帳號:guest(3.147.59.219)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂酈家
作者(外文):LU, LI-CHIA
論文名稱(中文):開發具量產潛力奈米結構製程及其於高靈敏表面增強拉曼散射光譜學之應用
論文名稱(外文):Scalable Fabrication of Cost-effective Plasmonic Nanostructures for Ultrasensitive Surface Raman Enhanced Spectroscopy
指導教授(中文):萬德輝
指導教授(外文):Wan, Dehui
口試委員(中文):黃郁棻
李博仁
口試委員(外文):Yu-Fen, Huang
Bor-Ran, Li
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:108038701
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:91
中文關鍵詞:表面增強拉曼散射光譜奈米銀膠單分子檢測大面積製程螢光干擾近紅外光雷射
外文關鍵詞:SERSmetallic nanopastesingle-molecule detectionwafer-scale fabricationfluorescence interferencesNIR laser
相關次數:
  • 推薦推薦:0
  • 點閱點閱:98
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
各式奈米金屬結構已被大量探索,並用以製作高靈敏的表面增強拉曼基材,在食品安全、環境汙染、以及生物醫學的分析與檢測領域,佔有一席之地。然而,這些常見的方法通常需要繁瑣的製程、昂貴的設備,或是缺乏穩定的再現性。因此,本論文的研究目標即為開發具有量產潛力的表面拉曼增益基材,同時兼顧其高靈敏度以及高再現性的要求。
在本研究的第一部分,我們利用目前已經在太陽能產業廣泛使用的電極材料-奈米銀膠,作為提供電場增益的關鍵材料。首先,將商用奈米銀膠稀釋成不同濃度,接著將配製好的奈米銀膠溶液搭配旋轉塗佈法在4吋矽基板上沉積。隨著濃度的逐步下降,銀膠表面形貌將呈現三個階段的變化:少量的奈米裂紋、高密度奈米裂紋以及分散的奈米粒子陣列。接著,我們利用三維時域有限差分法(3D-finite-difference time-domain, 3D-FDTD)進行近場光學模擬,探索其電場增益的現象,並對亞甲基藍進行拉曼光譜量測。結果指出不同形貌的奈米銀膠結構展現出來的電場耦合增益與實際量測拉曼訊號趨勢高度相符,其中,高密度奈米裂紋展示出最佳的拉曼訊號。在此基礎上結合可攜式拉曼光譜儀(785 nm),進行了後續實驗,其訊號增益幅度可達3.2×106,隨機取樣30次的重複性測試展現其優異的再現性(RSD =3.59%)。最終,我們測試不同領域10種常見有害性物質,並針對數種農藥進行混合分析以及在實際樣品(蘋果汁及蘋果皮)的檢測,展現其優異的靈敏度及實用性。
然而,有許多分析樣品本身或是所存在複雜環境,會在紫外光及可見光的雷射照射下產生強烈的螢光放射,從而造成大量的背景干擾。一旦發生螢光干擾,將會使得整個拉曼光譜失去其獨特的特徵峰,若使頻率較低的近紅外光(Near Infrared,NIR)雷射(如:785 nm或1064 nm)則可以有效降低螢光背景干擾。因此,在本研究的第二部分,我們將延伸第一部分之研究,針對近紅外光波段的雷射開發適合的表面增強拉曼散射基材。考慮到金奈米粒子較銀奈米粒子的表面電漿共振峰更靠近近紅外光波段,故選用奈米金膠。藉由對其表面形貌的調控,提升電場增益,並搭配近紅外光的可攜式拉曼光譜儀(785 nm 和1064 nm),以此克服具有螢光干擾的拉曼待測物,提升光譜的可讀性,進而擴大實際臨床應用潛力。
Many different nanostructures have been explored to fabricate highly sensitive surface-enhanced Raman scattering (SERS) substrates for food safety monitoring, environmental pollution controlling, biomedical analysis and biosensing. However, the cumbersome fabrication processes, sophisticated equipment and low signal-reproducibility limited on-site detection of SERS. Thus, the aim of this thesis is to develop SERS substrates with ultrahigh sensitivity, high reproducibility and the potential of mass production.
In the first part, we design a simple, sensitive and scalable SERS substrate via breaking the conductivity of the commercial silver nanopastes (AgNPA). AgNPA, a widely explored electrode material in the photovoltaic industry, is a crucial material which could provide high electromagnetic (EM) field. By regulating the AgNPA concentration, the morphology of the spun-on AgNPA would transform from continuous film, dense nanocracks, to sparse nanoparticles. Then, the EM field distribution of AgNPA samples were evaluated via optical simulations and spectroscopic analyses. We surprisingly found that the EM intensity and electrical resistance gradually enlarged with decreasing AgNPA concentration. As the plentiful nanocracks were created, the AgNPA could generate the strongest EM intensity with large-area distribution, though its conductivity was broken. The optimal SERS substrate demonstrated a significant Raman enhancement factor up to 3.2×106, the detection limit of 10-9 M, and a signal reproducibility (RSD =3.59%) for methylene blue (MB), with a portable 785 nm Raman spectrometer. Moreover, to realize the wide applicability of the SERS substrate for on-site detection, 10 harmful substances in water and food were assessed. Finally, we demonstrated the great sensing performance in real samples by spiking thiram in apple juice and on apple peel. The limit of detection could reach 1 ppm and 3.91 ng/ cm2, respectively. The nanocrack-based SERS substrate fabricated via a simple, efficient and scalable fabrication process offer new opportunities for mass production and established high practical value for various applications.
