帳號:guest(3.145.95.107)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林聖筑
作者(外文):Lin, Sheng-Ju
論文名稱(中文):含過氧化鍶之多功能產氧組織工程支架於骨組織修復之應用
論文名稱(外文):Multifunctional Strontium Peroxide-based Oxygen-generating Scaffolds for Bone Repair
指導教授(中文):黃玠誠
指導教授(外文):Huang, Chieh-Cheng
口試委員(中文):魯才德
蕭慧怡
陳靖昀
口試委員(外文):Lu, Tsai-Te
Hsiao, Hui-Yi
Chen, Ching-Yun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:108038516
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:66
中文關鍵詞:缺氧環境產氧材料PLGA鍶離子
外文關鍵詞:HypoxiaStrontium ionsPLGAOxygen-generating materials
相關次數:
  • 推薦推薦:0
  • 點閱點閱:24
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
呼吸作用是細胞維持正常生理功能時不可或缺的環節,其反應必須仰賴氧氣的提供才能維持正常機能。在細胞增生、分化、及能量的提供,都扮演著非常關鍵的角色。若細胞處於缺氧狀態的時間過長,呼吸作用無法進行到克氏循環(Kreb’s Cycle)進行有氧呼吸,便無法產生足夠的三磷酸腺苷(adenosine Triphosphate, ATP)維持生理現象。而骨頭在因外力損傷的部位,不只是造成骨頭的斷裂,也會使得原本提供氧氣及養分的哈氏管(Haversian Canal)及血管組織的破壞,使得氧氣以及養分的供應不足,導致骨缺損部位癒合不良。為了加速骨再生及癒合,則需要靠外界來提供氧氣以及養分,使骨修復功能能夠正常運作。根據先前文獻指出,鍶離子的表現對於骨再生前期的蝕骨細胞作用以及中期的成骨細胞分化都有一定程度的影響。本研究欲開發一可產氧之過氧化鍶(strontium peroxide, SrO2)複合式載體,不但能夠長時間提供骨修復所需的氧氣,也能提供適當量的鍶離子來促進骨修復。當PLGA與水接觸並降解之後,會滲透進入載體中和SrO2反應產生過氧化氫(H2O2), H2O2也會進一步經由MnO2催化並分解出氧氣。本實驗結果顯示,若將含有過氧化鍶的支架(Scaffold)放入低氧環境(Hypoxia)中的磷酸緩衝液(Phosphate Buffer Solution, PBS)中,該支架產生出的氧氣也能夠使該PBS中的溶氧量增加,其天數最長可達四天以上。在細胞實驗,我們證實該支架對於細胞沒有明顯的細胞毒性,並且在最佳化的支架的條件下,不但能促進骨細胞的增生,在細胞的死亡情形也與控制組沒有明顯差異。且在蝕骨細胞的實驗中,利用細胞支架染色、以及蝕骨細胞的染色來看,本實驗的支架確實可以抑制蝕骨細胞的活性。根據以上實驗,我們認為本研究之含有過氧化鍶之產氧支架能夠增強骨再生的能力,利用其產氧之特性改善缺氧環境,並抑制蝕骨細胞的作用以加速骨折修復的速度。
To maintain normal cell physiological function, cellular respiration is an indispensable process. Its reaction requires oxygen, which plays an important role in several processes including cell proliferation, differentiation, and the suppliance of energy, to retain normal cellular functions. If cells are exposed to hypoxia environment for too long, the respiration process cannot continue to Kreb’s cycle to complete the aerobic respiration in order to generate enough ATP for cells to live. At injured bone, not only bone itself fractured but also the Haversian canals, which supply nutrition and oxygen to bone, is destroyed. The injury may lead the insufficient nutrition and hypoxia environment to the fracture and slow down bone regeneration. To accelerate bone regeneration and healing, we need to supply oxygen and nutrition in order to revive bone healing process, which is the most difficult and critical step clinically. According to previous studies, strontium ions have negative effects on osteoclast function and positive effect on osteoblast proliferation. In this study, we developed an oxygen-generating carrier that can slowly release oxygen and strontium ions. After putting the scaffold into water, PLGA degrades and water will then penetrate into the scaffold which further react with SrO2 and generate hydrogen dioxide (H2O2). H2O2 will soon decompose into oxygen and water with the catalytic effect by MnO2. According to this study, by putting or SrO2 scaffold into phosphate buffer solution (PBS) in a closed hypoxia environment, the scaffold can generate oxygen for at least 4 days. In cell experiments, we proved that our scaffold does not have cell toxicity compared to control group, on the opposite hand, it can release oxygen in hypoxia environment for cells to maintain normal function of osteoblasts and suppress osteoclast activity in order to accelerate bone recovery.
摘要 I
Abstract II
目錄 III
圖目錄 VII
表目錄 IX
第一章 緒論 1
1-1 骨頭 1
1-1-1骨組織的組成 1
1-1-2骨頭內的細胞組成 2
1-1-3骨折(Bone Fracture) 3
1-2 骨再生作用(Bone Regeneration) 4
1-2-1 骨再生的分子生物作用機制 4
1-2-2 骨再生的步驟 6
1-3 氧氣於骨修復的重要性 8
1-3-1 缺氧與成骨細胞的關係 8
1-3-2 缺氧及蝕骨細胞的關係 9
1-3-3血管新生 9
1-4 免疫與骨分化的關係 10
1-4-1 巨噬細胞與成骨作用 10
1-4-2 巨噬細胞與骨折修復 11
1-5 現行治療法 11
1-5-1石膏固定 11
1-5-2 骨移植 12
1-5-3 高壓氧治療(Hyperbaric Oxygen Treatment, HBOT) 14
1-5-4 人工關節及骨釘、骨板 16
1-5-5 陶瓷材料 18
1-6 鍶在人體內扮演的角色 19
1-6-1 鍶(Strontium, Sr) 19
1-6-2 雷奈酸鍶(Strontium Ranelate) 19
1-6-3 成骨作用(Osteogenesis) 20
1-6-4 血管新生(Angiogenesis) 21
1-6-5 免疫調節作用 22
1-7 產氧材料(Oxygen Generating Materials) 22
1-8 聚乳酸-聚乙醇酸(Poly lactic-co-glycotic acid, PLGA) 25
1-9 明膠海綿(Gelatin Sponge) 25
1-10 研究動機與實驗目的 26
第二章、材料與方法 29
2-1 以PLGA包覆Gelatin Scaffold並包有SrO2及MnO2之複合式支架製備 29
2-2 包覆SrO2及MnO2之產氧支架的特性分析 29
2-2-1產氧支架之型態分析 29
2-2-2 產氧支架之氧氣產生情形 30
2-2-3 SrO2產氧支架於PBS中之離子釋放情形 30
2-2-4產氧支架產生之酸鹼微環境 30
2-3 細胞培養 30
2-3-1小鼠顱頂成骨細胞前體細胞系(MC3T3-E1) 30
2-3-2 小鼠巨噬細胞(RAW264.7) 31
2-4細胞存活率分析(CCK-8 Assay) 31
2-5細胞貼附測試(Cell Adhesion) 32
2-6細胞存活及死亡染色(Live and Dead Staining) 32
2-7 RAW264.7分化蝕骨細胞之檢測 33
2-8 即時聚合酶連鎖反應(Real-time polymerase chain reaction, Real-time PCR) 34
2-9細胞免疫螢光染色 38
第三章、結果與討論 39
3-1 SrO2產氧支架之巨觀及微觀圖 39
3-1-1 SrO2產氧支架之巨觀圖 39
3-1-2 SEM圖 39
3-2 SrO2產氧支架之表面元素分析 42
3-3 SrO2產氧支架之氧氣產生情形 43
3-4 SrO2產氧支架於PBS中之離子釋放情形 44
3-5 SrO2產氧支架產氧後之酸鹼微環境 44
3-6 SrO2產氧支架對於細胞之增生能力 47
3-6-1 鍶離子濃度對於MC3T3-E1增生的影響 47
3-6-2產氧支架內二氧化錳的濃度對於MC3T3-E1增生的影響 48
3-6-3 產氧支架內過氧化鍶的濃度對於MC3T3-E1增生的影響 50
3-6-4 產氧支架對於MC3T3-E1之細胞毒性測試 51
3-7 SrO2產氧支架之細胞貼附情形 51
3-8 SrO2產氧支架調節RAW264.7極化之情形 54
3-9 SrO2產氧支架抑制RAW264.7分化為蝕骨細胞之情形 55
3-9-1 即時聚合酶連鎖反應 55
3-9-2蝕骨細胞免疫螢光染色 56
3-9-3 抗酒石酸酸性磷酸酶染液(TRAP)染色 57
第四章、結論 58
參考文獻 59
1. Wang, D., et al., “Tree to Bone”: Lignin/Polycaprolactone Nanofibers for Hydroxyapatite Biomineralization. Biomacromolecules, 2019. 20(7): p. 2684-2693.
2. Hu, C., et al., Bioinspired surface modification of orthopedic implants for bone tissue engineering. Biomaterials, 2019. 219: p. 119366.
3. Samavedi, S., A.R. Whittington, and A.S. Goldstein, Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior. Acta Biomaterialia, 2013. 9(9): p. 8037-8045.
4. Bhatt, R.A. and T.D. Rozental, Bone graft substitutes. Hand Clin, 2012. 28(4): p. 457-68.
5. Roberts, T.T. and A.J. Rosenbaum, Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis, 2012. 8(4): p. 114-24.
6. Ogose, A., et al., Histological assessment in grafts of highly purified beta-tricalcium phosphate (OSferion) in human bones. Biomaterials, 2006. 27(8): p. 1542-9.
7. Hsieh, T.-E., et al., Optimizing an Injectable Composite Oxygen-Generating System for Relieving Tissue Hypoxia. Frontiers in bioengineering and biotechnology, 2020. 8: p. 511-511.
8. Kular, J., et al., An overview of the regulation of bone remodelling at the cellular level. Clin Biochem, 2012. 45(12): p. 863-73.
9. Teti, A., Bone development: overview of bone cells and signaling. Curr Osteoporos Rep, 2011. 9(4): p. 264-73.
10. Franz-Odendaal, T.A., B.K. Hall, and P.E. Witten, Buried alive: how osteoblasts become osteocytes. Dev Dyn, 2006. 235(1): p. 176-90.
11. Luginbuehl, V., et al., Localized delivery of growth factors for bone repair. Eur J Pharm Biopharm, 2004. 58(2): p. 197-208.
12. Han, X., et al., Strontium-incorporated mineralized PLLA nanofibrous membranes for promoting bone defect repair. Colloids and Surfaces B: Biointerfaces, 2019. 179: p. 363-373.
13. Jilka, R.L., Biology of the basic multicellular unit and the pathophysiology of osteoporosis. Med Pediatr Oncol, 2003. 41(3): p. 182-5.
14. Lindner, U., et al., Mesenchymal Stem or Stromal Cells: Toward a Better Understanding of Their Biology? Transfusion Medicine and Hemotherapy, 2010. 37(2): p. 75-83.
15. Tanaka-Kamioka, K., et al., Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections. J Bone Miner Res, 1998. 13(10): p. 1555-68.
16. Mizuno, A., et al., Severe Osteoporosis in Mice Lacking Osteoclastogenesis Inhibitory Factor/Osteoprotegerin. Biochemical and Biophysical Research Communications, 1998. 247(3): p. 610-615.
17. Orimo, H., The mechanism of mineralization and the role of alkaline phosphatase in health and disease. J Nippon Med Sch, 2010. 77(1): p. 4-12.
18. Farbod, K., et al., Interactions between inorganic and organic phases in bone tissue as a source of inspiration for design of novel nanocomposites. Tissue Eng Part B Rev, 2014. 20(2): p. 173-88.
19. Noh, A.L. and M. Yim, Beta-glycerophosphate accelerates RANKL-induced osteoclast formation in the presence of ascorbic acid. Pharmazie, 2011. 66(3): p. 195-200.
20. Hodge, J.M., M.A. Kirkland, and G.C. Nicholson, Multiple roles of M-CSF in human osteoclastogenesis. J Cell Biochem, 2007. 102(3): p. 759-68.
21. Boyce, B.F. and L. Xing, Biology of RANK, RANKL, and osteoprotegerin. Arthritis Research & Therapy, 2007. 9(1): p. S1.
22. Komori, T., Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res, 2010. 339(1): p. 189-95.
23. Xiao, Z., et al., Analysis of the extracellular matrix vesicle proteome in mineralizing osteoblasts. J Cell Physiol, 2007. 210(2): p. 325-35.
24. Liu, M., Y. Sun, and Q. Zhang, Emerging Role of Extracellular Vesicles in Bone Remodeling. Journal of Dental Research, 2018. 97(8): p. 859-868.
25. Deng, L., et al., Osteoblast-derived microvesicles: A novel mechanism for communication between osteoblasts and osteoclasts. Bone, 2015. 79: p. 37-42.
26. Owen, R. and G.C. Reilly, In vitro Models of Bone Remodelling and Associated Disorders. Front Bioeng Biotechnol, 2018. 6: p. 134.
27. Davis, M.W. and J.P. Vacanti, Toward development of an implantable tissue engineered liver. Biomaterials, 1996. 17(3): p. 365-372.
28. Ennett, A.B. and D.J. Mooney, Tissue engineering strategies for in vivo neovascularisation. Expert Opinion on Biological Therapy, 2002. 2(8): p. 805-818.
29. Gholipourmalekabadi, M., et al., Oxygen-Generating Biomaterials: A New, Viable Paradigm for Tissue Engineering? Trends Biotechnol, 2016. 34(12): p. 1010-1021.
30. Boutilier, R.G. and J. St-Pierre, Surviving hypoxia without really dying. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2000. 126(4): p. 481-490.
31. Arnett, T.R., et al., Hypoxia is a major stimulator of osteoclast formation and bone resorption. J Cell Physiol, 2003. 196(1): p. 2-8.
32. M.R. Koller, J.G.B., W.M. Miller, E.T. Papoutsakis, Reduced oxygen tension increases hematopoiesis in long-term culture of human stem and progenitor cells from cord blood and bone marrow
. Exp. Hematol., 1992. 20: p. 7.
33. T.Ito, Y.I., Kinetics of hemopoietic stem cells in hypoxia culture. European Journal of Haematology, 1988. 40: p. 4.
34. E. Richard Stanley, A.B., Deborah Patinkin, Martin Rosendaal, and T>Ray Bradley, Regulation of Very Primitive, Multipotent, Hemopoietic Cells by Hemopoietin-1. Cell Press, 1986. 45.
35. Hal E. Broxmeyer, S.C., Li Lu, Michael E. Miller, Carl D. Langefeld, and Peter Ralph, Enhanced Stimulation of Human Bone Marrow Macrophage Colony Formation In Vitro by Recombinant Human Macrophage Colony-Stimulating Factor
in Agarose Medium and at Low Oxygen Tension. The American Socirty of Hematology, 1990. 76: p. 7.
36. Utting, J.C., et al., Hypoxia stimulates osteoclast formation from human peripheral blood. Cell Biochem Funct, 2010. 28(5): p. 374-80.
37. H. ROBERT DUDLEY, M.D., * and DAVID SPIRO, M.D., THE FINE STRUCTURE OF BONE CELLS. The Journal of Biophysical and Biochemical Cytology, 1961. 11: p. 23.
38. Thorsten Cramer 1 , Y.Y., Björn E Clausen, Irmgard Förster, Rafal Pawlinski, Nigel Mackman, Volker H Haase, Rudolf Jaenisch, Maripat Corr, Victor Nizet, Gary S Firestein, Hans Peter Gerber, Napoleone Ferrara, Randall S Johnson, HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell Press, 2003 112: p. 13.
39. Nillesen, S.T.M., et al., Increased angiogenesis and blood vessel maturation in acellular collagen–heparin scaffolds containing both FGF2 and VEGF. Biomaterials, 2007. 28(6): p. 1123-1131.
40. Fuchs, S., et al., Outgrowth endothelial cells isolated and expanded from human peripheral blood progenitor cells as a potential source of autologous cells for endothelialization of silk fibroin biomaterials. Biomaterials, 2006. 27(31): p. 5399-5408.
41. Ha, W.-H., et al., Recombinant human bone morphogenic protein-2 Induces the Differentiation and Mineralization of Osteoblastic Cells Under Hypoxic Conditions via Activation of Protein Kinase D and p38 Mitogen-Activated Protein Kinase Signaling Pathways. Tissue Engineering and Regenerative Medicine, 2017. 14(4): p. 433-441.
42. Hong, S., B.Y. Jung, and C. Hwang, Multilayered Engineered Tissue Sheets for Vascularized Tissue Regeneration. Tissue Engineering and Regenerative Medicine, 2017. 14(4): p. 371-381.
43. Rouwkema, J., J. de Boer, and C.A. Van Blitterswijk, Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng, 2006. 12(9): p. 2685-93.
44. Griffith, C.K., et al., Diffusion limits of an in vitro thick prevascularized tissue. Tissue Eng, 2005. 11(1-2): p. 257-66.
45. Lovett, M., et al., Vascularization strategies for tissue engineering. Tissue Eng Part B Rev, 2009. 15(3): p. 353-70.
46. Gu, Q., H. Yang, and Q. Shi, Macrophages and bone inflammation. J Orthop Translat, 2017. 10: p. 86-93.
47. Raggatt, L.J., et al., Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification. Am J Pathol, 2014. 184(12): p. 3192-204.
48. Guihard, P., et al., Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling. Stem Cells, 2012. 30(4): p. 762-72.
49. Fernandes, T.J., et al., Cord blood-derived macrophage-lineage cells rapidly stimulate osteoblastic maturation in mesenchymal stem cells in a glycoprotein-130 dependent manner. PLoS One, 2013. 8(9): p. e73266.
50. Horwood, N.J., Macrophage Polarization and Bone Formation: A review. Clin Rev Allergy Immunol, 2016. 51(1): p. 79-86.
51. Claes, L., S. Recknagel, and A. Ignatius, Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol, 2012. 8(3): p. 133-43.
52. Oni, O.O.A., The early stages of the repair of adult human diaphyseal fractures. Injury, 1997. 28: p. 5.
53. Hotchkiss, K.M., et al., Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater, 2016. 31: p. 425-434.
54. Fu, C., et al., Enhancing cell proliferation and osteogenic differentiation of MC3T3-E1 pre-osteoblasts by BMP-2 delivery in graphene oxide-incorporated PLGA/HA biodegradable microcarriers. Scientific reports, 2017. 7(1): p. 1-13.
55. Baldwin, P., et al., Autograft, allograft, and bone graft substitutes: clinical evidence and indications for use in the setting of orthopaedic trauma surgery. Journal of orthopaedic trauma, 2019. 33(4): p. 203-213.
56. Stevens, K. and M. Banuls, Sciatic nerve palsy caused by haematoma from iliac bone graft donor site. European Spine Journal, 1994. 3(5): p. 291-293.
57. Banwart, J.C., M.A. Asher, and R.S. Hassanein, Iliac crest bone graft harvest donor site morbidity: a statistical evaluation. Spine, 1995. 20(9): p. 1055-1060.
58. Schulhofer, S.D. and L.M. Oloff, Iliac crest donor site morbidity in foot and ankle surgery. The Journal of foot and ankle surgery, 1997. 36(2): p. 155-158.
59. Cricchio, G. and S. Lundgren, Donor site morbidity in two different approaches to anterior iliac crest bone harvesting. Clinical implant dentistry and related research, 2003. 5(3): p. 161-169.
60. Chou, L.B., et al., Stress fracture as a complication of autogenous bone graft harvest from the distal tibia. Foot & ankle international, 2007. 28(2): p. 199-201.
61. Kretlow, J.D. and A.G. Mikos, Mineralization of synthetic polymer scaffolds for bone tissue engineering. Tissue engineering, 2007. 13(5): p. 927-938.
62. Shibuya, N. and D.C. Jupiter, Bone graft substitute: allograft and xenograft. Clin Podiatr Med Surg, 2015. 32(1): p. 21-34.
63. Heckman, J.D., R.W. Bucholz, and P. Tornetta III, Rockwood and green's fractures in adults: Two volumes plus Integrated content website. 2015: LWW.
64. Laurencin, C.T., et al., The ABJS Nicolas Andry Award: Tissue engineering of bone and ligament: a 15-year perspective. Clinical Orthopaedics and Related Research (1976-2007), 2006. 447: p. 221-236.
65. Lewandrowski, K.-U., et al., Immune response to perforated and partially demineralized bone allografts. Journal of orthopaedic science, 2001. 6(6): p. 545-555.
66. Moreau, M.F., et al., Gamma irradiation of human bone allografts alters medullary lipids and releases toxic compounds for osteoblast-like cells. Biomaterials, 2000. 21(4): p. 369-376.
67. Coulson, D.B., A.B. Ferguson, Jr., and R.C. Diehl, Jr., Effect of hyperbaric oxygen on the healing femur of the rat. Surg Forum, 1966. 17: p. 449-50.
68. Tkachenko, S.S., et al., [Normalization of bone regeneration by oxygen barotherapy]. Vestn Khir Im I I Grek, 1988. 140(3): p. 97-100.
69. Kerwin, S.C., et al., Effect of hyperbaric oxygen treatment on incorporation of an autogenous cancellous bone graft in a nonunion diaphyseal ulnar defect in cats. Am J Vet Res, 2000. 61(6): p. 691-8.
70. Bennett, M.H., R.E. Stanford, and R. Turner, Hyperbaric oxygen therapy for promoting fracture healing and treating fracture non-union. The Cochrane database of systematic reviews, 2012. 11(11): p. CD004712-CD004712.
71. Ridzwan, M., et al., Problem of Stress Shielding and Improvement to the Hip Implant Designs: A Review. Journal of Medical Sciences, 2007. 7.
72. Maradze, D., et al., High Magnesium Corrosion Rate has an Effect on Osteoclast and Mesenchymal Stem Cell Role During Bone Remodelling. Scientific Reports, 2018. 8(1): p. 10003.
73. Eggli, P.S., W. Müller, and R.K. Schenk, Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res, 1988(232): p. 127-38.
74. Le Huec, J.C., et al., Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress. Biomaterials, 1995. 16(2): p. 113-8.
75. Baranski, J.D., et al., Geometric control of vascular networks to enhance engineered tissue integration and function. Proc Natl Acad Sci U S A, 2013. 110(19): p. 7586-91.
76. Tonino, A.J., et al., Bone Remodeling and Hydroxyapatite Resorption in Coated Primary Hip Prostheses. Clinical Orthopaedics and Related Research, 2009. 467(2): p. 478-484.
77. Chen, Y., et al., Enhanced effect of β-tricalcium phosphate phase on neovascularization of porous calcium phosphate ceramics: in vitro and in vivo evidence. Acta Biomater, 2015. 11: p. 435-48.
78. Malhotra, A. and P. Habibovic, Calcium Phosphates and Angiogenesis: Implications and Advances for Bone Regeneration. Trends Biotechnol, 2016. 34(12): p. 983-992.
79. Bose, S., et al., Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends in Biotechnology, 2013. 31(10): p. 594-605.
80. Saidak, Z. and P.J. Marie, Strontium signaling: Molecular mechanisms and therapeutic implications in osteoporosis. Pharmacology & Therapeutics, 2012. 136(2): p. 216-226.
81. Coulombe, J., et al., In vitro effects of strontium ranelate on the extracellular calcium-sensing receptor. Biochemical and Biophysical Research Communications, 2004. 323(4): p. 1184-1190.
82. Brown, E.M., Is the calcium receptor a molecular target for the actions of strontium on bone? Osteoporosis International, 2003. 14(3): p. 25-34.
83. Kostenuik, P.J. and V. Shalhoub, Osteoprotegerin: a physiological and pharmacological inhibitor of bone resorption. Curr Pharm Des, 2001. 7(8): p. 613-35.
84. Peng, S., et al., Osteoprotegerin deficiency attenuates strontium-mediated inhibition of osteoclastogenesis and bone resorption. J Bone Miner Res, 2011. 26(6): p. 1272-82.
85. Tat, S.K., et al., Strontium ranelate inhibits key factors affecting bone remodeling in human osteoarthritic subchondral bone osteoblasts. Bone, 2011. 49(3): p. 559-567.
86. Bakker, A.D., B. Zandieh-Doulabi, and J. Klein-Nulend, Strontium Ranelate affects signaling from mechanically-stimulated osteocytes towards osteoclasts and osteoblasts. Bone, 2013. 53(1): p. 112-119.
87. Cianferotti, L., F. D’Asta, and M.L. Brandi, A review on strontium ranelate long-term antifracture efficacy in the treatment of postmenopausal osteoporosis. Therapeutic Advances in Musculoskeletal Disease, 2013. 5(3): p. 127-139.
88. Brennan, T.C., et al., Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol, 2009. 157(7): p. 1291-300.
89. Takahashi, N., et al., S 12911-2 inhibits osteoclastic bone resorption in vitro. J Bone Miner Res, 2003. 18(6): p. 1082-7.
90. Geoffroy, V., et al., Strontium ranelate decreases the incidence of new caudal vertebral fractures in a growing mouse model with spontaneous fractures by improving bone microarchitecture. Osteoporosis International, 2011. 22(1): p. 289-297.
91. Mao, Z., et al., Strontium ranelate-loaded PLGA porous microspheres enhancing the osteogenesis of MC3T3-E1 cells. RSC Advances, 2017. 7(40): p. 24607-24615.
92. Xie, H., et al., Microenvironment construction of strontium-calcium-based biomaterials for bone tissue regeneration: the equilibrium effect of calcium to strontium. J Mater Chem B, 2018. 6(15): p. 2332-2339.
93. Wang, G., et al., Effects of Sr-HT-Gahnite on osteogenesis and angiogenesis by adipose derived stem cells for critical-sized calvarial defect repair. Scientific Reports, 2017. 7(1): p. 41135.
94. Sarkar, K., et al., Effects of Sr doping on biodegradation and bone regeneration of magnesium phosphate bioceramics. Materialia, 2019. 5: p. 100211.
95. Chen, Y., et al., Developing a Strontium-Releasing Graphene Oxide-/Collagen-Based Organic-Inorganic Nanobiocomposite for Large Bone Defect Regeneration via MAPK Signaling Pathway. ACS Appl Mater Interfaces, 2019. 11(17): p. 15986-15997.
96. Prabha, R.D., et al., Strontium functionalized scaffold for bone tissue engineering. Materials Science and Engineering: C, 2019. 94: p. 509-515.
97. Chen, Y.W., et al., Interaction of endothelial cells with biodegradable strontium-doped calcium polyphosphate for bone tissue engineering. Applied Surface Science, 2008. 255(2): p. 331-335.
98. Gu, Z., et al., Application of strontium-doped calcium polyphosphate scaffold on angiogenesis for bone tissue engineering. J Mater Sci Mater Med, 2013. 24(5): p. 1251-60.
99. Lin, K., et al., Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. Biomaterials, 2013. 34(38): p. 10028-10042.
100. Zhao, F., et al., Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes. Biomaterials, 2018. 178: p. 36-47.
101. Novosel, E.C., C. Kleinhans, and P.J. Kluger, Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev, 2011. 63(4-5): p. 300-11.
102. Wernike, E., et al., VEGF incorporated into calcium phosphate ceramics promotes vascularisation and bone formation in vivo. Eur Cell Mater, 2010. 19: p. 30-40.
103. Kang, Y. and J. Chang, Channels in a porous scaffold: a new player for vascularization. Regen Med, 2018. 13(6): p. 705-715.
104. Oh, S.H., et al., Oxygen generating scaffolds for enhancing engineered tissue survival. Biomaterials, 2009. 30(5): p. 757-762.
105. Farris, A., A. Rindone, and W. Grayson, Oxygen Delivering Biomaterials for Tissue Engineering. J. Mater. Chem. B, 2016. 4.
106. Abdi, S.I.H., S.M. Ng, and J.O. Lim, An enzyme-modulated oxygen-producing micro-system for regenerative therapeutics. International Journal of Pharmaceutics, 2011. 409(1): p. 203-205.
107. Kim, H.Y., et al., Oxygen-Releasing Microparticles for Cell Survival and Differentiation Ability under Hypoxia for Effective Bone Regeneration. Biomacromolecules, 2019. 20(2): p. 1087-1097.
108. Park, J.C., et al., Maturation of alveolar bone following implantation of an rhGDF-5/PLGA composite into 1-wall intra-bony defects in dogs: 24-week histometric observations. J Clin Periodontol, 2012. 39(6): p. 565-73.
109. Fu, S., et al., Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration. Biomaterials, 2012. 33(19): p. 4801-9.
110. Rezwan, K., et al., Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 2006. 27(18): p. 3413-3431.
111. Lee, H., et al., Designed hybrid scaffolds consisting of polycaprolactone microstrands and electrospun collagen-nanofibers for bone tissue regeneration. J Biomed Mater Res B Appl Biomater, 2011. 97(2): p. 263-70.
112. Sisson, K., et al., Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin. J Biomed Mater Res A, 2010. 94(4): p. 1312-20.
113. O'Brien, F.J., Biomaterials & scaffolds for tissue engineering. Materials Today, 2011. 14(3): p. 88-95.
114. Cegielski, M., et al., Development of foreign body giant cells in response to implantation of Spongostan as a scaffold for cartilage tissue engineering. In Vivo, 2008. 22(2): p. 203-6.
115. Klangjorhor, J., et al., Hyaluronan production and chondrogenic properties of primary human chondrocyte on gelatin based hematostatic spongostan scaffold. Journal of Orthopaedic Surgery and Research, 2012. 7(1): p. 40.
116. Anders, J.O., et al., Gelatin-based haemostyptic Spongostan as a possible three-dimensional scaffold for a chondrocyte matrix?: an experimental study with bovine chondrocytes. J Bone Joint Surg Br, 2009. 91(3): p. 409-16.
117. Goodstone, N.J., A. Cartwright, and B. Ashton, Effects of high molecular weight hyaluronan on chondrocytes cultured within a resorbable gelatin sponge. Tissue Eng, 2004. 10(3-4): p. 621-31.
118. Kuo, Z.K., et al., Osteogenic differentiation of preosteoblasts on a hemostatic gelatin sponge. Sci Rep, 2016. 6: p. 32884.
119. Song C, Y.X., Lei Y, et al., Evaluation of efficacy on RANKL induced osteoclast from RAW264.7 cells. . J Cell Physiol. , 2019. 234: p. 7.
120. Dey, A., et al., Biphasic activity of resveratrol on indomethacin-induced gastric ulcers. Biochem Biophys Res Commun, 2009. 381(1): p. 90-5.
121. Sung, Y.C., et al., Delivery of nitric oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies. Nat Nanotechnol, 2019. 14(12): p. 1160-1169.
122. Daniels, M.J.D., et al., CRISPR/Cas9 mediated mutation of mouse IL-1alpha nuclear localisation sequence abolishes expression. Sci Rep, 2017. 7(1): p. 17077.
123. Feng, P., et al., Interleukin-10 Is Produced by a Specific Subset of Taste Receptor Cells and Critical for Maintaining Structural Integrity of Mouse Taste Buds. The Journal of Neuroscience, 2014. 34(7): p. 2689-2701.
124. Steenwinckel, V., et al., IL-13 Mediates In Vivo IL-9 Activities on Lung Epithelial Cells but Not on Hematopoietic Cells. The Journal of Immunology, 2007. 178(5): p. 3244-3251.
125. Malairaman, U., K. Dandapani, and A. Katyal, Effect of Ca2EDTA on Zinc Mediated Inflammation and Neuronal Apoptosis in Hippocampus of an In Vivo Mouse Model of Hypobaric Hypoxia. PLOS ONE, 2014. 9(10): p. e110253.
126. Hamajima, K., et al., Suppression of osteoclastogenesis via α2-adrenergic receptors. Biomedical reports, 2018. 8(5): p. 407-416.
127. Niedermair, T., et al., Substance P modulates bone remodeling properties of murine osteoblasts and osteoclasts. Sci Rep, 2018. 8(1): p. 9199.
128. Jenkins, M.J. and K.L. Harrison, The effect of crystalline morphology on the degradation of polycaprolactone in a solution of phosphate buffer and lipase. Polymers for Advanced Technologies, 2008. 19(12): p. 1901-1906.
129. Gending Ji, G.X., Jianlin Ma and Chenyu Dong, Concentration dependence of crystallinity of polycarbonate by shock-cooling and
subsequent freeze-drying of its various solutions POLYMER, 1996 37: p. 8.
130. Huang, Y.Z., et al., Strontium Promotes the Proliferation and Osteogenic Differentiation of Human Placental Decidual Basalis- and Bone Marrow-Derived MSCs in a Dose-Dependent Manner. Stem Cells Int, 2019. 2019: p. 4242178.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *