|
REFERENCES A. Electric Vehicles and Related Motors [1] L. Athanasopoulou, H. Bikas, and P. Stavropoulos, “Comparative well-to-wheel emissions assessment of internal combustion engine and battery electric vehicles,” in Proc. Procedia CIRP, 2018, vol. 78, pp. 25-30. [2] Kristoffer W. Lie, Trym A. Synnevåg, Jacob J. Lamb, and Kristian M. Lien, “The carbon footprint of electrified city buses: A case study in Trondheim, Norway,” Energies, vol. 14, pp. 770, 2021. [3] Z. Wang, T. W. Ching, S. Huang, H. Wang, and T. Xu, “Challenges faced by electric vehicle motors and their solutions,” IEEE Access, vol. 9, pp. 5228-5249, 2021. [4] C. Gan, N. Jin, Q. Sun, W. Kong, Y. Hu, and L. M. Tolbert, “Multiport bidirectional SRM drives for solar-assisted hybrid electric bus powertrain with flexible driving and self- charging functions,” IEEE Trans. Power Electron., vol. 33, no. 10, pp. 8231-8245, Oct. 2018. [5] D. Cabezuelo, I. Kortabarria, J. Andreu, U. Ugalde, B. Blanqué, and P. Andrada, “Synchronized switching modulation to reduce the DC-Link current in SRM drives,” IEEE Access, vol. 8, pp. 57849-57858, 2020. [6] E. Bostanci, M. Moallem, A. Parsapour, and B. Fahimi, “Opportunities and challenges of switched reluctance motor drives for electric propulsion: a comparative study,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 58-75, Mar. 2017. [7] B. Bilgin, B. Howey, A. D. Callegaro, J. Liang, M. Kordic, J. Taylor, and A. Emadi, “Making the case for switched reluctance motors for propulsion applications,” IEEE Trans. Veh. Technol., vol. 69, no. 7, pp. 7172-7186, Jul. 2020. [8] M. Kawa, K. Kiyota, J. Furqani, and A. Chiba, “Acoustic noise reduction of a high- efficiency switched reluctance motor for hybrid electric vehicles with novel current waveform,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2519-2528, May-Jun. 2019. [9] X. Sun, K. Diao, G. Lei, Y. Guo, and J. Zhu, “Study on segmented-rotor switched reluctance motors with different rotor pole numbers for BSG system of hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 68, no. 6, pp. 5537-5547, Jun. 2019. [10] L. Maharjan, E. Bostanci, S. Wang, E. Cosoroaba, W. Cai, F. Yi, P. Shamsi, W. Wang, L. Gu, M. Luo, N. A. Rahman, M. McDonough, C. Lin, J. Hearron, C. C. Narvaez, M. Wu, A. H. Isfahani, Y. Li, G. Rao, M. Moallem, P. T. Balsara, and B. Fahimi, “Comprehensive report on design and development of a 100-kW DSSRM,” IEEE Trans. Transport. Electrific., vol. 4, no. 4, pp. 835-856, Dec. 2018. [11] G. Li, J. Ojeda, S. Hlioui, E. Hoang, M. Lecrivain, and M. Gabsi, “Modification in rotor pole geometry of mutually coupled switched reluctance machine for torque ripple mitigating,” IEEE Trans. Magn., vol. 48, no. 6, pp. 2025-2034, Jun. 2012. [12] M. A. Kabir and I. Husain, “Design of mutually coupled switched reluctance motors (MCSRMs) for extended speed applications using 3-Phase standard inverters,” IEEE Trans. Energy Convers., vol. 31, no. 2, pp. 436-445, Jun. 2016. B. SRM Converters [13] C. Y. Ho, J. C. Wang, K. W. Hu, and C. M. Liaw, “Development and operation control of a switched-reluctance motor driven flywheel,” IEEE Trans. Power Electron., vol. 34, no. 1, pp. 526-537, Jan. 2019. [14] H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, May 2011. [15] S. Riyadi, “Analysis of C-dump converter for SRM drives,” in Proc. ICELTICs, 2018, pp. 179-184. [16] A. A. Abdel-Aziz, K. H. Ahmed, S. Wang, A. M. Massoud, and B. W. Williams, “A neutral- point diode-clamped converter with inherent voltage-boosting for a four-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5313-5324, Jul. 2020. C. Current Control and Commutation Shift of SRM Drive [17] C. Sikder, I. Husain and Y. Sozer, “Switched reluctance generator control for optimal power generation with current regulation,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 307-316, Jan.-Feb. 2014. [18] I. Kioskeridis and C. Mademlis, “A unified approach for four-quadrant optimal controlled switched reluctance machine drives with smooth transition between control operations,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 301-306, Jan. 2009. [19] I. Kioskeridis and C. Mademlis, “Maximum efficiency in single-pulse controlled switched reluctance motor drives,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 809-817, Dec. 2005. [20] F. Peng, J. Ye, and A. Emadi, “A digital PWM current controller for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7087-7098, Oct. 2016. [21] H. N. Huang, K. W. Hu, Y. W. Wu, T. L. Jong and C. M. Liaw, “A current control scheme with back EMF cancellation and tracking error adapted commutation shift for switched-reluctance motor drive,” IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7381-7392, Dec. 2016. [22] C. Mademlis and I. Kioskeridis, “Gain-scheduling regulator for high-performance position control of switched reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2922-2931, Sept. 2010. [23] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, Mar. 2003. [24] T. Husain, A. Elrayyah, Y. Sozer, and I. Husain, “Unified control for switched reluctance motors for wide speed operation,” IEEE Trans. Ind. Electron., vol. 66, no. 5, pp. 3401-3411, May 2019. [25] J. Ye, B. Bilgin, and A. Emadi, “An offline torque sharing function for torque ripple reduction in switched reluctance motor drives,” IEEE Trans. Energy Convers., vol. 30, no. 2, pp. 726-735, Jun. 2015. [26] S. Shin, N. Kawagoe, T. Kosaka, and N. Matsui, “Study on commutation control method for reducing noise and vibration in SRM,” IEEE Trans. Ind. Appl., vol. 54, no. 5, pp. 4415-4424, Sept./Oct. 2018. [27] H. Makino, T. Kosaka, and N. Matsui, “Digital PWM-control-based active vibration cancellation for switched reluctance motors,” IEEE Trans. Ind. Appl., vol. 51, no. 6, pp. 4521-4530, Nov./Dec. 2015. D. Battery Powered EV Propulsion System [28] T. Horiba, “Lithium-ion battery systems,” Proc. IEEE Proc., vol. 102, no. 6, pp. 939-950, Jun. 2014. [29] S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo, and J. M. Carrasco, “Energy storage systems for transport and grid applications,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3881-3895, Dec. 2010. [30] E. Chemali, M. Preindl, P. Malysz, and A. Emadi, “Electrochemical and electrostatic energy storage and management systems for electric drive vehicles: state-of-the-art review and future trends,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 4, no. 3, pp. 1117-1134, Sept. 2016. [31] J. Dixon, “Energy storage for electric vehicles,” in Proc. IEEE ICIT, 2010. [32] M. A. Hannan, M. M. Hoque, A. Hussain, Y. Yusof and P. J. Ker, “State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: issues and recommendations,” IEEE Access, vol. 6, pp. 19362-19378, 2018. [33] A. Stippich, C. H. V. D. Broeck, A. Sewergin, A. H. Wienhausen, M. Neubert, P. Schülting, S. Taraborrelli, H. V. Hoek, and R. W. D. Doncker, “Key components of modular propulsion systems for next generation electric vehicles,” CPSS Trans. Power Electron. Appl., vol. 2, no. 4, pp. 249-258, Dec. 2017. [34] A. Sewergin, A. H. Wienhausen, K. Oberdieck, and R. W. De Doncker, “Modular bidirectional full-SiC DC-DC converter for automotive applications,” in Proc. IEEE PEDS, 2017, pp. 277-281. [35] M. Ehsani, K. V. Singh, H. O. Bansal, and R. T. Mehrjardi, “State of the art and trends in electric and hybrid electric vehicles,” Proc. IEEE Proc., vol. 109, no. 6, pp. 967-984, Jun. 2021. [36] F. Blaabjerg, H. Wang, I. Vernica, B. Liu, and P. Davari, “Reliability of power electronic systems for EV/HEV applications,” Proc. IEEE Proc., vol. 109, no. 6, pp. 1060-1076, Jun. 2021. [37] J. Schäfer, D. Bortis, and J. W. Kolar, “Multi-port multi-cell DC/DC converter topology for electric vehicle's power distribution networks,” in Proc. IEEE COMPEL, 2017, pp. 1-9. [38] T. Rudolf, T. Schürmann, S. Schwab, and S. Hohmann, “Toward holistic energy management strategies for fuel cell hybrid electric vehicles in heavy-duty applications,” Proc. IEEE Proc., vol. 109, no. 6, pp. 1094-1114, Jun. 2021. [39] T. Schoenen, M. S. Kunter, M. D. Hennen, and R. W. De Doncker, “Advantages of a variable DC-link voltage by using a DC-DC converter in hybrid-electric vehicles,” in Proc. IEEE VPPC, 2010, pp. 1-5. [40] M. O. Badawy, T. Husain, Y. Sozer, and J. A. De Abreu-Garcia, “Integrated control of an IPM motor drive and a novel hybrid energy storage system for electric vehicles,” IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 5810-5819, Nov./Dec. 2017. [41] N. Zhao, N. Schofield, R. Yang, and R. Gu, “Investigation of DC-Link voltage and temperature variations on EV traction system design,” IEEE Trans. Ind. Appl., vol. 53, no. 4, pp. 3707-3718, Jul./Aug. 2017. E. DC/DC Interface Converters [42] S. A. Gorji, H. G. Sahebi, M. Ektesabi, and A. B. Rad, “Topologies and control schemes of bidirectional DC–DC power converters: an overview,” IEEE Access, vol. 7, pp. 117997- 118019, 2019. [43] M. S. Bhaskar, V. K. Ramachandaramurthy, S. Padmanaban, F. Blaabjerg, D. M. Ionel, M. Mitolo, and D. Almakhles, “Survey of DC-DC non-Isolated topologies for unidirectional power flow in fuel cell vehicles,” IEEE Access, vol. 8, pp. 178130-178166, 2020. [44] F. Z. Peng, M. Shen, and K. Holland, “Application of Z-source inverter for traction drive of fuel cell—battery hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 1054-1061, May 2007. [45] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional DC–DC converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, Jul./Aug. 2015. [46] L. Zhu, H. Bai, A. Brown and M. McAmmond, “Design a 400 V–12 V 6 kW bidirectional auxiliary power module for electric or autonomous vehicles with fast precharge dynamics and zero DC-bias current,” IEEE Trans. Power Electron., vol. 36, no. 5, pp. 5323-5335, May 2021. [47] A. M. Naradhipa, S. Kim, D. Yang, S. Choi, I. Yeo and Y. Lee, “Power density optimization of 700 kHz GaN-based auxiliary power module for electric vehicles,” IEEE Trans. Power Electron., vol. 36, no. 5, pp. 5610-5621, May 2021. [48] J. Lu and A. Khaligh, “1kW, 400V/12V high step-down DC/DC converter: comparison between phase-shifted full-bridge and LLC resonant converters,” in Proc. 2017 IEEE ITEC, 2017, pp. 275-280. F. EV Bidirectional Battery Chargers and Operations G2V operation [49] S. Habib, M. M. Khan, F. Abbas, L. Sang, M. U. Shahid, and H. Tang, “A comprehensive study of implemented international standards, technical challenges, impacts and prospects for electric vehicles,” IEEE Access, vol. 6, pp. 13866-13890, 2018. [50] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, May 2015. [51] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, Jun. 2004. [52] F. Musavi, M. Edington, W. Eberle, and W. G. Dunford, “Evaluation and efficiency comparison of front end AC-DC plug-in hybrid charger topologies,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 413-421, Mar. 2012. [53] A. Khaligh and M. D'Antonio, “Global trends in high-power on-board chargers for electric vehicles,” IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3306-3324, Apr. 2019. [54] S. Kim and F. Kang, “Multifunctional onboard battery charger for plug-in electric vehicles,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3460-3472, Jun. 2015. [55] P. He and A. Khaligh, “Comprehensive analyses and comparison of 1 kW isolated DC–DC converters for bidirectional EV charging systems,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 147-156, Mar. 2017. [56] Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen, and J. Lai, “Design of bidirectional DC–DC resonant converter for vehicle-to-grid (V2G) applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 232-244, Oct. 2015. [57] S. A. Assadi, H. Matsumoto, M. Moshirvaziri, M. Nasr, M. S. Zaman, and O. Trescases, “Active saturation mitigation in high-density dual-active-bridge DC–DC converter for on- board EV charger applications,” IEEE Trans. Power Electron., vol. 35, no. 4, pp. 4376-4387, Apr. 2020. [58] A. Khaligh and S. Dusmez, “Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles,” IEEE Trans. Veh. Technol., vol. 61, no. 8, pp. 3475-3489, Oct. 2012. [59] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, Sept. 2009. [60] S. Haghbin, S. Lundmark, M. Alakula, and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, Feb. 2013. [61] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, May 2013. [62] S. Q. Ali, D. Mascarella, G. Joos and L. Tan, “Torque cancelation of integrated battery charger based on six-phase permanent magnet synchronous motor drives for electric vehicles,” IEEE Trans. Transport. Electrific., vol. 4, no. 2, pp. 344-354, Jun. 2018. [63] S. Semsar, T. Soong, and P. W. Lehn, “On-board single-phase integrated electric vehicle charger with V2G functionality,” IEEE Trans. Power Electron., vol. 35, no. 11, pp. 12072- 12084, Nov. 2020. [64] I. T. Vadium, R. Das, Y. Wang, G. Putrus, and R. Kotter, “Electric vehicle carbon footprint reduction via intelligent charging strategies,” in Proc. MPS, 2019, pp. 1-6. V2G operation [65] M. Moschella, M. A. A. Murad, E. Crisostomi, and F. Milano, “Decentralized charging of plug-in electric vehicles and impact on transmission system dynamics,” IEEE Trans. Smart Grid, vol. 12, no. 2, pp. 1772-1781, Mar. 2021. [66] N. Erdogan, F. Erden, and M. Kisacikoglu, “A fast and efficient coordinated vehicle-to-grid discharging control scheme for peak shaving in power distribution system,” J. Modern Power Syst. Clean Energy, vol. 6, no. 3, pp. 555-566, May 2018. [67] M. A. Masrur, A. G. Skowronska, J. Hancock, S. W. Kolhoff, D. Z. McGrew, J. C. Vandiver, and J. Gatherer, “Military-based vehicle-to-grid and vehicle-to-vehicle microgrid-system architecture and implementation,” IEEE Trans. Transport. Electrific., vol. 4, no. 1, pp. 157-171, Mar. 2018. [68] S. G. Liasi and M. A. Golkar, “Electric vehicles connection to microgrid effects on peak demand with and without demand response,” in Proc. ICEE, 2017, pp. 1272-1277. [69] C. Liu, K. T. Chau, D. Wu, and S. Gao, “Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies,” Proc. IEEE Proc., vol. 101, no. 11, pp. 2409-2427, Nov. 2013. V2H operation [70] H. Shin and R. Baldick, “Plug-in electric vehicle to home (V2H) operation under a grid outage,” IEEE Trans. Smart Grid, vol. 8, no. 4, pp. 2032-2041, Jul. 2017. [71] M. Kwon and S. Choi, “An electrolytic capacitorless bidirectional EV charger for V2G and V2H applications,” IEEE Trans. Power Electron., vol. 32, no. 9, pp. 6792-6799, Sept. 2017. [72] V. Monteiro, J. G. Pinto, and J. L. Afonso, “Operation modes for the electric vehicle in smart grids and smart homes: present and proposed modes,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1007-1020, Mar. 2016. G. Others [73] A. Berrueta, A. Ursúa, I. S. Martín, A. Eftekhari and P. Sanchis, “Supercapacitors: electrical characteristics, modeling, applications, and future trends,” IEEE Access, vol. 7, pp. 50869-50896, 2019. [74] A. Özdemir and Z. Erdem, “Double-loop PI controller design of the DC-DC boost converter with a proposed approach for calculation of the controller parameters,” J. Syst. Control Eng., vol. 232, no. 2, pp. 137-148, Nov. 2017. [75] J. Jung, H. Kim, M. Ryu and J. Baek, "Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems," IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1741-1755, April 2013. [76] S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” in IEE Proc. Elect. Power Appl., vol. 141, no. 4, pp. 197-205, 1994.
|