However, with an excitation wavelength within UV-visible region, some of the organic compounds would occur naturally fluorescence which may cause high background signals and thus interfere spectral discrimination. Thus, in the second part, the similar strategy to the first part was extended by changing the plasmonic material to gold (Au). Also, portable Raman spectrometers with near infrared (NIR) laser (such as 785 nm or 1064 nm) were utilized to effectively reduce the fluorescence interference of analyte compounds or background. The commercial gold nanopaste (AuNPA) was selected because of the localized surface plasmon resonance peak of Au is typically closer to the NIR excitation wavelengths, as compared to Ag. The distribution of AuNPA could be well regulated through adjusting the concentration of AuNPA, soft-baking temperature and spin-coating rate, which would strongly influence the electric filed and the enhancement effect of Raman signal. We expect that the strategy can efficiently inhibit the fluorescence interferences, promoting the readability of Raman spectra, especially in future clinical applications.
致謝 I
摘要 II
Abstract IV
Table of contents VI
List of Figures IX
List of Tables XV
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Structure 2
Chapter 2 Literature Review 3
2.1 Surface-Enhanced Raman Scattering, SERS 3
2.1.1 Raman Scattering 3
2.1.2 Localized Surface Plasmon Resonance, LSPR 4
2.1.3 Surface-Enhanced Raman Scattering, SERS 9
2.1.4 Single Molecule Detection 12
2.2 Metallic Nanoparticles 13
2.2.1 Conventional Metallic Components—Gold and Silver 13
2.2.2 Ag Paste 14
2.3 Near infrared active SERS substrate 15
2.3.1 Fluorescence interference in Raman spectra 15
2.3.2 SERS detection with NIR excitation 18
2.4 The risks of the harmful chemical substances 21
Chapter 3 Wafer-scale nanocracks prepared from Ag nanopaste 23
3.1 The Design of Research 23
3.2 Experimental Section 25
3.2.1 Materials 25
3.2.2 Characterization 25
3.2.3 Fabrication of spun-on AgNPA/Si 25
3.2.4 Raman spectral measurement 26
3.2.5 FDTD simulations 26
3.2.6 Preparation of standard samples 26
3.2.7 Pesticide residues in apple juice and apple peel 27
3.3 Result and Discussion 28
3.3.1 Characterization of spin-coated Ag NCK arrays 29
3.3.2 Optical optimization of Ag NCK array for ultrasensitive SERS 33
3.3.3 Ultrahigh sensitivity of the Ag NCK SERS substrate: single molecule detection 36
3.3.4 Portable SERS measurement for on-site detection with Ag NCK array 39
3.4 Conclusion 52
Chapter 4 Nanocracks prepared from Au nanopaste for NIR SERS analysis 54
4.1 The Design of Research 54
4.2 Experimental Sections 55
4.2.1 Material 55
4.2.2 Characterization 55
4.2.3 Fabrication of spun-on Au-Si SERS Substrate 55
4.3 Result and Discussion 56
4.3.1 Solvent selection for Au nanopaste 56
4.3.2 Optimization of diluted ratio of AuNPA 58
4.3.3 Optimization of spin-coating rate and soft-baking temperature for AuNPA SERS substrate 60
4.3.4 The optimization of AuNPA substrate with 1064 nm portable Raman spectrometer 67
4.3.5 Particle size and gap effect on electric field enhancement 74
Chapter 5 Conclusion 81
5.1 Summary of Work 81
5.2 Future Work and Prospects 82
Reference 83
1. Raman, C. V., A change of wave-length in light scattering. Nature 1928, 121 (3051), 619.
2. Raman, C. V.; Krishnan, K. S., A new type of secondary radiation. Nature 1928, 121 (3048), 501.
3. Ember, K. J. I.; Hoeve, M. A.; McAughtrie, S. L.; Bergholt, M. S.; Dwyer, B. J.; Stevens, M. M.; Faulds, K.; Forbes, S. J.; Campbell, C. J., Raman spectroscopy and regenerative medicine: a review. NPJ Regen. Med. 2017, 2 (1), 12.
4. Willets, K. A.; Van Duyne, R. P., Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 2007, 58, 267-97.
5. Mayer, K. M.; Hafner, J. H., Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111 (6), 3828-3857.
6. Zhao, J.; Xue, S.; Ji, R.; Li, B.; Li, J., Localized surface plasmon resonance for enhanced electrocatalysis. Chem. Soc. Rev. 2021, 50 (21), 12070-12097.
7. Petryayeva, E.; Krull, U. J., Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Anal. Chim. Acta 2011, 706 (1), 8-24.
8. Kim, S.; Kim, J.-M.; Park, J.-E.; Nam, J.-M., Nonnoble-Metal-Based Plasmonic Nanomaterials: Recent Advances and Future Perspectives. Adv. Mater. 2018, 30 (42), 1704528.
9. Liz-Marzán, L. M., Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 2006, 22 (1), 32-41.
10. Wiley, B. J.; Chen, Y.; McLellan, J. M.; Xiong, Y.; Li, Z.-Y.; Ginger, D.; Xia, Y., Synthesis and Optical Properties of Silver Nanobars and Nanorice. Nano Lett. 2007, 7 (4), 1032-1036.
11. Jeon, H. B.; Tsalu, P. V.; Ha, J. W., Shape Effect on the Refractive Index Sensitivity at Localized Surface Plasmon Resonance Inflection Points of Single Gold Nanocubes with Vertices. Sci Rep 2019, 9 (1), 13635.
12. Zhong, Z.; Patskovskyy, S.; Bouvrette, P.; Luong, J. H. T.; Gedanken, A., The Surface Chemistry of Au Colloids and Their Interactions with Functional Amino Acids. J. Phys. Chem. B 2004, 108 (13), 4046-4052.
13. Lu, X.; Rycenga, M.; Skrabalak, S. E.; Wiley, B.; Xia, Y., Chemical synthesis of novel plasmonic nanoparticles. Annu. Rev. Phys. Chem. 2009, 60, 167-92.
14. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26 (2), 163-166.
15. Tadesse, L. F.; Safir, F.; Ho, C. S.; Hasbach, X.; Khuri-Yakub, B. P.; Jeffrey, S. S.; Saleh, A. A. E.; Dionne, J., Toward rapid infectious disease diagnosis with advances in surface-enhanced Raman spectroscopy. J. Chem. Phys. 2020, 152 (24), 240902.
16. Ding, S.-Y.; Yi, J.; Li, J.-F.; Ren, B.; Wu, D.-Y.; Panneerselvam, R.; Tian, Z.-Q., Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1 (6).
17. Wang, X.; Huang, S.-C.; Hu, S.; Yan, S.; Ren, B., Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat. Rev. Phys 2020, 2 (5), 253-271.
18. Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R. A.; Auguié, B.; Baumberg, J. J.; Bazan, G. C.; Bell, S. E. J.; Boisen, A.; Brolo, A. G.; Choo, J.; Cialla-May, D.; Deckert, V.; Fabris, L.; Faulds, K.; García de Abajo, F. J.; Goodacre, R.; Graham, D.; Haes, A. J.; Haynes, C. L.; Huck, C.; Itoh, T.; Käll, M.; Kneipp, J.; Kotov, N. A.; Kuang, H.; Le Ru, E. C.; Lee, H. K.; Li, J.-F.; Ling, X. Y.; Maier, S. A.; Mayerhöfer, T.; Moskovits, M.; Murakoshi, K.; Nam, J.-M.; Nie, S.; Ozaki, Y.; Pastoriza-Santos, I.; Perez-Juste, J.; Popp, J.; Pucci, A.; Reich, S.; Ren, B.; Schatz, G. C.; Shegai, T.; Schlücker, S.; Tay, L.-L.; Thomas, K. G.; Tian, Z.-Q.; Van Duyne, R. P.; Vo-Dinh, T.; Wang, Y.; Willets, K. A.; Xu, C.; Xu, H.; Xu, Y.; Yamamoto, Y. S.; Zhao, B.; Liz-Marzán, L. M., Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14 (1), 28-117.
19. Li, T.; Wu, K.; Rindzevicius, T.; Wang, Z.; Schulte, L.; Schmidt, M. S.; Boisen, A.; Ndoni, S., Wafer-Scale Nanopillars Derived from Block Copolymer Lithography for Surface-Enhanced Raman Spectroscopy. ACS Appl. Mater. Interfaces 2016, 8 (24), 15668-15675.
20. Prikhozhdenko, E. S.; Bratashov, D. N.; Gorin, D. A.; Yashchenok, A. M., Flexible surface-enhanced Raman scattering-active substrates based on nanofibrous membranes. Nano Res. 2018, 11 (9), 4468-4488.
21. Li, J.; Wuethrich, A.; Sina, A. A. I.; Cheng, H.-H.; Wang, Y.; Behren, A.; Mainwaring, P. N.; Trau, M., A digital single-molecule nanopillar SERS platform for predicting and monitoring immune toxicities in immunotherapy. Nat. Commun. 2021, 12 (1), 1087.
22. Lee, H. K.; Lee, Y. H.; Koh, C. S. L.; Phan-Quang, G. C.; Han, X.; Lay, C. L.; Sim, H. Y. F.; Kao, Y.-C.; An, Q.; Ling, X. Y., Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials. Chem. Soc. Rev. 2019, 48 (3), 731-756.
23. Nie, S.; Emory, S. R., Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 1997, 275 (5303), 1102.
24. Wang, D.; Zhu, W.; Best, M. D.; Camden, J. P.; Crozier, K. B., Directional Raman Scattering from Single Molecules in the Feed Gaps of Optical Antennas. Nano Lett. 2013, 13 (5), 2194-2198.
25. Yu, C.-C.; Chou, S.-Y.; Tseng, Y.-C.; Tseng, S.-C.; Yen, Y.-T.; Chen, H.-L., Single-shot laser treatment provides quasi-three-dimensional paper-based substrates for SERS with attomolar sensitivity. Nanoscale 2015, 7 (5), 1667-1677.
26. Sivashanmugan, K.; Squire, K.; Kraai, J. A.; Tan, A.; Zhao, Y.; Rorrer, G. L.; Wang, A. X., Biological Photonic Crystal-Enhanced Plasmonic Mesocapsules: Approaching Single-Molecule Optofluidic-SERS Sensing. Adv. Opt. Mater. 2019, 7 (13), 1900415.
27. Mao, P.; Liu, C.; Favraud, G.; Chen, Q.; Han, M.; Fratalocchi, A.; Zhang, S., Broadband single molecule SERS detection designed by warped optical spaces. Nat. Commun. 2018, 9 (1), 5428.
28. Yang, S.; Dai, X.; Stogin, B. B.; Wong, T.-S., Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc. Natl. Acad. Sci. U.S.A. 2016, 113 (2), 268-273.
29. Kim, N. H.; Hwang, W.; Baek, K.; Rohman, M. R.; Kim, J.; Kim, H. W.; Mun, J.; Lee, S. Y.; Yun, G.; Murray, J.; Ha, J. W.; Rho, J.; Moskovits, M.; Kim, K., Smart SERS Hot Spots: Single Molecules Can Be Positioned in a Plasmonic Nanojunction Using Host–Guest Chemistry. J. Am. Chem. Soc. 2018, 140 (13), 4705-4711.
30. Chen, X.; Liu, P.; Hu, Z.; Jensen, L., High-resolution tip-enhanced Raman scattering probes sub-molecular density changes. Nat. Commun. 2019, 10 (1), 2567.
31. Yu, Y.; Xiao, T.-H.; Wu, Y.; Li, W.; Zeng, Q.-G.; Long, L.; Li, Z.-Y., Roadmap for single-molecule surface-enhanced Raman spectroscopy. Adv. photonics 2020, 2 (1), 014002.
32. Ru, E. C. L.; Etchegoin, P. G., Single-Molecule Surface-Enhanced Raman Spectroscopy. Annu. Rev. Phys. Chem. 2012, 63 (1), 65-87.
33. Bodelón, G.; Montes-García, V. n.; Costas, C.; Pérez-Juste, I.; Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M., Imaging bacterial interspecies chemical interactions by surface-enhanced Raman scattering. ACS nano 2017, 11 (5), 4631-4640.
34. Lee, M.; Oh, K.; Choi, H.-K.; Lee, S. G.; Youn, H. J.; Lee, H. L.; Jeong, D. H., Subnanomolar sensitivity of filter paper-based SERS sensor for pesticide detection by hydrophobicity change of paper surface. ACS sensors 2018, 3 (1), 151-159.
35. Chen, H.-Y.; Lin, M.-H.; Wang, C.-Y.; Chang, Y.-M.; Gwo, S., Large-Scale Hot Spot Engineering for Quantitative SERS at the Single-Molecule Scale. J. Am. Chem. Soc. 2015, 137 (42), 13698-13705.
36. Park, M.; Jung, H.; Jeong, Y.; Jeong, K.-H., Plasmonic schirmer strip for human tear-based gouty arthritis diagnosis using surface-enhanced Raman scattering. ACS nano 2016, 11 (1), 438-443.
37. Huang, J.-A.; Zhao, Y.-Q.; Zhang, X.-J.; He, L.-F.; Wong, T.-L.; Chui, Y.-S.; Zhang, W.-J.; Lee, S.-T., Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection. Nano letters 2013, 13 (11), 5039-5045.
38. Kim, W.; Lee, S. H.; Kim, S. H.; Lee, J.-C.; Moon, S. W.; Yu, J. S.; Choi, S., Highly Reproducible Au-Decorated ZnO Nanorod Array on a Graphite Sensor for Classification of Human Aqueous Humors. ACS Appl. Mater. Interfaces 2017, 9 (7), 5891-5899.
39. Park, M.; Hwang, C. S. H.; Jeong, K.-H., Nanoplasmonic Alloy of Au/Ag Nanocomposites on Paper Substrate for Biosensing Applications. ACS Appl. Mater. Interfaces 2018, 10 (1), 290-295.
40. Zhang, R.; Xu, B.-B.; Liu, X.-Q.; Zhang, Y.-L.; Xu, Y.; Chen, Q.-D.; Sun, H.-B., Highly efficient SERS test strips. Chem. Commun. 2012, 48 (47), 5913-5915.
41. Safavi, A.; Tohidi, M., Metal Paste Nanocomposite Electrodes as a New Generation of Metallic Electrodes. Anal. Chem. 2011, 83 (14), 5502-5510.
42. Fernandes, I. J.; Aroche, A. F.; Schuck, A.; Lamberty, P.; Peter, C. R.; Hasenkamp, W.; Rocha, T. L. A. C., Silver nanoparticle conductive inks: synthesis, characterization, and fabrication of inkjet-printed flexible electrodes. Sci. Rep. 2020, 10 (1), 8878.
43. Alsuradi, H.; Yoo, J., Screen Printed Passives and Interconnects on Bio-Degradable Medical Hydrocolloid Dressing for Wearable Sensors. Sci. Rep. 2019, 9 (1), 17467.
44. Peng, P.; Hu, A.; Gerlich, A. P.; Zou, G.; Liu, L.; Zhou, Y. N., Joining of Silver Nanomaterials at Low Temperatures: Processes, Properties, and Applications. ACS Appl. Mater. Interfaces 2015, 7 (23), 12597-12618.
45. Chen, C.; Suganuma, K., Microstructure and mechanical properties of sintered Ag particles with flake and spherical shape from nano to micro size. Mater. Des. 2019, 162, 311-321.
46. Zhang, P.; Jiang, X.; Yuan, P.; Yan, H.; Yang, D., Silver nanopaste: Synthesis, reinforcements and application. Int. J. Heat Mass Transf. 2018, 127, 1048-1069.
47. Li, C.-F.; Li, W.; Zhang, H.; Jiu, J.; Yang, Y.; Li, L.; Gao, Y.; Liu, Z.-Q.; Suganuma, K., Highly Conductive Ag Paste for Recoverable Wiring and Reliable Bonding Used in Stretchable Electronics. ACS Appl. Mater. Interfaces 2019, 11 (3), 3231-3240.
48. Mo, L.; Guo, Z.; Wang, Z.; Yang, L.; Fang, Y.; Xin, Z.; Li, X.; Chen, Y.; Cao, M.; Zhang, Q.; Li, L., Nano-Silver Ink of High Conductivity and Low Sintering Temperature for Paper Electronics. Nanoscale Res. Lett. 2019, 14 (1), 197.
49. Liang, J.; Tong, K.; Pei, Q., A Water-Based Silver-Nanowire Screen-Print Ink for the Fabrication of Stretchable Conductors and Wearable Thin-Film Transistors. Adv Mater 2016, 28 (28), 5986-5996.
50. Melzer, M.; Mönch, J. I.; Makarov, D.; Zabila, Y.; Cañón Bermúdez, G. S.; Karnaushenko, D.; Baunack, S.; Bahr, F.; Yan, C.; Kaltenbrunner, M.; Schmidt, O. G., Wearable Magnetic Field Sensors for Flexible Electronics. Adv. Mater. 2015, 27 (7), 1274-1280.
51. Tepner, S.; Wengenmeyr, N.; Linse, M.; Lorenz, A.; Pospischil, M.; Clement, F., The Link between Ag-Paste Rheology and Screen-Printed Solar Cell Metallization. Adv. Mater. Technol. 2020, 5 (10), 2000654.
52. Kamino, B. A.; Paviet-Salomon, B.; Moon, S.-J.; Badel, N.; Levrat, J.; Christmann, G.; Walter, A.; Faes, A.; Ding, L.; Diaz Leon, J. J.; Paracchino, A.; Despeisse, M.; Ballif, C.; Nicolay, S., Low-Temperature Screen-Printed Metallization for the Scale-Up of Two-Terminal Perovskite–Silicon Tandems. ACS Appl. Energy Mater. 2019, 2 (5), 3815-3821.
53. Fields, J. D.; Ahmad, M. I.; Pool, V. L.; Yu, J.; Van Campen, D. G.; Parilla, P. A.; Toney, M. F.; van Hest, M. F. A. M., The formation mechanism for printed silver-contacts for silicon solar cells. Nat. Commun. 2016, 7 (1), 11143.
54. Gallimore, P. J.; Davidson, N. M.; Kalberer, M.; Pope, F. D.; Ward, A. D., 1064 nm Dispersive Raman Microspectroscopy and Optical Trapping of Pharmaceutical Aerosols. Anal. Chem. 2018, 90 (15), 8838-8844.
55. Greeneltch, N. G.; Blaber, M. G.; Schatz, G. C.; Van Duyne, R. P., Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy on Silver Immobilized Nanorod Assemblies and Optimization for Near Infrared (λex = 1064 nm) Studies. J. Phys. Chem. C 2012, 117 (6), 2554-2558.
56. Greeneltch, N. G.; Davis, A. S.; Valley, N. A.; Casadio, F.; Schatz, G. C.; Van Duyne, R. P.; Shah, N. C., Near-Infrared Surface-Enhanced Raman Spectroscopy (NIR-SERS) for the Identification of Eosin Y: Theoretical Calculations and Evaluation of Two Different Nanoplasmonic Substrates. J. Phys. Chem. A 2012, 116 (48), 11863-11869.
57. Nobrega, M. M.; Souza, K. S.; Andrade, G. F. S.; Camargo, P. H. C.; Temperini, M. L. A., Emeraldine Salt Form of Polyaniline as a Probe Molecule for Surface Enhanced Raman Scattering Substrates Excited at 1064 nm. J. Phys. Chem. C 2013, 117 (35), 18199-18205.
58. Tang, S.; Chen, B.; McKay, C. P.; Navarro-Gonzalezv, R.; Wang, A. X., Detection of trace organics in Martian soil analogs using fluorescence-free surface enhanced 1064-nm Raman Spectroscopy. Opt. Express 2016, 24 (19), 22104-9.
59. Lin, L.-K.; Stanciu, L. A., Bisphenol A detection using gold nanostars in a SERS improved lateral flow immunochromatographic assay. Sens. Actuators B Chem. 2018, 276, 222-229.
60. Kondo, T.; Hashimoto, R.; Ohrui, Y.; Sekioka, R.; Nogami, T.; Muta, F.; Seto, Y., Analysis of chemical warfare agents by portable Raman spectrometer with both 785nm and 1064nm excitation. Forensic Sci. Int. 2018, 291, 23-38.
61. Kimani, M. M.; Lanzarotta, A.; Batson, J. S., Rapid determination of eight benzodiazepines in suspected counterfeit pharmaceuticals using surface-enhanced Raman scattering with handheld Raman spectrometers. J. Forensic Sci. 2021, 66 (6), 2167-2179.
62. Kimani, M. M.; Lanzarotta, A.; Batson, J. S., Trace level detection of select opioids (fentanyl, hydrocodone, oxycodone, and tramadol) in suspect pharmaceutical tablets using surface-enhanced Raman scattering (SERS) with handheld devices. J. Forensic Sci. 2021, 66 (2), 491-504.
63. Pisu, F. A.; Carbonaro, C. M.; Corpino, R.; Ricci, P. C.; Chiriu, D., Fresco Paintings: Development of an Aging Model from 1064 nm Excited Raman Spectra. Crystals 2021, 11 (3).
64. Quintero Balbas, D.; Lanterna, G.; Cirrincione, C.; Ricci, M.; Becucci, M.; Fontana, R.; Striova, J., Noninvasive identification of turmeric and saffron dyes in proteinaceous textile fibres using Raman spectroscopy and multivariate analysis. J. Raman Spectrosc. 2021.
65. Košek, F.; Culka, A.; Rousaki, A.; Vandenabeele, P.; Jehlička, J., Evaluation of miniaturized Raman spectrometers for planetary exploration: From aromatics to amino acids. Icarus 2021, 366.
66. Tang, S.; Chen, B.; McKay, C. P.; Navarro-Gonzalezv, R.; Wang, A. X., Detection of trace organics in Martian soil analogs using fluorescence-free surface enhanced 1064-nm Raman Spectroscopy. Opt Express 2016, 24 (19), 22104-22109.
67. Ito, H.; Uragami, N.; Miyazaki, T.; Yokoyama, N.; Inoue, H., Raman spectroscopic evaluation of human serum using metal plate and 785-and 1064-nm excitation lasers. Plos One 2019, 14 (2).
68. Lauwers, D.; Hutado, A. G.; Tanevska, V.; Moens, L.; Bersani, D.; Vandenabeele, P., Characterisation of a portable Raman spectrometer for in situ analysis of art objects. Spectrochim Acta A Mol Biomol Spectrosc 2014, 118, 294-301.
69. Moreton, S.; Faulds, K.; Shand, N. C.; Bedics, M. A.; Detty, M. R.; Graham, D., Functionalisation of hollow gold nanospheres for use as stable, red-shifted SERS nanotags. Nanoscale 2015, 7 (14), 6075-6082.
70. Kearns, H.; Shand, N. C.; Smith, W. E.; Faulds, K.; Graham, D., 1064 nm SERS of NIR active hollow gold nanotags. Phys. Chem. Chem. Phys. 2015, 17 (3), 1980-6.
71. Volochanskyi, O.; Švecová, M.; Bartůněk, V.; Prokopec, V., Electroless deposition via galvanic displacement as a simple way for the preparation of silver, gold, and copper SERS-active substrates. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 616.
72. Madzharova, F.; Heiner, Z.; Kneipp, J., Surface-Enhanced Hyper Raman Spectra of Aromatic Thiols on Gold and Silver Nanoparticles. J. Phys. Chem. C 2020, 124 (11), 6233-6241.
73. Renard, D.; Tian, S.; Ahmadivand, A.; DeSantis, C. J.; Clark, B. D.; Nordlander, P.; Halas, N. J., Polydopamine-Stabilized Aluminum Nanocrystals: Aqueous Stability and Benzo[a]pyrene Detection. ACS Nano 2019, 13 (3), 3117-3124.
74. Andersen, C.; Krais, A. M.; Eriksson, A. C.; Jakobsson, J.; Löndahl, J.; Nielsen, J.; Lindh, C. H.; Pagels, J.; Gudmundsson, A.; Wierzbicka, A., Inhalation and Dermal Uptake of Particle and Gas-Phase Phthalates—A Human Exposure Study. Environ. Sci. Technol. 2018, 52 (21), 12792-12800.
75. Selvaraj, J. N.; Zhou, L.; Wang, Y.; Zhao, Y.-j.; Xing, F.-g.; Dai, X.-f.; Liu, Y., Mycotoxin detection — Recent trends at global level. J. Integr. Agric. 2015, 14 (11), 2265-2281.
76. Zhou, S.; Xu, L.; Kuang, H.; Xiao, J.; Xu, C., Immunoassays for rapid mycotoxin detection: state of the art. Analyst 2020, 145 (22), 7088-7102.
77. Gu, C.; Ren, P.; Zhang, F.; Zhao, G.; Shen, J.; Zhao, B., Detection of Six β-Agonists by Three Multiresidue Immunosensors Based on an Anti-bovine Serum Albumin-Ractopamine-Clenbuterol-Salbutamol Antibody. ACS Omega 2020, 5 (10), 5548-5555.
78. Zhai, F.; Huang, Y.; Li, C.; Wang, X.; Lai, K., Rapid Determination of Ractopamine in Swine Urine Using Surface-Enhanced Raman Spectroscopy. J. Agric. Food Chem. 2011, 59 (18), 10023-10027.
79. Xiao, S.; He, Y., Analysis of Sildenafil in Liquor and Health Wine Using Surface Enhanced Raman Spectroscopy. Int. J. Mol. Sci. 2019, 20 (11), 2722.
80. Pilot, R., SERS detection of food contaminants by means of portable Raman instruments. J. Raman Spectrosc. 2018, 49 (6), 954-981.
81. Chang, Y. L.; Lai, I. C.; Lu, L. C.; Chang, S. W.; Sun, A. Y.; Wan, D.; Chen, H. L., Wafer-scale nanocracks enable single-molecule detection and on-site analysis. Biosens. Bioelectron. 2022, 200, 113920.
82. Yang, Y.; Gu, C.; Li, J., Sub-5 nm Metal Nanogaps: Physical Properties, Fabrication Methods, and Device Applications. Small 2019, 15 (5), 1804177.
83. Dubois, V.; Raja, S. N.; Gehring, P.; Caneva, S.; van der Zant, H. S. J.; Niklaus, F.; Stemme, G., Massively parallel fabrication of crack-defined gold break junctions featuring sub-3 nm gaps for molecular devices. Nat. Commun. 2018, 9 (1), 3433.
84. Kiran, J. U.; Roners, J. P.; Mathew, S., XPS and thermal studies of silver doped SiO2 matrices for plasmonic applications. Materials Today: Proceedings 2020, 33, 1263-1267.
85. Liu, X.; Ma, J.; Jiang, P.; Shen, J.; Wang, R.; Wang, Y.; Tu, G., Large-Scale Flexible Surface-Enhanced Raman Scattering (SERS) Sensors with High Stability and Signal Homogeneity. ACS Appl. Mater. Interfaces 2020, 12 (40), 45332-45341.
86. Sun, J.; Gong, L.; Wang, W.; Gong, Z.; Wang, D.; Fan, M., Surface-enhanced Raman spectroscopy for on-site analysis: A review of recent developments. Luminescence 2020, 35 (6), 808-820.
87. Li, C.; Huang, Y.; Lai, K.; Rasco, B. A.; Fan, Y., Analysis of trace methylene blue in fish muscles using ultra-sensitive surface-enhanced Raman spectroscopy. Food Control 2016, 65, 99-105.
88. Hu, B.; Sun, D.-W.; Pu, H.; Wei, Q., Rapid nondestructive detection of mixed pesticides residues on fruit surface using SERS combined with self-modeling mixture analysis method. Talanta 2020, 217, 120998.
89. Peng, B.; Li, G.; Li, D.; Dodson, S.; Zhang, Q.; Zhang, J.; Lee, Y. H.; Demir, H. V.; Yi Ling, X.; Xiong, Q., Vertically Aligned Gold Nanorod Monolayer on Arbitrary Substrates: Self-Assembly and Femtomolar Detection of Food Contaminants. ACS Nano 2013, 7 (7), 5993-6000.
90. Wu, X.; Gao, S.; Wang, J.-S.; Wang, H.; Huang, Y.-W.; Zhao, Y., The surface-enhanced Raman spectra of aflatoxins: spectral analysis, density functional theory calculation, detection and differentiation. Analyst 2012, 137 (18), 4226-4234.
91. Li, J.; Yan, H.; Tan, X.; Lu, Z.; Han, H., Cauliflower-Inspired 3D SERS Substrate for Multiple Mycotoxins Detection. Anal. Chem. 2019, 91 (6), 3885-3892.
92. Cheng, J.; Su, X.-O.; Han, C.; Wang, S.; Wang, P.; Zhang, S.; Xie, J., Ultrasensitive detection of salbutamol in animal urine by immunomagnetic bead treatment coupling with surface-enhanced Raman spectroscopy. Sens. Actuators B Chem. 2018, 255, 2329-2338.
93. Xiao, S.; He, Y. Analysis of Sildenafil in Liquor and Health Wine Using Surface Enhanced Raman Spectroscopy Int. J. Mol. Sci. [Online], 2019. PubMed. http://europepmc.org/abstract/MED/31163601
https://doi.org/10.3390/ijms20112722
https://europepmc.org/articles/PMC6600386
https://europepmc.org/articles/PMC6600386?pdf=render (accessed 2019/06//).
94. Xu, M.-L.; Gao, Y.; Han, X. X.; Zhao, B., Detection of Pesticide Residues in Food Using Surface-Enhanced Raman Spectroscopy: A Review. J. Agric. Food Chem. 2017, 65 (32), 6719-6726.
95. Chen, J.; Huang, Y.; Kannan, P.; Zhang, L.; Lin, Z.; Zhang, J.; Chen, T.; Guo, L., Flexible and Adhesive Surface Enhance Raman Scattering Active Tape for Rapid Detection of Pesticide Residues in Fruits and Vegetables. Anal. Chem. 2016, 88 (4), 2149-2155.
96. Guerrini, L.; Sanchez-Cortes, S.; Cruz, V. L.; Martinez, S.; Ristori, S.; Feis, A., Surface-enhanced Raman spectra of dimethoate and omethoate. J. Raman Spectrosc. 2011, 42 (5), 980-985.
97. Zhang, Y.; Wang, Z.; Wu, L.; Pei, Y.; Chen, P.; Cui, Y., Rapid simultaneous detection of multi-pesticide residues on apple using SERS technique. Analyst 2014, 139 (20), 5148-5154.
98. Kim, D.; Ko, Y.; Kwon, G.; Kim, U.-J.; Lee, J. H.; You, J., 2,2,6,6-Tetramethylpiperidine-1-oxy-Oxidized Cellulose Nanofiber-Based Nanocomposite Papers for Facile In Situ Surface-Enhanced Raman Scattering Detection. ACS Sustain. Chem. Eng. 2019, 7 (18), 15640-15647.
99. Ouyang, L.; Dai, P.; Yao, L.; Zhou, Q.; Tang, H.; Zhu, L., A functional Au array SERS chip for the fast inspection of pesticides in conjunction with surface extraction and coordination transferring. Analyst 2019, 144 (18), 5528-5537.
100. Yu, Y.; Zeng, P.; Yang, C.; Gong, J.; Liang, R.; Ou, Q.; Zhang, S., Gold-Nanorod-Coated Capillaries for the SERS-Based Detection of Thiram. ACS Appl. Nano Mater. 2019, 2 (1), 598-606.
101. Wang, K.; Sun, D.-W.; Pu, H.; Wei, Q., Polymer multilayers enabled stable and flexible Au@Ag nanoparticle array for nondestructive SERS detection of pesticide residues. Talanta 2021, 223, 121782.
102. Martins, N. C. T.; Fateixa, S.; Fernandes, T.; Nogueira, H. I. S.; Trindade, T., Inkjet Printing of Ag and Polystyrene Nanoparticle Emulsions for the One-Step Fabrication of Hydrophobic Paper-Based Surface-Enhanced Raman Scattering Substrates. ACS Appl. Nano Mater. 2021, 4 (5), 4484-4495.
103. Somogyi, B.; Bruyer, E.; Gali, A., Photoluminescence, infrared, and Raman spectra of co-doped Si nanoparticles from first principles. J. Chem. Phys. 2018, 149 (15), 154702.
104. Göeken, K. L.; Subramaniam, V.; Gill, R., Enhancing spectral shifts of plasmon-coupled noble metal nanoparticles for sensing applications. Phys. Chem. Chem. Phys. 2015, 17 (1), 422-427.
105. Sun, A. Y.; Lee, Y. C.; Chang, S. W.; Chen, S. L.; Wang, H. C.; Wan, D.; Chen, H. L., Diverse Substrate-Mediated Local Electric Field Enhancement of Metal Nanoparticles for Nanogap-Enhanced Raman Scattering. Anal. Chem. 2021, 93 (9), 4299-4307.
106. Sanchez-Solis, A.; Karim, F.; Alam, M. S.; Zhan, Q.; Lopez-Luke, T.; Zhao, C., Print metallic nanoparticles on a fiber probe for 1064-nm surface-enhanced Raman scattering. Opt Lett 2019, 44 (20), 4997-5000.
(此全文20270823後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *