC Converter
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai-Fu
口試委員(中文):劉添華
張淵智
陳裕愷
口試委員(外文):Liu, Tian-Hua
Chang, Yuan-Chih
Chen, Yu-Kai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:108061512
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:87
中文關鍵詞:雙向直流/直流轉換器分切合整數位控制寬廣的電感值變化
外文關鍵詞:Bi-directional dc/dc converterD-Σ digital controla wide range of inductance variation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1010
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究研製一部雙向直流/直流轉換器,電路可分為電力級與控制級兩個部分,電力級架構為四開關降/升壓型轉換器;控制級使用之微控制器為Renesas RX62T。透過回授電路來偵測電感電流與輸入/輸出電壓,並搭配一台雙向直流/交流轉換器,可分為兩種操作模式,分別為一般模式與回充模式。在一般模式下,可將輸入至雙向直流/直流轉換器之能源送至電網;在回充模式下,則透過雙向直流/交流轉換器從電網端買電回來,以穩定直流鏈電壓,如此實現能源回收,達到節能之目的。
在控制方面,本系統使用分切合整數位控制法則(D-Σ digital control),具有無穩態誤差及更快的動態響應,允許寬廣的電感值變化,將其納入開關責任比率計算。即使電感值隨電流變大而衰減,仍能避免電流發生振盪,使電感電流能準確追蹤電流命令。
本研究主要貢獻為:(1)實作一部雙向直流/直流轉換器,最大功率可達12 kW,輸入電壓380 V,輸出電壓50 V到700 V。於滿載12 kW時之實測效率為95.0 %,(2)轉換器使用分切合整數位控制,可將電感值隨電流變化納入考量,達到定電流與穩壓功能,(3)搭配雙向直流/交流轉換器整合測試,驗證系統之可行性,其可將能量送至電網,藉此達到能源回收再利用,並減少測試時之功率消耗。
This thesis develops a bi-directional dc/dc converter. The circuit can be divided into two parts: power stage and control stage. The power stage architecture is a four-switch buck/boost converter and the microcontroller used in the control stage is Renesas RX62T. Through the feedback circuit to detect the inductor current and input/output voltage, the converter can work with a bi-directional dc/ac converter to recycle the power to grid. It can be divided into two operation modes, namely regular mode and regenerative mode. In the regular mode, the energy input to the bi-directional dc/dc converter can be sent to the grid, and in the regenerative mode, the power can be drawn from the grid through the bi-directional dc/ac converter to stabilize the dc link voltage. In this way, energy recovery is realized and the purpose of energy saving is achieved.
In terms of control, this system uses D-Σ digital control, which has no steady-state error and faster dynamic response, and allows a wide range of inductance variation to be included in the control for switch duty ratio determination. Even under inductor current increase or decrease, the control still can accurately track the current command.
The main contributions of this research are: (1) implementing a bi-directional dc/dc converter with a maximum power rating of 12 kW, input voltage of 380 V, output voltage of 50 V to 700 V, and with the measured efficiency of 95 % under full load of 12 kW, (2) using D-Σ digital control, which can take into consideration the change of inductance value with the current to achieve constant current and voltage stabilization functions, and (3) with a bi-directional dc/ac converter integrated test, verifying the feasibility of the system , which can deliver power to the grid, thereby achieving energy recovery and reducing power consumption during testing.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1研究背景與動機 1
1-2文獻回顧 2
1-2-1轉換器控制法簡介 2
1-2-2轉換器架構簡介 6
1-3論文大綱 12
第二章 系統架構與控制策略 13
2-1系統架構 13
2-1-1雙向直流/直流轉換器系統架構 14
2-1-2雙向直流/交流轉換器系統架構 14
2-2動作原理 16
2-3分切合整數位控制 19
第三章 硬體周邊電路 21
3-1輔助電源 21
3-2電壓/電流回授電路 23
3-2-1直流鏈電壓回授電路 23
3-2-2電感電流回授電路 24
3-3保護電路 26
3-3-1過壓/過流保護電路 27
3-3-2電壓箝位保護電路 29
3-4驅動電路架構 30
3-4-1開關驅動電源 30
3-4-2開關隔離驅動電路 31
第四章 韌體架構與控制流程 34
4-1微控制器簡介 34
4-2雙向直流/直流轉換器控制流程 37
4-2-1主程式流程 37
4-2-2保護副程式 39
4-2-3類比/數位中斷副程式 39
第五章 系統模擬與實測波形 45
5-1轉換器規格與元件參數 45
5-2元件參數設計 47
5-2-1直流鏈電容設計 47
5-2-2電感值設計 48
5-3實務考量 49
5-3-1直流鏈端加入LC濾波器 49
5-3-2電感值變化 50
5-3-3散熱速度改善 53
5-3-4解耦合電容 56
5-3-5驅動訊號改善 56
5-3-6電感電流分析 58
5-3-7雙層隔離線 60
5-4Matlab/Simulink模擬 61
5-5模擬與實測波形 63
5-5-1雙向直流/直流轉換器測試 63
5-5-2雙向直流/直流轉換器與雙向直流/交流轉換器整合測試波形 72
5-6損耗分析 75
5-6-1電感損耗 75
5-6-2功率開關損耗 78
5-7效率改善 81
5-7-1降低電感值 81
5-7-2更換功率開關 82
第六章 結論與未來研究方向 83
6-1結論 83
6-2未來研究方向 84
參考文獻 85

[1] 台電歷年售電量圖。
網站:https://www.thenewslens.com/article/93936#&gid=1&pid=1
[2] J. K. Chatterjee and P. J. Chauhan, "Single-loop vs two-loop voltage and frequency control of isolated SEIG based RECS," 2011 International Conference on Energy, Automation and Signal, 2011, pp. 1-6.
[3] J. P. Gegner and C. Q. Lee, "Linear peak current mode control: a simple active power factor correction control technique for continuous conduction mode," PESC Record. 27th Annual IEEE Power Electronics Specialists Conference, 1996, pp. 196-202.
[4] L. H. Dixon, "Average Current Mode Control of Switching Power Supplies," Proceedings of Unitrode Power Supply Design Seminar Handbook,1990.
[5] EPARC,電力電子學綜論,全華,2015
[6] L. Wang, X. Wu and J. Lou, "A Multi-Mode Four-Switch Buck-Boost DC/DC Converter," 2009 Asia-Pacific Power and Energy Engineering Conference, 2009, pp. 1-4.
[7] H. Liang, T. Liang, K. Chen, and S. Chen, "Analysis and implementation of a bidirectional double-boost DC-DC converter," 2013 IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS), 2013, pp. 32-37.
[8] G. P. Muralidharan and K. Bhaskar, "High step-down conversion ratio interleaved dc-dc converter," 2015 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), 2015, pp. 1-4.
[9] A. A. Khan, Honnyong Cha and H. F. Ahmed, "A family of high efficiency bidirectional DC-DC converters using switching cell structure," 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), 2016, pp. 1177-1183.
[10] J. Teng, S. Chen, S. Luan, and J. Xu, "Bidirectional DC-DC Converter with a Wide-Range Voltage Conversion Ratio," 2019 IEEE 4th International Future Energy Electronics Conference (IFEEC), 2019, pp. 1-6.
[11] M. Veerachary, "Analysis of Minimum-Phase Fourth-Order Buck DC–DC Converter," IEEE Transactions on Industrial Electronics, vol. 63, no. 1, pp. 144-154, Jan. 2016.
[12] Ruisheng Li, M. Armstrong, S. Gadoue and Chen Wang, "On-line parameter estimation of non-minimum phase switch mode power DC-DC boost converters," 8th IET International Conference on Power Electronics, Machines and Drives (PEMD 2016), 2016, pp. 1-6.
[13] A. Mehdipour and S. Farhangi, "Comparison of three isolated bi-directional DC/DC converter topologies for a backup photovoltaic application," 2011 2nd International Conference on Electric Power and Energy Conversion Systems (EPECS), 2011, pp. 1-5.
[14] S. Liao, J. Teng and S. Chen, "Bidirectional DC-DC converter with high step-down and step-up voltage conversion ratio," 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC), 2016, pp. 1-6.
[15] R. Kraus and A. Castellazzi, "A Physics-Based Compact Model of SiC Power MOSFETs," IEEE Transactions on Power Electronics, vol. 31, no. 8, pp. 5863-5870, Aug. 2016.
[16] 張庭豪,分切合整數位控制隔離型雙級降壓直流/直流轉換器,國立清華大學碩士論文,民國104年7月。
[17] 維薩爾萊,具功率因素修正之直接數位控制LCL三相三線轉換器,國立清華大學碩士論文,民國108年5月。
[18] 汪聖惠,隔離型雙向直流/直流轉換器研製,國立清華大學碩士論文,民國105年7月。
[19] 徐寅棋,電子馬達模擬器與電能回收系統整合研究,國立清華大學碩士論文,民國108年1月。
[20] Mean Well, LRS-35-24 Datasheet.
[21] Mean Well, DCW03 Series Datasheet.
[22] Mean Well, DCW05 Series Datasheet.
[23] LEM, LA 100-P Datasheet.
[24] Motorola, 74HC244 Datasheet.
[25] Infineon, 1EDI60N12AF Datasheet.
[26] Renesas Electronics, RX62T/62G Group Datasheet, Jan. 2014.
[27] CREE, C3M0021120K Datasheet.
[28] Chang Sung Corporation, Magnetic Powder Cores.
[29] KYOTOKU, HEAT SINK COMPOUND Y-500 Datasheet.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *