帳號:guest(18.226.98.149)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):江益誠
作者(外文):Jiang, Yi-Cheng
論文名稱(中文):風力開關式磁阻發電機為主之直流微電網
論文名稱(外文):WIND SWITCHED-RELUCTANCE GENERATOR BASED DC MICROGRID
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):陳景然
謝欣然
口試委員(外文):Chen, Ching-Jan
Shieh, Hsin-Jang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:108061502
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:112
中文關鍵詞:風力發電機開關式磁阻發電機直流微電網電池永磁同步馬達切換式整流器換相移位交錯式升壓轉換器負載變頻器比例諧振控制微電網至電網、電網至微電網
外文關鍵詞:wind generatorSRGDC microgridbatteryPMSMSMRcommutation shiftinterleaved boost converterload inverterPR controlG2M/M2G
相關次數:
  • 推薦推薦:0
  • 點閱點閱:117
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨在開發一風力開關式磁阻發電機為主之直流微電網。首先,建立一變頻供電永磁同步馬達驅動系統作為風力渦輪機之替代。為由市電供電永磁同步馬達驅動系統,開發一單相切換式整流器。可提供所研習風力開關式磁阻發電機良好之機械驅動能力,同時在電網側亦具有良好之入電電力品質。
接著,研製所開發之風力開關式磁阻發電機。由於開關式磁阻發電機不具自激能力,因此必須在其輸出端配置適當的外激電源,以成功建立電壓。在動態控制安排上,採用磁滯電流控制脈波寬度調變機構,以降低馬達之反電動勢效應。接著,設計一具快速電壓追控及調節響應之量化與強健電壓控制器,以對抗驅動速度及負載之變動。此外,進一步採用動態換相移位,以增強開關式磁阻發電機之發電特性與電壓控制性能。
一般,風力發電機之輸出電壓因變動之風速,輸出電壓有廣範圍的變化。因此,建構開關式磁阻發電機後接之具雙單元交錯式直流/直流升壓轉換器,由適當設計之電壓控制器,建立良好調節特性之直流匯流排,作為公共接入點。此外,開發一蓄電池儲能系統,提供微電網之能量緩衝,蓄電池經一雙向單臂升/降壓直流/直流轉換器連接至直流匯流排。
最後,設計實現一具三功率電晶體臂之負載變頻器,可作為單相三線變頻器或三相三線變頻器。當作為單相三線變頻器,產生單相220V/110V 60Hz之電壓源為家用電器供電,控制上採比例共振控制器,以獲得更好的正弦波形調控性能。對於三相三線變頻器,其用於微電網至電網/電網至微電網之雙向操作。在微電網至電網操作上,可提供電網有效功率與從事虛功補償。至於在電網至微電網操作上,三相交流電源可對微電網提供電能支撐。
This thesis develops an experimental wind switched-reluctance generator (SRG) based DC microgrid. First, an inverter-fed permanent-magnet synchronous motor (PMSM) drive is established and used as an alternative of wind turbine. To power the PMSM drive from the mains, a single-phase switch-mode rectifier (SMR) is developed. Good mechanical driven ability for the studied wind SRG is generated. Meanwhile, good line drawn power quality in the utility grid side is obtained.
Next, the wind SRG is designed and implemented. Since the SRG lacks self-excitation ability, a proper external excitation source is equipped at the SRG output for successful voltage building up. In dynamic control arrangement, the hysteresis current-controlled PWM (HCCPWM) scheme is adopted to counteract the back-EMF effects. Then, a quantitative and robust voltage controller is designed to have fast voltage tracking and regulation responses against the changed driven speed and load. In addition, a dynamic commutation shift is further applied to enhance the SRG generating characteristics and voltage control performance.
The wind generator output voltage is inherently varied in wide range with the fluctuated wind speed. Thus third, the SRG followed interleaved DC/DC boost converter with two cells is constructed. The proper voltage control is treated to establish a well-regulated common DC bus as the common access point. In addition, a battery energy storage system (BESS) is developed for providing energy buffer to the microgrid. The battery is connected to the microgrid common DC bus via a bidirectional one-leg boost-buck DC/DC converter.
Finally, a load inverter with three IGBT legs is designed and implemented. It can be operated as a 1P3W inverter or a 3P3W inverter. The 1P3W inverter yields single-phase 220/110V 60Hz AC sources to power the home appliances. The control schemes adopt proportional-resonant (PR) control to obtain better sinusoidal waveform control charac- teristics. As to the 3P3W inverter, it is used to conduct the bidirectional microgrid-to grid/grid-to-microgrid (M2G/G2M) operations. In M2G operation, the real power is sent to the grid and compensates the system reactive power. Conversely in G2M operation, the three-phase AC source provides power to support the DC microgrid.

LIST OF CONTENTS
ABSTRACT i
ACKNOWLEDGEMENT ii
LIST OF CONTENTS iii
LIST OF FIGURES vi
LIST OF TABLES xiii
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 OVERVIEW OF MICROGRID CONSTITUTED COMPONENTS 5
2.1 Introduction 5
2.2 Microgrids 5
2.3 Wind Generators 7
2.3.1 Wind Turbines 7
2.3.2 Governing Equations and Power Characteristics 7
2.3.3 Typical Wind Generators 9
2.4 Permanent Magnet Synchronous Machines 11
2.4.1 Motor Structures 11
2.4.2 Physical Modeling 12
2.4.3 Measurement of Motor Parameters 14
2.5 Switched-Reluctance Machines 17
2.5.1 Motor Structures 17
2.5.2 Governing Equations and Dynamic Modeling 19
2.5.3 SRM Converters 21
2.5.4 Some Key Issues of SRG 23
2.6 Energy Storage Devices 24
2.7 Interface Converters 25
CHAPTER 3 PERMANENT-MAGNET SYNCHRONOUS MOTOR DRIVE BASED WIND TURBINE 29
3.1 Introduction 29
3.2 Permanent-magnet Synchronous Motor Drive 29
3.2.1 Power Circuit 29
3.2.2 Sensing and Interfacing Circuits 31
3.3 Control Schemes 33
3.3.1 Current-controlled PWM Scheme 33
3.3.2 Speed Control Scheme 34
3.4 Experimental Results 36
3.4.1 Starting Characteristics 36
3.4.2 Speed Dynamic Response 37
3.5 Boost SMR-Fed SPMSM Drive 38
3.5.1 Standard Boost SMR 39
3.5.2 SPMSM-driven SRG 46
CHAPTER 4 WIND SWITCHED-RELUCTANCE GENERATOR 47
4.1 Introduction 47
4.2 Switched-Reluctance Generator 47
4.2.1 Governing Equation 47
4.2.2 DC-link Ripple characteristics 49
4.3 Control Scheme 50
4.4 Performance Evaluation 56
4.5 Revaluation of the SRG system 64
CHAPTER 5 DC MICROGRID BASED ON SWITCHED-RELUCTANCE GENERATOR 66
5.1 Introduction 66
5.2 Interleaved Boost Converter 66
5.2.1 Circuit Operation 66
5.2.2 Power Circuit 69
5.2.3 Control Schemes 71
5.2.4 Experimental Results 74
5.3 Battery Energy Storage System 79
5.3.1 Power Circuit 79
5.3.2 Control Scheme 80
5.3.3 Measured Results 84
5.4 Single-phase Three-wire Inverter 85
5.4.1 Power Circuit 85
5.4.2 Dynamic Model 87
5.4.3 Control Scheme 89
5.4.4 Measured Results 92
5.5 M2G/G2M Operations via 3P3W Inverter 97
5.5.1 Power Circuit 97
5.5.2 3P3W Inverter in M2G Operation 98
5.5.3 3P3W Inverter in G2M Operation 101
CHAPTER 6 CONCLUSIONS 104
REFERENCES 105
A. Microgrid and Distributed Power Systems
[1] N. Eghtedarpour and E. Farjah, “Power control and management in a hybrid AC/DC microgrid,” IEEE Trans. Smart Grid, vol. 5, no. 3, pp. 1494-1505, May 2014.
[2] E. Rodriguez-Diaz, M. Savaghebi, J. C. Vasquez and J. M. Guerrero, “An overview of low voltage DC distribution systems for residential applications,” in Proc. IEEE ICCE-Berlin, 2015, pp. 318-322.
[3] T. Dragičević, X. Lu, J. C. Vasquez and J. M. Guerrero, “DC microgrids- Part II: A review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, May 2016.
[4] T. Ma, M. H. Cintuglu and O. A. Mohammed, “Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 567-575, Jan.-Feb. 2017.
[5] A. Frances, R. Asensi, Ó. García, R. Prieto and J. Uceda, “Modeling electronic power converters in smart DC microgrids- An overview,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6274-6287, Nov. 2017.
[6] Y. Shan, J. Hu, K. W. Chan, Q. Fu and J. M. Guerrero, “Model predictive control of bidirectional DC–DC converters and AC/DC interlinking converters- A new control method for PV-Wind-Battery microgrids,” IEEE Trans. Sustain. Energy, vol. 10, no. 4, pp. 1823 -1833, Oct. 2019.
[7] F. S. Al-Ismail, “DC microgrid planning, operation, and control: A comprehensive review,” IEEE Access, vol. 9, pp. 36154-36172, 2021.
[8] H. Kakigano, Y. Miura and T. Ise, “Low-voltage bipolar-type DC microgrid for super high quality distribution,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3066-3075, Dec. 2010.
[9] H. J. Kim and B. M. Han, “Operation analysis of bipolar DC distribution system with new half-bridge voltage balancer,” in Proc. IEEE ICBEST, 2015, pp. 62-67.
[10] Y. Gu, W. Li and X. He, “Analysis and control of bipolar LVDC grid with DC symmetrical component method,” IEEE Trans. Power Syst., vol. 31, no. 1, pp. 685-694, Jan. 2016.
[11] J. M. Guerrero, P. C. Loh, T. L. Lee and M. Chandorkar, “Advanced control architectures for intelligent microgrids- Part II: Power quality, energy storage, and AC/DC microgrids,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1263-1270, Apr., 2013.
[12] T. Dragičević, J. M. Guerrero, J. C. Vasquez and D. Škrlec, “Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 695-706, Feb. 2014.
[13] T. Dragičević, X. Lu, J. C. Vasquez and J. M. Guerrero, “DC microgrids- Part I: A review of control strategies and stabilization techniques,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4876-4891, Jul. 2016.
[14] L. Meng, Q. Shafiee, G. F. Trecate, H. Karimi, D. Fulwani, X. Lu and J. M. Guerrero, “Review on control of DC microgrids and multiple microgrid clusters,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 5, no. 3, pp. 928-948, Sep., 2017.
[15] J. Zhou, Y. Xu, H. Sun, Y. Li and M. Chow, “Distributed power management for networked AC/DC microgrids with unbalanced microgrids,” IEEE Trans. Ind. Informat., vol. 16, no. 3, pp. 1655-1667, Mar. 2020.
[16] F. Perez, A. Iovine, G. Damm, L. Galai-Dol and P. F. Ribeiro, “Stability analysis of a DC microgrid for a smart railway station integrating renewable sources,” IEEE Trans. Control Syst. Technol., vol. 28, no. 5, pp. 1802-1816, Sep. 2020.
B. Switch-mode Rectifiers
(a) Single-phase SMRs
[17] R. Martinez and P. N. Enjeti, “A high-performance single-phase rectifier with input power factor correction,” IEEE Trans. Power Electron., vol. 11, no. 2, pp. 311-317, Mar. 1996.
[18] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[19] P. Amiri, W. Eberle, D. Gautam and C. Botting, “An adaptive method for DC current reduction in totem pole power factor correction converters,” IEEE Trans. Power Electron., vol. 36, no. 10, pp. 11900-11909, Oct. 2021.
[20] A. A. de Melo Bento and E. R. Cabral da Silva, "Hybrid one-cycle controller for boost PFC rectifier," IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 268-277, Jan.-Feb. 2009.
[21] T. K. Jappe and S. A. Mussa, “Current technique applied in single phase PFC boost converter based on discrete-time one cycle control,” in Proc. IEEE INTELEC, 2011, pp. 1-5.
(b) Three-phase SMRs
[22] S. Gadelovitz and A. Kuperman, “Modeling and classical control of unidirectional Vienna rectifiers,” in Proc. IEEE PQ, 2012, pp. 1-4.
[23] T. Friedli, M. Hartmann, and J. W Kolar, “The essence of three-phase PFC rectifier systems-part II” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2013.
[24] L. Huber, M. Kumar and M. M. Jovanović, “Performance comparison of PI and P compensation in DSP-based average-current-controlled three-phase six-switch boost PFC rectifier,” IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7123-7137, Dec. 2015.
[25] M. S. Ali, L. Wang, H. Alquhayz, O. U. Rehman and G. Chen, “Performance improvement of three-phase boost power factor correction rectifier through combined parameters optimization of proportional-integral and repetitive controller,” IEEE Access, vol. 9, pp. 58893-58909, 2021.
C. Permanent-Magnet Synchronous Motor
[26] S. Lee, “Closed-loop estimation of permanent magnet synchronous motor parameters by PI controller gain tuning,” IEEE Trans. Energy Convers., vol. 21, no. 4, pp. 863-870, Dec. 2006.
[27] M. C. Chou and C. M. Liaw, “Dynamic control and diagnostic friction estimation for an SPMSM-driven satellite reaction wheel,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4693-4707, 2011.
[28] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machinery and Drive System, 3rd ed. New York: Wiley-IEEE, 2013.
[29] B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001.
[30] A. Lekshmi, R. Sankaran and S. Ushakumari, “Comparison of performance of a closed loop PMSM drive system with modified predictive current and hysteresis controllers,” in Proc. IEEE ICEMS, 2008, vol. 1, no. 1, pp. 2876-2881.
[31] M. N. Uddin, M. A. Abido and M. A. Rahman, “Development and implementation of a hybrid intelligent controller for interior permanent-magnet synchronous motor drives,” IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 68-79, 2004.
[32] A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy- PI with novel switching functions,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4672-4675, 2009.
[33] T. Tarczewski and L. Grzesiak, “Constrained state feedback speed control of PMSM based on model predictive approach,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3867-3875, 2015.
[34] J. Yoo, J. Lee and S. K. Sul, “Analysis of instability in torque control of sensorless PMSM drives in flux weakening region,” IEEE Trans. Power Electron., vol. 36, no. 9, pp. 10815-10826, Sep. 2021.
[35] F. Aghili, M. Buehler and J. M. Hollerbach, “Optimal commutation laws in the frequency domain for PM synchronous direct-drive motors,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1056-1064, 2000.
[36] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, pp. 1045-1051.
[37] D. S. Maric, S. Hiti, C. C. Stancu and J. M. Nagashima, “Two improved flux weakening schemes for surface mounted permanent magnet synchronous machine drives employing space vector modulation,” in Proc. IEEE IECON, 1998, vol. 1, pp. 508-512.
[38] S. Chaithongsuk, B. N. Mobarakeh, J. P. Caron, N. Takorabet, and F. M. Tabar, “Optimal design of permanent magnet motors to improve field-weakening performance in variable speed drives,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2484-2494, 2012.
D. Switched-reluctance Machines
(a) Switched-reluctance Motor
[39] T. J. E. Miller, Switched reluctance motors and their control, Clarendon Press, Oxford, 1993.
[40] P. C. Sen, Principles of electric machines and power electronics, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2014.
[41] I. Husain and S. A. Hossain, “Modeling, simulation, and control of switched reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 52, no. 6, pp. 1625-1634, Dec. 2005.
[42] M. Krishnamurthy, C. S. Edrington, A. Emadi, P. Asadi, M. Ehsani and B. Fahimi, “Making the case for applications of switched reluctance motor technology in automotive products,” IEEE Trans. Power Electron., vol. 21, no. 3, pp. 659-675, May 2006.
[43] S. Li, S. Zhang, T. G. Habetler and R. G. Harley, “Modeling, design optimization, and applications of switched reluctance machines- a review,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2660-2681, May/Jun. 2019.
[44] I. Boldea, L. N. Tutelea, L. Parsa and D. Dorrell, “Automotive electric propulsion systems with reduced or no permanent magnets: An overview,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp.5696-5711, Oct. 2014.
[45] Z. Yang, F. Shang, I. P. Brown and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, Oct. 2015.
[46] E. Bostanci, M. Moallem, A. Parsapour and B. Fahimi, “Opportunities and challenges of switched reluctance motor drives for electric propulsion: A comparative study,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 58-75, Mar. 2017.
[47] B. Fahimi, A. Emadi and R. B. Sepe Jr, “A switched reluctance machine-based starter/ alternator for more electric cars,” IEEE Trans. Energy Convers., vol. 19, no. 1, pp. 116-124, 2004.
[48] N. Schofield and S. Lomg, “Generator operation of a switched reluctance starter/generator at extended speeds,” IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 48-56, 2009.
[49] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Appl., vol. 36, no. 3, pp. 714-722, May/Jun. 2000.
[50] D. N. Essah and S. D. Sudhoff, “An improved analytical model for the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 349-356, Sep. 2003.
[51] C. Lin, W. Wang, M. McDonough and B. Fahimi, “An extended field reconstruction method for modeling of switched reluctance machines,” IEEE Trans. Magn. vol. 48, no. 2, pp. 1051-1054, Feb. 2012.
[52] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
[53] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[54] K. W. Hu, Y. Y. Chen and C. M. Liaw, “A reversible position sensorless controlled switched- reluctance motor drive with adaptive and intuitive commutation tuning,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015.
[55] S. Shin, N. Kawagoe, T. Kosaka, and N. Matsui, “Study on commutation control method for reducing noise and vibration in SRM,” IEEE Trans. Ind. Appl., vol. 54, no. 5, pp. 4415-4424, Sep./Oct. 2018.
[56] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
[57] R. Mikail, I. Husain, Y. Sozer, M. S. Islam and T. Sebastian, “A fixed switching frequency predictive current control method for switched reluctance machines,” IEEE Trans. Elect. Ind Appl., vol. 50, no. 6, pp. 3717-3726, Nov./Dec. 2014.
[58] X. Li and P. Shamsi, “Model predictive current control of switched reluctance motors with inductance auto-calibration,” IEEE Trans. Elect. Ind Appl., vol. 63, no. 6, pp. 3934-3941, Jun. 2016.
[59] S. S. Ahmad and G. Narayanan, "Linearized modeling of switched reluctance motor for closed-loop current control," IEEE Trans. Ind. Appl., vol. 52, no. 4, pp. 3146-3158, July-Aug. 2016.
[60] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
[61] H. Hannoun, M. Hilairet and C. Marchand, “Design of an SRM speed control strategy for a wide range of operating speeds,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2911-2921, 2010.
[62] D. E. Cameron, J. H. Lang and S. D. Umans, “The origin and reduction of acoustic noise in doubly salient variable-reluctance motors,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 1250- 1255, 1992.
[63] J. Y. Chai and C. M. Liaw, “On the reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling,” IEE Proc. Elect. Power Applicat., 2010, vol. 4, no. 5, pp. 380-396.
[64] V. P. Vujičić, “Minimization of torque ripple and copper losses in switched reluctance drive,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 388-399, 2012.
[65] H. Li, B. Bilgin and A. Emadi, “An improved torque sharing function for torque ripple reduction in switched reluctance machines,” IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1635-1644, Feb. 2019.
[66] Y. G. Dessouky, B. W. Williams, and J. E. Fletcher, “A novel power converter with voltage- boosting capacitors for a four-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 815-823, 1998.
[67] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front-end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009.
[68] K. W. Hu, P. H. Yi, and C. M. Liaw, “An EV SRM drive powered by battery/supercapacitor with G2V and V2H/V2G capabilities,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714- 4727, 2015.
(b) Switched-reluctance Generators
[69] A. Radun, “Generating with the switched reluctance motor,” in Proc. IEEE APEC, pp. 41-47, vol. 1, 1994.
[70] D. A. Torrey, “Switched reluctance generators and their control,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 3-14, 2002.
[71] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445-454, 2008.
[72] A. W. F. V. Silveira, D. A. Andrade, L. C. Gomes, A. Fleury and C. A. Bissochi, “DSP based SRG load voltage control,” in Proc. IEEE VPPC, 2010, pp. 1-5.
[73] S. Narla, Y. Sozer and I. Husain, “Switched reluctance generator controls for optimal power generation and battery charging,” IEEE Trans. Ind Appl., vol. 48, no. 5, pp. 1452-1459, Sep.-Oct. 2012.
[74] V. Nasirian, S. Kaboli and A. Davoudi, “Output power maximization and optimal symmetric freewheeling excitation for switched reluctance generators,” IEEE Trans. Ind. Appl., vol. 49, no. 3, pp. 1031-1042, 2013.
[75] D. W. Choi, S. I. Byun and Y. H. Cho, “A study on the maximum power control method of switched reluctance generator for wind turbine,” IEEE Trans. Magn., vol. 50, no. 1, 2014.
[76] C. Sikder, I. Husain and Y. Sozer, “Switched reluctance generator control for optimal power generation with current regulation,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 307-316, 2014.
[77] E. Rahmanian, H. Akbari, and G. H. Sheisi, “Maximum power point tracking in grid connected wind plant by using intelligent controller and switched reluctance generator,” IEEE Trans. Sustain. Energy, vol. 8, no. 3, pp. 1313-1320, 2017.
[78] T. A. D. Santos Barros, P. J. D. Santos Neto, P. S. N. Filho, A. B. Moreira, and E. R. Filho, “An approach for switched reluctance generator in a wind generation system with a wide range of operation speed,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8277-8292, 2017.
[79] P. J. D. Santos Neto, T. A. D. Santos Barros, M. V. D. Paula, R. R. D. Souza, and E. R. Filho, “Design of computational experiment for performance optimization of a switched reluctance generator in wind system,” IEEE Trans. Energy Convers., vol. 33, no. 1, pp. 406-419, 2018.
[80] H. Chen, D. Xu and X. Deng, “Control for power converter of small-scale switched reluctance wind power generator,” IEEE Trans. Ind. Electron., vol. 68, no. 4, pp. 3148-3158, Apr. 2021.
(c) Converters for Switched-reluctance Machines
[81] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991.
[82] M. Barnes and C. Pollock, “Power electronic converters for switched reluctance drives,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1100-1111, 1998.
[83] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002.
[84] D. Cabezuelo, J. Andreu, I. Kortabarria, E. Ibarra and I. Garate. “SRM converter topologies for EV application: state of the technology,” in Proc. IEEE ISIE, 2017, pp. 861-866.
E. Energy Storage System
[85] J. P. Barton and D. G. Infield, “Energy storage and its use with intermittent renewable energy,” IEEE Trans. Energy Convers., vol. 19, no. 2, pp. 441-448, 2004.
[86] A. Kusko and J. DeDad, “Stored energy- short-term and long-term energy storage methods,” IEEE Trans. Ind. Appl. Mag., vol. 13, no. 4, pp. 66-72, 2007.
[87] C. Abbey, K. Strunz and G. Joos, “A knowledge-based approach for control of two-level energy storage for wind energy systems,” IEEE Trans. Energy Convers., vol. 24, no. 2, pp. 539-547, Jun. 2009.
[88] G. Wang, G. Konstantinou, C. D. Townsend, J. Pou, S. Vazquez, G. D. Demetriades, and V. G. Agelidis, “A review of power electronics for grid connection of utility-scale battery energy storage systems,” IEEE Trans. Sustain. Energy, vol. 7, no. 4, pp. 1778-1790, 2016.
[89] F. A. Inthamoussou, J. Pegueroles-Queralt and F. D. Bianchi, “Control of a supercapacitor energy storage system for microgrid applications,” IEEE Trans. Energy Convers., vol. 28, no. 3, pp. 690-697, 2013.
[90] U. Akram, M. Khalid and S. Shafiq, “An innovative hybrid wind-solar and battery- supercapacitor microgrid system- development and optimization,” IEEE Access, vol. 5, pp. 25897-25912, 2017.
[91] S. Kotra and M. K. Mishra, “Design and stability analysis of DC microgrid with hybrid energy storage system,” IEEE Trans. Sustain. Energy, vol. 10, no. 3, pp. 1603-1612, 2019.
[92] G. O. Cimuca, C. Saudemont, B. Robyns, and M. M. Radulescu, “Control and performance evaluation of a flywheel energy-storage system associated to a variable-speed wind generator,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1074-1085, 2006.
[93] J. I. Itoh, K. Tanaka, S. Matsuo, and N. Yamada, “Experimental verification of flywheel power leveling system oriented to low cost and general purpose use,” in Proc. IEEE ECCE, 2013, pp.35-42.
[94] F. Diaz-Gonzalez, F. D. Bianchi, A. Sumper, and O. Gomis-Bellmunt, “Control of a flywheel energy storage system for power smoothing in wind power plants,” IEEE Trans. Energy Convers., vol. 29, no. 1, pp. 204-214, 2014.
F. Interface Power Converters
[95] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics Converters, Applications and Design, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2003.
[96] D. G. Holmes, P. Atmur, C. C. Beckett, M. P. Bull, W. Y. Kong, W. J. Luo, D. K. C. Ng, N. Sachchithananthan, P. W. Su, D. P. Ware and P. Wrzos, “An innovative, efficient current-fed push-pull grid connectable inverter for distributed generation systems,” in Proc. IEEE PESC, 2006, pp. 1-6.
[97] E. Hiraki, K. Hirao, T. Tanaka and T. Mishima, “A push-pull converter based bidirectional DC-DC interface for energy storage systems,” in Proc. IEEE EPE, 2009, pp. 1-10.
[98] N. M. L. Tan, T. Abe and H. Akagi, “Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, 2011.
[99] O. Hegazy, J. V. Mierlo and P. Lataire, “Analysis, modeling, and implementation of a multidevice interleaved DC/DC converter for fuel cell hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4445-4458, Nov. 2012.
[100] K. W. Hu, J. C. Wang, T. S. Lin and C. M. Liaw, “A switched-reluctance generator with interleaved interface DC-DC converter,” IEEE Trans. Energy Convers., vol. 30, no. 1, pp. 273-284, 2015.
[101] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, “Step-up DC/DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9143-9178, 2017.
[102] F. Wang, Z. Lei, X. Xu and X. Shu, “Topology deduction and analysis of voltage balancers for DC microgrid,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 5, no. 2, pp. 672– 680, 2017.
[103] X. Ruan, B. Li, Q. Chen, S. C. Tan and C. K. Tse, “Fundamental considerations of three-level DC–DC converters: Topologies, analyses, and control,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 55, no. 11, pp. 3733–3743, 2008.
G. PWM Inverters
[104] J. Kim, J. Choi and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” in Proc. IEEE ICPST, 2000, vol. 3, pp. 1659-1664.
[105] Y. Wue, L. Chang, S. B. Kjær, J. Bordonau and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
[106] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña and J. M. Guerrero, “Control design guidelines for single-phase grid-connected photovoltaic inverters with damped resonant harmonic compensators,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4492-4500, 2009.
[107] K. Selvajyothi and P. A. Janakiraman, “Reduction of voltage harmonics in single phase inverters using composite observers,” IEEE Trans. Power Del., vol. 25, no. 2, pp. 1045-1057, 2010.
[108] R. Teodorescu, F. Blaabjerg, M. Liserre and P. C. Loh, “Proportional-resonant controllers and filters for grid-connected voltage-source converters,” IEE Proc.-Electr. Power Appl., 2006, vol. 153, no. 5, pp. 750-762.
[109] M. C. Chou and C. M. Liaw, “Dynamic control and diagnostic friction estimation for a PMSM driven satellite reaction wheel,” IEEE Trans. Ind. Electron, vol. 58, no. 10, pp. 4693-4707, Oct, 2011.
[110] F. Wang, J. L. Duarte and M. A. M. Hendrix, “Grid-interfacing converter systems with enhanced voltage quality for microgrid application- concept and implementation,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3501-3513, Dec. 2011.
[111] J. A. Mueller, M. Rasheduzzaman and J. W. Kimball, “A model modification process for grid-connected inverters used in islanded microgrids,” IEEE Trans. Energy Convers., vol. 31, no. 1, pp. 240-250, Mar. 2016.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *