帳號:guest(18.222.9.171)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王立宏
作者(外文):Wang, Li-Hung
論文名稱(中文):電動車開關式磁阻馬達驅動系統及其聯網應用
論文名稱(外文):SWITCHED RELUCTANCE MOTOR BASED ELECTRIC VEHICLE AND ITS GRID-CONNECTED APPLICATIONS
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):曾萬存
陳盛基
口試委員(外文):Tseng, Wan-Tsun
Chen, Seng-Chi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:108061505
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:86
中文關鍵詞:電動車開關式磁阻馬達電池介面轉換器諧振轉換器切換式整流器電網至車輛車輛至電網車輛至家庭
外文關鍵詞:Electric vehicleswitched-reluctance motorbatteryinterface converterresonant converterswitch-mode rectifiergrid-to-vehiclevehicle-to-gridvehicle-to-home
相關次數:
  • 推薦推薦:0
  • 點閱點閱:426
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨在開發具(電網至車輛)/(車輛至電網)/(車輛至家庭)等功能之電池供電電動車開關式磁阻馬達驅動系統。以電池經全橋直流/直流轉換器對其供電,使馬達驅動之直流鏈電壓可高於或低於電池電壓。相較傳統介面轉換器,可在於廣速度範圍下,增進驅動性能與減少電池能量消耗。於驅動模式下,經妥善設計之電流控制架構、速度控制架構及自動換相角移位機制,以獲得良好驅動特性。減速時,所用轉換器之雙向功率傳輸能力,亦可有效協助回收再生煞車能量至電池。
當電動車閒置時,可通過所建車載充電器進行電網至車輛操作。配合三相或單相市電連接,可經切換式整流器與 CLLC 諧振轉換器對電池充電。在電路架構上,切換式整流器以開關式磁阻馬達之非對稱橋式轉換器固有元件進行重組,而 CLLC 諧振轉換器則提供必要之電氣隔離。為正常操控及具良好電力品質,需取得輸入電壓相角資訊,因此採三相與單相之鎖相迴路。於單相市電連接下,其動態控制經所採之比例諧振控制器,可改善正弦命令追控。
因所建 CLLC 諧振轉換器與切換式整流器具雙向功率傳輸能力,可執行車輛至電網與車輛至家庭操作。相應地,電動車可作為一可移動或分散式儲能裝置,透過車輛至電網操作送電至三相電網。此外,當發生自然災害或電網不穩時,電動車亦可施行車輛至家庭操作,作為家用電器之備用電源。
再者,亦設計一與主電池相連之 LLC 諧振轉換器,建立低壓直流匯流排,為電動車輔助負載供電。
This thesis develops a battery powered electric vehicle (EV) switched-reluctance motor (SRM) drive with grid-to-vehicle (G2V)/vehicle-to-grid (V2G)/vehicle-to-home (V2H) capabilities. The propulsion EV SRM drive is powered by the battery through an H-bridge DC/DC converter. The motor drive DC-link voltage can be lower or higher than the battery voltage. The driving performance enhancement and reduction of battery energy consumption over wide speed range can be achieved compared to the conventional interface approach. In driving mode, good driving characteristics are preserved by the properly designed current control scheme, speed control scheme and automatic commutation angle shifting mechanism. Under deceleration, the bidirectional power transmission capability of the converter helps the regenerative braking energy to be effectively recovered to the battery.
When EV is idle, the G2V operation can be conducted via the established on-board charger. With three-phase or single-phase grid connection, the battery can be charged through a switch-mode rectifier (SMR) and a CLLC resonant converter. In schematic, the SMR is reconstructed by the SRM asymmetric bridge converter embedded components. The CLLC resonant converter provides galvanic isolation. To possess good line drawn power quality, the input voltage angular information is required, thus the three-phase and single-phase phase-locked loops (PLLs) are applied. In dynamic control for the single- phase grid connection, the proportional-resonant (PR) controller is adopted to improve the sinusoidal command tracking characteristics.
Since the established CLLC resonant converter and SMR have bidirectional power transmission capabilities, the V2G and V2H operations can be further performed. Correspondingly, the EV can be regarded as a removable and distributed energy storage device, which discharges to three-phase mains through V2G operation. On the other hand, when natural disasters occur or the grid is unstable, the EV can be a backup power for household appliances via the V2H operation.
In addition, the LLC resonant converter is designed and directly connected to the EV battery to establish a low-voltage DC-bus, which can supply power to the EV auxiliary load.
ABSTRACT i
ACKNOWLEDGEMENTS ii
LIST OF CONTENTS iii
LIST OF FIGURES vi
LIST OF TABLES xi
LIST OF SYMBOLS xii
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 BASICS OF SWITCHED-RELUCTANCE MOTOR DRIVE AND
ELECTRIC VEHICLE 5
2.1 Introduction 5
2.2 Basics of SRM 5
2.2.1 Structure 5
2.2.2 Governing Equations 6
2.2.3 SRM Converters 8
2.2.4 Motor and Generator Operations of Switched Reluctance
Machine 9
2.3 Electric Vehicle 11
2.3.1 Classification 11
2.3.2 Propulsion System 11
2.3.3 EV Charger 14
2.3.4 Some Existing Integrated Chargers 17
2.3.5 Grid-connected Operation 18
2.3.6 EV Auxiliary System 19
2.4 The Developed EV SRM Drive 19
2.4.1 Driving Mode 20
2.4.2 Three-phase Three-wire Operation 20
2.4.3 Single-phase Three-wire Operation 20
CHAPTER 3 ELECTRIC VEHICLE SWITCHED-RELUCTANCE MOTOR DRIVE
22
3.1 Introduction 22
3.2 System Configuration 22
3.3 Control Scheme 23
3.3.1 Dynamic Commutation Tuning (DCT) Scheme 25
3.3.2 Current Control Scheme 25
3.3.3 Speed Control Scheme 27
3.3.4 Measured Results of SRM Drive 29
3.4 Design of H-bridge Bidirectional DC-DC Converter 35
3.4.1 System Configuration 35
3.4.2 Current and Voltage Controller 37
3.4.3 Measured Results of Bidirectional DC-DC Converter 39
3.5 Performance Evaluation of the EV SRM drive 41
CHAPTER 4 ISOLATED CLLC AND LLC RESONANT DC-DC CONVERTERS 46
4.1 Introduction 46
4.2 Isolated CLLC Converter for G2V/V2G Operations 46
4.2.1 Power Circuit 46
4.2.2 Control Schemes 50
4.2.3 Measured Results 51
4.3 Isolated LLC Converter On-board Powering 54
4.3.1 Power Circuit 54
4.3.2 Control scheme 56
4.3.3 Measured Results 56
CHAPTER 5 AUTONOMOUS AND GRID-CONNECTED OPERATIONS OF THE
DEVELOPED EV SRM DRIVE 59
5.1 Introduction 59
5.2 System Configuration 59
5.3 Three-phase Three-wire Grid-connected G2V/V2G Operations
60
5.3.1 Power Circuit 60
5.3.2 Control Scheme 60
5.3.3 Measured Results of Three-phase Three-wire System
66
5.4 Single-phase Three-wire V2H/G2V Operations 69
5.4.1 Power Circuit 69
5.4.2 Control Scheme of V2H operation 70
5.4.3 Measured Results of V2H Operation 74
5.4.4 Control Scheme of G2V Operation 76
5.4.5 Measured Results of G2V Operation 78
CHAPTER 6 CONCLUSIONS 80
REFERENCES 81
REFERENCES
A. Electric Vehicles and Related Motors
[1] L. Athanasopoulou, H. Bikas, and P. Stavropoulos, “Comparative well-to-wheel emissions assessment of internal combustion engine and battery electric vehicles,” in Proc. Procedia CIRP, 2018, vol. 78, pp. 25-30.
[2] Kristoffer W. Lie, Trym A. Synnevåg, Jacob J. Lamb, and Kristian M. Lien, “The carbon footprint of electrified city buses: A case study in Trondheim, Norway,” Energies, vol. 14, pp. 770, 2021.
[3] Z. Wang, T. W. Ching, S. Huang, H. Wang, and T. Xu, “Challenges faced by electric vehicle motors and their solutions,” IEEE Access, vol. 9, pp. 5228-5249, 2021.
[4] C. Gan, N. Jin, Q. Sun, W. Kong, Y. Hu, and L. M. Tolbert, “Multiport bidirectional SRM drives for solar-assisted hybrid electric bus powertrain with flexible driving and self- charging functions,” IEEE Trans. Power Electron., vol. 33, no. 10, pp. 8231-8245, Oct. 2018.
[5] D. Cabezuelo, I. Kortabarria, J. Andreu, U. Ugalde, B. Blanqué, and P. Andrada, “Synchronized switching modulation to reduce the DC-Link current in SRM drives,” IEEE Access, vol. 8, pp. 57849-57858, 2020.
[6] E. Bostanci, M. Moallem, A. Parsapour, and B. Fahimi, “Opportunities and challenges of switched reluctance motor drives for electric propulsion: a comparative study,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 58-75, Mar. 2017.
[7] B. Bilgin, B. Howey, A. D. Callegaro, J. Liang, M. Kordic, J. Taylor, and A. Emadi, “Making the case for switched reluctance motors for propulsion applications,” IEEE Trans. Veh. Technol., vol. 69, no. 7, pp. 7172-7186, Jul. 2020.
[8] M. Kawa, K. Kiyota, J. Furqani, and A. Chiba, “Acoustic noise reduction of a high- efficiency switched reluctance motor for hybrid electric vehicles with novel current waveform,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2519-2528, May-Jun. 2019.
[9] X. Sun, K. Diao, G. Lei, Y. Guo, and J. Zhu, “Study on segmented-rotor switched reluctance motors with different rotor pole numbers for BSG system of hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 68, no. 6, pp. 5537-5547, Jun. 2019.
[10] L. Maharjan, E. Bostanci, S. Wang, E. Cosoroaba, W. Cai, F. Yi, P. Shamsi, W. Wang, L. Gu, M. Luo, N. A. Rahman, M. McDonough, C. Lin, J. Hearron, C. C. Narvaez, M. Wu, A. H. Isfahani, Y. Li, G. Rao, M. Moallem, P. T. Balsara, and B. Fahimi, “Comprehensive report on design and development of a 100-kW DSSRM,” IEEE Trans. Transport. Electrific., vol. 4, no. 4, pp. 835-856, Dec. 2018.
[11] G. Li, J. Ojeda, S. Hlioui, E. Hoang, M. Lecrivain, and M. Gabsi, “Modification in rotor pole geometry of mutually coupled switched reluctance machine for torque ripple mitigating,” IEEE Trans. Magn., vol. 48, no. 6, pp. 2025-2034, Jun. 2012.
[12] M. A. Kabir and I. Husain, “Design of mutually coupled switched reluctance motors (MCSRMs) for extended speed applications using 3-Phase standard inverters,” IEEE Trans. Energy Convers., vol. 31, no. 2, pp. 436-445, Jun. 2016.
B. SRM Converters
[13] C. Y. Ho, J. C. Wang, K. W. Hu, and C. M. Liaw, “Development and operation control of a switched-reluctance motor driven flywheel,” IEEE Trans. Power Electron., vol. 34, no. 1, pp. 526-537, Jan. 2019.
[14] H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, May 2011.
[15] S. Riyadi, “Analysis of C-dump converter for SRM drives,” in Proc. ICELTICs, 2018, pp. 179-184.
[16] A. A. Abdel-Aziz, K. H. Ahmed, S. Wang, A. M. Massoud, and B. W. Williams, “A neutral- point diode-clamped converter with inherent voltage-boosting for a four-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5313-5324, Jul. 2020.
C. Current Control and Commutation Shift of SRM Drive
[17] C. Sikder, I. Husain and Y. Sozer, “Switched reluctance generator control for optimal power generation with current regulation,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 307-316, Jan.-Feb. 2014.
[18] I. Kioskeridis and C. Mademlis, “A unified approach for four-quadrant optimal controlled switched reluctance machine drives with smooth transition between control operations,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 301-306, Jan. 2009.
[19] I. Kioskeridis and C. Mademlis, “Maximum efficiency in single-pulse controlled switched reluctance motor drives,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 809-817, Dec. 2005.
[20] F. Peng, J. Ye, and A. Emadi, “A digital PWM current controller for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7087-7098, Oct. 2016.
[21] H. N. Huang, K. W. Hu, Y. W. Wu, T. L. Jong and C. M. Liaw, “A current control scheme with back EMF cancellation and tracking error adapted commutation shift for switched-reluctance motor drive,” IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7381-7392, Dec. 2016.
[22] C. Mademlis and I. Kioskeridis, “Gain-scheduling regulator for high-performance position control of switched reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2922-2931, Sept. 2010.
[23] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, Mar. 2003.
[24] T. Husain, A. Elrayyah, Y. Sozer, and I. Husain, “Unified control for switched reluctance motors for wide speed operation,” IEEE Trans. Ind. Electron., vol. 66, no. 5, pp. 3401-3411, May 2019.
[25] J. Ye, B. Bilgin, and A. Emadi, “An offline torque sharing function for torque ripple reduction in switched reluctance motor drives,” IEEE Trans. Energy Convers., vol. 30, no. 2, pp. 726-735, Jun. 2015.
[26] S. Shin, N. Kawagoe, T. Kosaka, and N. Matsui, “Study on commutation control method for reducing noise and vibration in SRM,” IEEE Trans. Ind. Appl., vol. 54, no. 5, pp. 4415-4424, Sept./Oct. 2018.
[27] H. Makino, T. Kosaka, and N. Matsui, “Digital PWM-control-based active vibration cancellation for switched reluctance motors,” IEEE Trans. Ind. Appl., vol. 51, no. 6, pp. 4521-4530, Nov./Dec. 2015.
D. Battery Powered EV Propulsion System
[28] T. Horiba, “Lithium-ion battery systems,” Proc. IEEE Proc., vol. 102, no. 6, pp. 939-950, Jun. 2014.
[29] S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo, and J. M. Carrasco, “Energy storage systems for transport and grid applications,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3881-3895, Dec. 2010.
[30] E. Chemali, M. Preindl, P. Malysz, and A. Emadi, “Electrochemical and electrostatic energy storage and management systems for electric drive vehicles: state-of-the-art review and future trends,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 4, no. 3, pp. 1117-1134, Sept. 2016.
[31] J. Dixon, “Energy storage for electric vehicles,” in Proc. IEEE ICIT, 2010.
[32] M. A. Hannan, M. M. Hoque, A. Hussain, Y. Yusof and P. J. Ker, “State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: issues and recommendations,” IEEE Access, vol. 6, pp. 19362-19378, 2018.
[33] A. Stippich, C. H. V. D. Broeck, A. Sewergin, A. H. Wienhausen, M. Neubert, P. Schülting, S. Taraborrelli, H. V. Hoek, and R. W. D. Doncker, “Key components of modular propulsion systems for next generation electric vehicles,” CPSS Trans. Power Electron. Appl., vol. 2, no. 4, pp. 249-258, Dec. 2017.
[34] A. Sewergin, A. H. Wienhausen, K. Oberdieck, and R. W. De Doncker, “Modular bidirectional full-SiC DC-DC converter for automotive applications,” in Proc. IEEE PEDS, 2017, pp. 277-281.
[35] M. Ehsani, K. V. Singh, H. O. Bansal, and R. T. Mehrjardi, “State of the art and trends in electric and hybrid electric vehicles,” Proc. IEEE Proc., vol. 109, no. 6, pp. 967-984, Jun. 2021.
[36] F. Blaabjerg, H. Wang, I. Vernica, B. Liu, and P. Davari, “Reliability of power electronic systems for EV/HEV applications,” Proc. IEEE Proc., vol. 109, no. 6, pp. 1060-1076, Jun. 2021.
[37] J. Schäfer, D. Bortis, and J. W. Kolar, “Multi-port multi-cell DC/DC converter topology for electric vehicle's power distribution networks,” in Proc. IEEE COMPEL, 2017, pp. 1-9.
[38] T. Rudolf, T. Schürmann, S. Schwab, and S. Hohmann, “Toward holistic energy management strategies for fuel cell hybrid electric vehicles in heavy-duty applications,” Proc. IEEE Proc., vol. 109, no. 6, pp. 1094-1114, Jun. 2021.
[39] T. Schoenen, M. S. Kunter, M. D. Hennen, and R. W. De Doncker, “Advantages of a variable DC-link voltage by using a DC-DC converter in hybrid-electric vehicles,” in Proc. IEEE VPPC, 2010, pp. 1-5.
[40] M. O. Badawy, T. Husain, Y. Sozer, and J. A. De Abreu-Garcia, “Integrated control of an IPM motor drive and a novel hybrid energy storage system for electric vehicles,” IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 5810-5819, Nov./Dec. 2017.
[41] N. Zhao, N. Schofield, R. Yang, and R. Gu, “Investigation of DC-Link voltage and temperature variations on EV traction system design,” IEEE Trans. Ind. Appl., vol. 53, no. 4, pp. 3707-3718, Jul./Aug. 2017.
E. DC/DC Interface Converters
[42] S. A. Gorji, H. G. Sahebi, M. Ektesabi, and A. B. Rad, “Topologies and control schemes of bidirectional DC–DC power converters: an overview,” IEEE Access, vol. 7, pp. 117997- 118019, 2019.
[43] M. S. Bhaskar, V. K. Ramachandaramurthy, S. Padmanaban, F. Blaabjerg, D. M. Ionel, M. Mitolo, and D. Almakhles, “Survey of DC-DC non-Isolated topologies for unidirectional power flow in fuel cell vehicles,” IEEE Access, vol. 8, pp. 178130-178166, 2020.
[44] F. Z. Peng, M. Shen, and K. Holland, “Application of Z-source inverter for traction drive of fuel cell—battery hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 1054-1061, May 2007.
[45] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional DC–DC converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, Jul./Aug. 2015.
[46] L. Zhu, H. Bai, A. Brown and M. McAmmond, “Design a 400 V–12 V 6 kW bidirectional auxiliary power module for electric or autonomous vehicles with fast precharge dynamics and zero DC-bias current,” IEEE Trans. Power Electron., vol. 36, no. 5, pp. 5323-5335, May 2021.
[47] A. M. Naradhipa, S. Kim, D. Yang, S. Choi, I. Yeo and Y. Lee, “Power density optimization of 700 kHz GaN-based auxiliary power module for electric vehicles,” IEEE Trans. Power Electron., vol. 36, no. 5, pp. 5610-5621, May 2021.
[48] J. Lu and A. Khaligh, “1kW, 400V/12V high step-down DC/DC converter: comparison between phase-shifted full-bridge and LLC resonant converters,” in Proc. 2017 IEEE ITEC, 2017, pp. 275-280.
F. EV Bidirectional Battery Chargers and Operations
G2V operation
[49] S. Habib, M. M. Khan, F. Abbas, L. Sang, M. U. Shahid, and H. Tang, “A comprehensive study of implemented international standards, technical challenges, impacts and prospects for electric vehicles,” IEEE Access, vol. 6, pp. 13866-13890, 2018.
[50] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, May 2015.
[51] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, Jun. 2004.
[52] F. Musavi, M. Edington, W. Eberle, and W. G. Dunford, “Evaluation and efficiency comparison of front end AC-DC plug-in hybrid charger topologies,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 413-421, Mar. 2012.
[53] A. Khaligh and M. D'Antonio, “Global trends in high-power on-board chargers for electric vehicles,” IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3306-3324, Apr. 2019.
[54] S. Kim and F. Kang, “Multifunctional onboard battery charger for plug-in electric vehicles,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3460-3472, Jun. 2015.
[55] P. He and A. Khaligh, “Comprehensive analyses and comparison of 1 kW isolated DC–DC converters for bidirectional EV charging systems,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 147-156, Mar. 2017.
[56] Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen, and J. Lai, “Design of bidirectional DC–DC resonant converter for vehicle-to-grid (V2G) applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 232-244, Oct. 2015.
[57] S. A. Assadi, H. Matsumoto, M. Moshirvaziri, M. Nasr, M. S. Zaman, and O. Trescases, “Active saturation mitigation in high-density dual-active-bridge DC–DC converter for on- board EV charger applications,” IEEE Trans. Power Electron., vol. 35, no. 4, pp. 4376-4387, Apr. 2020.
[58] A. Khaligh and S. Dusmez, “Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles,” IEEE Trans. Veh. Technol., vol. 61, no. 8, pp. 3475-3489, Oct. 2012.
[59] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, Sept. 2009.
[60] S. Haghbin, S. Lundmark, M. Alakula, and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, Feb. 2013.
[61] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, May 2013.
[62] S. Q. Ali, D. Mascarella, G. Joos and L. Tan, “Torque cancelation of integrated battery charger based on six-phase permanent magnet synchronous motor drives for electric vehicles,” IEEE Trans. Transport. Electrific., vol. 4, no. 2, pp. 344-354, Jun. 2018.
[63] S. Semsar, T. Soong, and P. W. Lehn, “On-board single-phase integrated electric vehicle charger with V2G functionality,” IEEE Trans. Power Electron., vol. 35, no. 11, pp. 12072- 12084, Nov. 2020.
[64] I. T. Vadium, R. Das, Y. Wang, G. Putrus, and R. Kotter, “Electric vehicle carbon footprint reduction via intelligent charging strategies,” in Proc. MPS, 2019, pp. 1-6.
V2G operation
[65] M. Moschella, M. A. A. Murad, E. Crisostomi, and F. Milano, “Decentralized charging of plug-in electric vehicles and impact on transmission system dynamics,” IEEE Trans. Smart Grid, vol. 12, no. 2, pp. 1772-1781, Mar. 2021.
[66] N. Erdogan, F. Erden, and M. Kisacikoglu, “A fast and efficient coordinated vehicle-to-grid discharging control scheme for peak shaving in power distribution system,” J. Modern Power Syst. Clean Energy, vol. 6, no. 3, pp. 555-566, May 2018.
[67] M. A. Masrur, A. G. Skowronska, J. Hancock, S. W. Kolhoff, D. Z. McGrew, J. C. Vandiver, and J. Gatherer, “Military-based vehicle-to-grid and vehicle-to-vehicle microgrid-system architecture and implementation,” IEEE Trans. Transport. Electrific., vol. 4, no. 1, pp. 157-171, Mar. 2018.
[68] S. G. Liasi and M. A. Golkar, “Electric vehicles connection to microgrid effects on peak demand with and without demand response,” in Proc. ICEE, 2017, pp. 1272-1277.
[69] C. Liu, K. T. Chau, D. Wu, and S. Gao, “Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies,” Proc. IEEE Proc., vol. 101, no. 11, pp. 2409-2427, Nov. 2013.
V2H operation
[70] H. Shin and R. Baldick, “Plug-in electric vehicle to home (V2H) operation under a grid outage,” IEEE Trans. Smart Grid, vol. 8, no. 4, pp. 2032-2041, Jul. 2017.
[71] M. Kwon and S. Choi, “An electrolytic capacitorless bidirectional EV charger for V2G and V2H applications,” IEEE Trans. Power Electron., vol. 32, no. 9, pp. 6792-6799, Sept. 2017.
[72] V. Monteiro, J. G. Pinto, and J. L. Afonso, “Operation modes for the electric vehicle in smart grids and smart homes: present and proposed modes,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1007-1020, Mar. 2016.
G. Others
[73] A. Berrueta, A. Ursúa, I. S. Martín, A. Eftekhari and P. Sanchis, “Supercapacitors: electrical characteristics, modeling, applications, and future trends,” IEEE Access, vol. 7, pp. 50869-50896, 2019.
[74] A. Özdemir and Z. Erdem, “Double-loop PI controller design of the DC-DC boost converter with a proposed approach for calculation of the controller parameters,” J. Syst. Control Eng., vol. 232, no. 2, pp. 137-148, Nov. 2017.
[75] J. Jung, H. Kim, M. Ryu and J. Baek, "Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems," IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1741-1755, April 2013.
[76] S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” in IEE Proc. Elect. Power Appl., vol. 141, no. 4, pp. 197-205, 1994.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *