帳號:guest(3.129.218.118)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳欣怡
作者(外文):Wu, Hsin-Yi
論文名稱(中文):具寬電感值變化三相LCL濾波器設計並以併網型換流器驗證
論文名稱(外文):Three-Phase LCL Filter Design with Wide Inductance Variation and Verification of Grid-Connected Inverter
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai-Fu
口試委員(中文):邱煌仁
林長華
沈志隆
口試委員(外文):Chiu, Huang-Jen
Lin, Chang-Hua
Shen, Chih-Lung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:108061509
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:109
中文關鍵詞:三相三線全橋式換流器分切合整直接數位控制LCL濾波器設計
外文關鍵詞:three-phase three-wire full-bridge inverterdecoupled three-phase direct digital controlLCL filter design
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1807
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
考量電感隨電流增大而衰減之特性的分切合整直接數位控制法,可透過回授電流來估算電感的衰減值,並納入開關責任比率的計算,屬於具高電感衰減容忍度的控制法。而在濾波器設計上,若能接受較大的衰減量,將能選擇體積較小之鐵芯,促使系統能朝向高功率密度發展。因此本研究實現兩組具不同電感衰減容忍度(15% & 75%)之換流器,來分析兩者的差異,與驗證換流器因採用具高電感衰減容忍度的控制法則,能有效縮小濾波電感的體積,提升系統功率密度。
本研究之兩組換流器在規格與架構上完全相同,皆使用三相三線LCL全橋式拓樸,其中LCL濾波器相較具有相同濾波效果的LC濾波器,會有較小的體積。在韌體和控制方面,則以微控制器Renesas RX71M作為處理核心,其快速的A/D轉換速率可因應較高的切換頻率(100 kHz)。採用三角載波計時器和波峰取樣/波谷更新模式,以取得電感電流變化量之平均值。
比較兩組具不同電感衰減容忍度之換流器的前提,為兩者在相同的額定功率下,擁有相似的濾波效果。因此本論文回顧LCL濾波器設計文獻,並使用限制電感最大電流漣波之理論來推導所需的濾波電感值。濾波電容選用傳統的方法,依據換流器在額定功率下所吸收的虛功多寡進行設計。設計結果的合理性則以三項限制條件來判斷,包含:總電感值上限、諧振頻率帶及諧振頻率間距。此外,本研究方法還透過鐵芯資訊,加入篩選適用鐵芯之程序,並以Matlab加速反覆計算的過程,使設計的結果得以直接採納。
於末章,本論文透過模擬工具(Matlab/Simulink)來確認系統的動態響應和濾波能力,並實測兩組系統的基本功能與電壓/電流總諧波失真率,接著利用各項數據分析兩組系統之差異,包含電感值、THD、損耗、體積及溫度。
本研究之主要貢獻為:(1)設計具寬電感變化的LCL濾波器,除了使換流器輸出電流總諧波失真率能符合規範外,也得以讓兩組具不同電感衰減容忍度之換流器在額定功率下,有相似的濾波能力。(2)實作兩部具備功率因數調整能力的三相三線LCL全橋式換流器。(3)換流器採用具高電感衰減容忍度的分切合整直接數位控制法,證明在濾波器設計上,能選擇體積較小之鐵芯,促使系統能朝向高功率密度的發展。
The decoupled direct digital control taking the inductance variation into account can estimate the inductance attenuation with currents. It is a control method with high inductance attenuation toleration. With regarding to filter design, if an inverter can tolerate a larger amount of inducatance attenuation, the overall filter inductor size can be reduced to promote the development of the system towards high power density. Therefore, this research is to design and implement two inverters with different inductance attenuation tolerance (15% & 75%). In addition to verifying the above statement, it analyzes the characteristic difference between the two systems.
The two inverters adopt the same specifications and configuration. They are three-phase three-wire LCL full-bridge topologies. Compared with an LCL filter, the inductor size of an LC filter is larger under the same filtering capability. To control the systems, a Renesas RX71M microcontroller which has fast conversion rate is used as the processing unit to meet high frequency switching demand. Besides, the systems adopt the triangular carrier timer and the sample at crest/update at through mode to obtain the average value of the inductor current variation.
The premise of comparing two inverters with different inductance attenuation tolerance is that they have similar filtering capability under the same rated power. Consequently, this thesis reviews the LCL filter design and uses the scheme of limiting the maximum current ripple of the inductor to derive the required filter inductance value. The filter capacitor is designed with a conventional method according to the amount of reactive power absorbed by the inverter under the rated power. The design results are judged by three constraints, including the upper limit of the total inductance, the resonant frequency band and the resonant frequency spacing. In addition, the LCL filter design method of this research adds the process of screening out unsuitable cores, and uses Matlab to accelerate the calculation process, so the design results can be directly adopted.
Finally, the basic function, dynamic response and filtering capability of the two systems are verified by simulated (Matlab/Simulation) and experimental results. Additionally, the differences between the two systems in terms of inductance, THD, loss, volume and temperature are analyzed.
The major contributions of this thesis are : (1) designing LCL filters with a wide inductance variation which can be not only achieve the output currents complying with the regulation, but make the two inverters with defferent inductance attenuation tolerances have similar filting capability under the same rated power, (2) implementing two 33 kW three-phase three-wire LCL full-bridge inverters with the capability of injecting active and reactive power into the grid, and (3) verifying that the volume of the filter inductor can be effectively reduced, and the power density of the inverter can be increased due to the use of the decoupled direct digital control with high inductance attenuation tolerance.
摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1研究背景與動機 1
1-2文獻回顧 2
1-2-1 電感衰減接受度與濾波元件體積關係 2
1-2-2換流器控制法簡介 4
1-2-3 LCL濾波器簡介 6
1-2-4 LCL濾波器設計簡介 9
1-3論文大綱 11
第二章 LCL濾波器設計 12
2-1換流器拓樸 12
2-2 LCL濾波器設計 13
2-2-1直流側電感設計 14
2-2-2電網側電感設計 22
2-2-3濾波電容設計 23
2-2-4限制條件 24
2-2-5設計流程 29
第三章 系統架構與控制法則 36
3-1換流器硬體架構 36
3-2解耦合分切合整直接數位控制法則 37
第四章 韌體架構與規劃 45
4-1韌體架構 45
4-2微控制器RX71M介紹與設定 46
4-3韌體程式流程 51
4-3-1主程式流程 51
4-3-2中斷副程式流程 52
第五章 系統模擬與實測 60
5-1系統規格 60
5-2元件參數設計與選用 61
5-3實務考量 64
5-4模擬與實測波形 66
5-4-1 Matlab/Simulink 模擬 66
5-4-2容忍度15%之換流器模擬與實測波形 69
5-4-3容忍度75%之換流器模擬與實測波形 79
5-4-4含電網諧波成分的模擬結果 89
5-5比較與分析 91
5-5-1電感初始值 91
5-5-2輕載THD 92
5-5-3損耗 93
5-5-4體積 100
5-5-5溫度 101
第六章 結論與未來研究方向 105
6-1結論 105
6-2未來研究方向 106
參考文獻 107

[1] M. Liserre, F. Blaabjerg and S. Hansen, “Design and control of an LCL-filter-based three-phase active rectifier,” IEEE Transactions on Industry Applications, vol. 41, no. 5, pp. 1281–1291, Sep. 2005.
[2] T. Wu, M. Misra, L. Lin, and C. Hsu, "An Improved Resonant Frequency Based Systematic LCL Filter Design Method for Grid-Connected Inverter," IEEE Transactions on Industrial Electronics, vol. 64, no. 8, pp. 6412-6421, Aug. 2017.
[3] A. Reznik, M. G. Simões, A. Al-Durra, and S. M. Muyeen, "LCL Filter Design and Performance Analysis for Grid-Interconnected Systems," IEEE Transactions on Industry Applications, vol. 50, no. 2, pp. 1225-1232, March 2014.
[4] R. N. Beres, X. Wang, F. Blaabjerg, M. Liserre, and C. L. Bak, “Optimal Design of High-Order Passive-Damped Filters for Grid-Connected Applications,” IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 2083–2098, March 2016.
[5] J. Dannehl, M. Liserre and F. W. Fuchs, “Filter-Based Active Damping of Voltage Source Converters With LCL Filter,” IEEE Transactions on Industrial Electronics, vol. 58, no. 8, pp. 3623–3633, Aug. 2011.
[6] “IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems,” IEEE Std 519-2014 (Revision of IEEE Std 519-1992), pp. 1–29, June 2014.
[7] “IEEE Standard Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems,” IEEE Std 1547.1-2005, pp. 1–62, July 2005.
[8] M. Park, M. Chi, J. Park, H. Kim, T. Chun, and E. Nho, "LCL-filter design for grid-connected PCS using total harmonic distortion and ripple attenuation factor," The 2010 International Power Electronics Conference - ECCE ASIA -, pp. 1688-1694, 2010.
[9] Wei Sun, Zhe Chen and Xiaojie Wu, " Intelligent optimize design of LCL filter for three-phase voltage-source PWM rectifier," 2009 IEEE 6th International Power Electronics and Motion Control Conference, pp. 970-974, 2009.
[10] SeungGyu Seo, Yongsoo Cho and K. Lee, "LCL-filter design for grid-connected three-phase inverter using space vector PWM," 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), pp. 389-394, 2016.
[11] S. Sen, K. Yenduri and P. Sensarma, "Step-by-step design and control of LCL filter based three phase grid-connected inverter," 2014 IEEE International Conference on Industrial Technology (ICIT), pp. 503-508, 2014.
[12] M.B. Said-Romdhane, M.W. Naouar, I.S. Belkhodja, and E. Monmasson, “An Improved LCL Filter Design in Order to Ensure Stability without Damping and Despite Large Grid Impedance Variations,” Energies 2017; 10(3):336.
[13] A. Kouchaki, N. F. Javidi, F. Haase, and M. Nymand, "An analytical inductor design procedure for three-phase PWM converters in power factor correction applications," 2015 IEEE 11th International Conference on Power Electronics and Drive Systems, pp. 1013-1018, 2015.
[14] Y. Tang, C. Yoon, R. Zhu, and F. Blaabjerg, “Generalized stability regions of current control for LCL-filtered grid-connected converters without passive or active damping,” 2015 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 2040–2047, Sep. 2015.
[15] J. Wang and J. D. Yan, “Using virtual impedance to analyze the stability of LCL-filtered grid-connected inverters,” 2015 IEEE International Conference on Industrial Technology (ICIT), pp. 1220–1225, March 2015.
[16] 米達爾(2019)。具寬電感值變化單相LCL併網逆變器之直接數位控制。國立清華大學電機工程學系博士論文,新竹市。
[17] M. Liserre, R. Teodorescu and F. Blaabjerg, "Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values," IEEE Transactions on Power Electronics, vol. 21, no. 1, pp. 263-272, Jan. 2006.
[18] S. Errede, “American Wire Gauge (AWG) & Metric Gauge Wire Sizes” C Physics 436 EM Fields & Sources II, 2015 Supplemental Handout.
網址:http://web.hep.uiuc.edu/home/serrede/P436/Lecture_Notes/American_Wire_Gauge.pdf
[19] Chang Sung Corporation, Soft Magnetic Powder Cores, Ver.02.
[20] J. Muhlethaler, M. Schweizer, R. Blattmann, J. W. Kolar, and A. Ecklebe, "Optimal Design of LCL Harmonic Filters for Three-Phase PFC Rectifiers," IEEE Transactions on Power Electronics, vol. 28, no. 7, pp. 3114-3125, July 2013.
[21] Renesas Electronics, RX71M Group User’s Manual, Dec. 2017.
[22] CREE, C3M0021120K Datasheet.
[23] 詮偉電纜CHUAN WEI WIRE & CABLE, UL2464雙層隔離電纜線。 網址:http://www.chuanwei-wire.com.tw/prodDetail.aspx?id=24
[24] V. Väisänen, J. Hiltunen, J. Nerg, and P. Silventoinen, "AC resistance calculation methods and practical design considerations when using litz wire," IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, pp. 368-375, 2013.
[25] M. Bartoli, N. Noferi, A. Reatti, and M. K. Kazimierczuk, "Modeling Litz-wire winding losses in high-frequency power inductors," PESC Record. 27th Annual IEEE Power Electronics Specialists Conference, pp. 1690-1696 vol.2. , 1996.
[26] K. Terashima, K. Wada, T. Shimizu, T. Nakazawa, K. Ishii, and Y. Hayashi, "Evaluation of the iron loss of an inductor based on dynamic minor characteristics," 2007 European Conference on Power Electronics and Applications, pp. 1-8, 2007.
[27] J. Muhlethaler, J. Biela, J. W. Kolar, and A. Ecklebe, "Core Losses Under the DC Bias Condition Based on Steinmetz Parameters," IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 953-963, Feb. 2012.
[28] H. Matsumori, T. Shimizu, K. Takano, and H. Ishii, "Iron loss calculation of AC filter inductor for three-phase PWM inverter," 2015 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 3049-3056, 2015.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *