|
1. Wang, D., et al., “Tree to Bone”: Lignin/Polycaprolactone Nanofibers for Hydroxyapatite Biomineralization. Biomacromolecules, 2019. 20(7): p. 2684-2693. 2. Hu, C., et al., Bioinspired surface modification of orthopedic implants for bone tissue engineering. Biomaterials, 2019. 219: p. 119366. 3. Samavedi, S., A.R. Whittington, and A.S. Goldstein, Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior. Acta Biomaterialia, 2013. 9(9): p. 8037-8045. 4. Bhatt, R.A. and T.D. Rozental, Bone graft substitutes. Hand Clin, 2012. 28(4): p. 457-68. 5. Roberts, T.T. and A.J. Rosenbaum, Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis, 2012. 8(4): p. 114-24. 6. Ogose, A., et al., Histological assessment in grafts of highly purified beta-tricalcium phosphate (OSferion) in human bones. Biomaterials, 2006. 27(8): p. 1542-9. 7. Hsieh, T.-E., et al., Optimizing an Injectable Composite Oxygen-Generating System for Relieving Tissue Hypoxia. Frontiers in bioengineering and biotechnology, 2020. 8: p. 511-511. 8. Kular, J., et al., An overview of the regulation of bone remodelling at the cellular level. Clin Biochem, 2012. 45(12): p. 863-73. 9. Teti, A., Bone development: overview of bone cells and signaling. Curr Osteoporos Rep, 2011. 9(4): p. 264-73. 10. Franz-Odendaal, T.A., B.K. Hall, and P.E. Witten, Buried alive: how osteoblasts become osteocytes. Dev Dyn, 2006. 235(1): p. 176-90. 11. Luginbuehl, V., et al., Localized delivery of growth factors for bone repair. Eur J Pharm Biopharm, 2004. 58(2): p. 197-208. 12. Han, X., et al., Strontium-incorporated mineralized PLLA nanofibrous membranes for promoting bone defect repair. Colloids and Surfaces B: Biointerfaces, 2019. 179: p. 363-373. 13. Jilka, R.L., Biology of the basic multicellular unit and the pathophysiology of osteoporosis. Med Pediatr Oncol, 2003. 41(3): p. 182-5. 14. Lindner, U., et al., Mesenchymal Stem or Stromal Cells: Toward a Better Understanding of Their Biology? Transfusion Medicine and Hemotherapy, 2010. 37(2): p. 75-83. 15. Tanaka-Kamioka, K., et al., Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections. J Bone Miner Res, 1998. 13(10): p. 1555-68. 16. Mizuno, A., et al., Severe Osteoporosis in Mice Lacking Osteoclastogenesis Inhibitory Factor/Osteoprotegerin. Biochemical and Biophysical Research Communications, 1998. 247(3): p. 610-615. 17. Orimo, H., The mechanism of mineralization and the role of alkaline phosphatase in health and disease. J Nippon Med Sch, 2010. 77(1): p. 4-12. 18. Farbod, K., et al., Interactions between inorganic and organic phases in bone tissue as a source of inspiration for design of novel nanocomposites. Tissue Eng Part B Rev, 2014. 20(2): p. 173-88. 19. Noh, A.L. and M. Yim, Beta-glycerophosphate accelerates RANKL-induced osteoclast formation in the presence of ascorbic acid. Pharmazie, 2011. 66(3): p. 195-200. 20. Hodge, J.M., M.A. Kirkland, and G.C. Nicholson, Multiple roles of M-CSF in human osteoclastogenesis. J Cell Biochem, 2007. 102(3): p. 759-68. 21. Boyce, B.F. and L. Xing, Biology of RANK, RANKL, and osteoprotegerin. Arthritis Research & Therapy, 2007. 9(1): p. S1. 22. Komori, T., Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res, 2010. 339(1): p. 189-95. 23. Xiao, Z., et al., Analysis of the extracellular matrix vesicle proteome in mineralizing osteoblasts. J Cell Physiol, 2007. 210(2): p. 325-35. 24. Liu, M., Y. Sun, and Q. Zhang, Emerging Role of Extracellular Vesicles in Bone Remodeling. Journal of Dental Research, 2018. 97(8): p. 859-868. 25. Deng, L., et al., Osteoblast-derived microvesicles: A novel mechanism for communication between osteoblasts and osteoclasts. Bone, 2015. 79: p. 37-42. 26. Owen, R. and G.C. Reilly, In vitro Models of Bone Remodelling and Associated Disorders. Front Bioeng Biotechnol, 2018. 6: p. 134. 27. Davis, M.W. and J.P. Vacanti, Toward development of an implantable tissue engineered liver. Biomaterials, 1996. 17(3): p. 365-372. 28. Ennett, A.B. and D.J. Mooney, Tissue engineering strategies for in vivo neovascularisation. Expert Opinion on Biological Therapy, 2002. 2(8): p. 805-818. 29. Gholipourmalekabadi, M., et al., Oxygen-Generating Biomaterials: A New, Viable Paradigm for Tissue Engineering? Trends Biotechnol, 2016. 34(12): p. 1010-1021. 30. Boutilier, R.G. and J. St-Pierre, Surviving hypoxia without really dying. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2000. 126(4): p. 481-490. 31. Arnett, T.R., et al., Hypoxia is a major stimulator of osteoclast formation and bone resorption. J Cell Physiol, 2003. 196(1): p. 2-8. 32. M.R. Koller, J.G.B., W.M. Miller, E.T. Papoutsakis, Reduced oxygen tension increases hematopoiesis in long-term culture of human stem and progenitor cells from cord blood and bone marrow . Exp. Hematol., 1992. 20: p. 7. 33. T.Ito, Y.I., Kinetics of hemopoietic stem cells in hypoxia culture. European Journal of Haematology, 1988. 40: p. 4. 34. E. Richard Stanley, A.B., Deborah Patinkin, Martin Rosendaal, and T>Ray Bradley, Regulation of Very Primitive, Multipotent, Hemopoietic Cells by Hemopoietin-1. Cell Press, 1986. 45. 35. Hal E. Broxmeyer, S.C., Li Lu, Michael E. Miller, Carl D. Langefeld, and Peter Ralph, Enhanced Stimulation of Human Bone Marrow Macrophage Colony Formation In Vitro by Recombinant Human Macrophage Colony-Stimulating Factor in Agarose Medium and at Low Oxygen Tension. The American Socirty of Hematology, 1990. 76: p. 7. 36. Utting, J.C., et al., Hypoxia stimulates osteoclast formation from human peripheral blood. Cell Biochem Funct, 2010. 28(5): p. 374-80. 37. H. ROBERT DUDLEY, M.D., * and DAVID SPIRO, M.D., THE FINE STRUCTURE OF BONE CELLS. The Journal of Biophysical and Biochemical Cytology, 1961. 11: p. 23. 38. Thorsten Cramer 1 , Y.Y., Björn E Clausen, Irmgard Förster, Rafal Pawlinski, Nigel Mackman, Volker H Haase, Rudolf Jaenisch, Maripat Corr, Victor Nizet, Gary S Firestein, Hans Peter Gerber, Napoleone Ferrara, Randall S Johnson, HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell Press, 2003 112: p. 13. 39. Nillesen, S.T.M., et al., Increased angiogenesis and blood vessel maturation in acellular collagen–heparin scaffolds containing both FGF2 and VEGF. Biomaterials, 2007. 28(6): p. 1123-1131. 40. Fuchs, S., et al., Outgrowth endothelial cells isolated and expanded from human peripheral blood progenitor cells as a potential source of autologous cells for endothelialization of silk fibroin biomaterials. Biomaterials, 2006. 27(31): p. 5399-5408. 41. Ha, W.-H., et al., Recombinant human bone morphogenic protein-2 Induces the Differentiation and Mineralization of Osteoblastic Cells Under Hypoxic Conditions via Activation of Protein Kinase D and p38 Mitogen-Activated Protein Kinase Signaling Pathways. Tissue Engineering and Regenerative Medicine, 2017. 14(4): p. 433-441. 42. Hong, S., B.Y. Jung, and C. Hwang, Multilayered Engineered Tissue Sheets for Vascularized Tissue Regeneration. Tissue Engineering and Regenerative Medicine, 2017. 14(4): p. 371-381. 43. Rouwkema, J., J. de Boer, and C.A. Van Blitterswijk, Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng, 2006. 12(9): p. 2685-93. 44. Griffith, C.K., et al., Diffusion limits of an in vitro thick prevascularized tissue. Tissue Eng, 2005. 11(1-2): p. 257-66. 45. Lovett, M., et al., Vascularization strategies for tissue engineering. Tissue Eng Part B Rev, 2009. 15(3): p. 353-70. 46. Gu, Q., H. Yang, and Q. Shi, Macrophages and bone inflammation. J Orthop Translat, 2017. 10: p. 86-93. 47. Raggatt, L.J., et al., Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification. Am J Pathol, 2014. 184(12): p. 3192-204. 48. Guihard, P., et al., Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling. Stem Cells, 2012. 30(4): p. 762-72. 49. Fernandes, T.J., et al., Cord blood-derived macrophage-lineage cells rapidly stimulate osteoblastic maturation in mesenchymal stem cells in a glycoprotein-130 dependent manner. PLoS One, 2013. 8(9): p. e73266. 50. Horwood, N.J., Macrophage Polarization and Bone Formation: A review. Clin Rev Allergy Immunol, 2016. 51(1): p. 79-86. 51. Claes, L., S. Recknagel, and A. Ignatius, Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol, 2012. 8(3): p. 133-43. 52. Oni, O.O.A., The early stages of the repair of adult human diaphyseal fractures. Injury, 1997. 28: p. 5. 53. Hotchkiss, K.M., et al., Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater, 2016. 31: p. 425-434. 54. Fu, C., et al., Enhancing cell proliferation and osteogenic differentiation of MC3T3-E1 pre-osteoblasts by BMP-2 delivery in graphene oxide-incorporated PLGA/HA biodegradable microcarriers. Scientific reports, 2017. 7(1): p. 1-13. 55. Baldwin, P., et al., Autograft, allograft, and bone graft substitutes: clinical evidence and indications for use in the setting of orthopaedic trauma surgery. Journal of orthopaedic trauma, 2019. 33(4): p. 203-213. 56. Stevens, K. and M. Banuls, Sciatic nerve palsy caused by haematoma from iliac bone graft donor site. European Spine Journal, 1994. 3(5): p. 291-293. 57. Banwart, J.C., M.A. Asher, and R.S. Hassanein, Iliac crest bone graft harvest donor site morbidity: a statistical evaluation. Spine, 1995. 20(9): p. 1055-1060. 58. Schulhofer, S.D. and L.M. Oloff, Iliac crest donor site morbidity in foot and ankle surgery. The Journal of foot and ankle surgery, 1997. 36(2): p. 155-158. 59. Cricchio, G. and S. Lundgren, Donor site morbidity in two different approaches to anterior iliac crest bone harvesting. Clinical implant dentistry and related research, 2003. 5(3): p. 161-169. 60. Chou, L.B., et al., Stress fracture as a complication of autogenous bone graft harvest from the distal tibia. Foot & ankle international, 2007. 28(2): p. 199-201. 61. Kretlow, J.D. and A.G. Mikos, Mineralization of synthetic polymer scaffolds for bone tissue engineering. Tissue engineering, 2007. 13(5): p. 927-938. 62. Shibuya, N. and D.C. Jupiter, Bone graft substitute: allograft and xenograft. Clin Podiatr Med Surg, 2015. 32(1): p. 21-34. 63. Heckman, J.D., R.W. Bucholz, and P. Tornetta III, Rockwood and green's fractures in adults: Two volumes plus Integrated content website. 2015: LWW. 64. Laurencin, C.T., et al., The ABJS Nicolas Andry Award: Tissue engineering of bone and ligament: a 15-year perspective. Clinical Orthopaedics and Related Research (1976-2007), 2006. 447: p. 221-236. 65. Lewandrowski, K.-U., et al., Immune response to perforated and partially demineralized bone allografts. Journal of orthopaedic science, 2001. 6(6): p. 545-555. 66. Moreau, M.F., et al., Gamma irradiation of human bone allografts alters medullary lipids and releases toxic compounds for osteoblast-like cells. Biomaterials, 2000. 21(4): p. 369-376. 67. Coulson, D.B., A.B. Ferguson, Jr., and R.C. Diehl, Jr., Effect of hyperbaric oxygen on the healing femur of the rat. Surg Forum, 1966. 17: p. 449-50. 68. Tkachenko, S.S., et al., [Normalization of bone regeneration by oxygen barotherapy]. Vestn Khir Im I I Grek, 1988. 140(3): p. 97-100. 69. Kerwin, S.C., et al., Effect of hyperbaric oxygen treatment on incorporation of an autogenous cancellous bone graft in a nonunion diaphyseal ulnar defect in cats. Am J Vet Res, 2000. 61(6): p. 691-8. 70. Bennett, M.H., R.E. Stanford, and R. Turner, Hyperbaric oxygen therapy for promoting fracture healing and treating fracture non-union. The Cochrane database of systematic reviews, 2012. 11(11): p. CD004712-CD004712. 71. Ridzwan, M., et al., Problem of Stress Shielding and Improvement to the Hip Implant Designs: A Review. Journal of Medical Sciences, 2007. 7. 72. Maradze, D., et al., High Magnesium Corrosion Rate has an Effect on Osteoclast and Mesenchymal Stem Cell Role During Bone Remodelling. Scientific Reports, 2018. 8(1): p. 10003. 73. Eggli, P.S., W. Müller, and R.K. Schenk, Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res, 1988(232): p. 127-38. 74. Le Huec, J.C., et al., Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress. Biomaterials, 1995. 16(2): p. 113-8. 75. Baranski, J.D., et al., Geometric control of vascular networks to enhance engineered tissue integration and function. Proc Natl Acad Sci U S A, 2013. 110(19): p. 7586-91. 76. Tonino, A.J., et al., Bone Remodeling and Hydroxyapatite Resorption in Coated Primary Hip Prostheses. Clinical Orthopaedics and Related Research, 2009. 467(2): p. 478-484. 77. Chen, Y., et al., Enhanced effect of β-tricalcium phosphate phase on neovascularization of porous calcium phosphate ceramics: in vitro and in vivo evidence. Acta Biomater, 2015. 11: p. 435-48. 78. Malhotra, A. and P. Habibovic, Calcium Phosphates and Angiogenesis: Implications and Advances for Bone Regeneration. Trends Biotechnol, 2016. 34(12): p. 983-992. 79. Bose, S., et al., Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends in Biotechnology, 2013. 31(10): p. 594-605. 80. Saidak, Z. and P.J. Marie, Strontium signaling: Molecular mechanisms and therapeutic implications in osteoporosis. Pharmacology & Therapeutics, 2012. 136(2): p. 216-226. 81. Coulombe, J., et al., In vitro effects of strontium ranelate on the extracellular calcium-sensing receptor. Biochemical and Biophysical Research Communications, 2004. 323(4): p. 1184-1190. 82. Brown, E.M., Is the calcium receptor a molecular target for the actions of strontium on bone? Osteoporosis International, 2003. 14(3): p. 25-34. 83. Kostenuik, P.J. and V. Shalhoub, Osteoprotegerin: a physiological and pharmacological inhibitor of bone resorption. Curr Pharm Des, 2001. 7(8): p. 613-35. 84. Peng, S., et al., Osteoprotegerin deficiency attenuates strontium-mediated inhibition of osteoclastogenesis and bone resorption. J Bone Miner Res, 2011. 26(6): p. 1272-82. 85. Tat, S.K., et al., Strontium ranelate inhibits key factors affecting bone remodeling in human osteoarthritic subchondral bone osteoblasts. Bone, 2011. 49(3): p. 559-567. 86. Bakker, A.D., B. Zandieh-Doulabi, and J. Klein-Nulend, Strontium Ranelate affects signaling from mechanically-stimulated osteocytes towards osteoclasts and osteoblasts. Bone, 2013. 53(1): p. 112-119. 87. Cianferotti, L., F. D’Asta, and M.L. Brandi, A review on strontium ranelate long-term antifracture efficacy in the treatment of postmenopausal osteoporosis. Therapeutic Advances in Musculoskeletal Disease, 2013. 5(3): p. 127-139. 88. Brennan, T.C., et al., Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol, 2009. 157(7): p. 1291-300. 89. Takahashi, N., et al., S 12911-2 inhibits osteoclastic bone resorption in vitro. J Bone Miner Res, 2003. 18(6): p. 1082-7. 90. Geoffroy, V., et al., Strontium ranelate decreases the incidence of new caudal vertebral fractures in a growing mouse model with spontaneous fractures by improving bone microarchitecture. Osteoporosis International, 2011. 22(1): p. 289-297. 91. Mao, Z., et al., Strontium ranelate-loaded PLGA porous microspheres enhancing the osteogenesis of MC3T3-E1 cells. RSC Advances, 2017. 7(40): p. 24607-24615. 92. Xie, H., et al., Microenvironment construction of strontium-calcium-based biomaterials for bone tissue regeneration: the equilibrium effect of calcium to strontium. J Mater Chem B, 2018. 6(15): p. 2332-2339. 93. Wang, G., et al., Effects of Sr-HT-Gahnite on osteogenesis and angiogenesis by adipose derived stem cells for critical-sized calvarial defect repair. Scientific Reports, 2017. 7(1): p. 41135. 94. Sarkar, K., et al., Effects of Sr doping on biodegradation and bone regeneration of magnesium phosphate bioceramics. Materialia, 2019. 5: p. 100211. 95. Chen, Y., et al., Developing a Strontium-Releasing Graphene Oxide-/Collagen-Based Organic-Inorganic Nanobiocomposite for Large Bone Defect Regeneration via MAPK Signaling Pathway. ACS Appl Mater Interfaces, 2019. 11(17): p. 15986-15997. 96. Prabha, R.D., et al., Strontium functionalized scaffold for bone tissue engineering. Materials Science and Engineering: C, 2019. 94: p. 509-515. 97. Chen, Y.W., et al., Interaction of endothelial cells with biodegradable strontium-doped calcium polyphosphate for bone tissue engineering. Applied Surface Science, 2008. 255(2): p. 331-335. 98. Gu, Z., et al., Application of strontium-doped calcium polyphosphate scaffold on angiogenesis for bone tissue engineering. J Mater Sci Mater Med, 2013. 24(5): p. 1251-60. 99. Lin, K., et al., Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. Biomaterials, 2013. 34(38): p. 10028-10042. 100. Zhao, F., et al., Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes. Biomaterials, 2018. 178: p. 36-47. 101. Novosel, E.C., C. Kleinhans, and P.J. Kluger, Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev, 2011. 63(4-5): p. 300-11. 102. Wernike, E., et al., VEGF incorporated into calcium phosphate ceramics promotes vascularisation and bone formation in vivo. Eur Cell Mater, 2010. 19: p. 30-40. 103. Kang, Y. and J. Chang, Channels in a porous scaffold: a new player for vascularization. Regen Med, 2018. 13(6): p. 705-715. 104. Oh, S.H., et al., Oxygen generating scaffolds for enhancing engineered tissue survival. Biomaterials, 2009. 30(5): p. 757-762. 105. Farris, A., A. Rindone, and W. Grayson, Oxygen Delivering Biomaterials for Tissue Engineering. J. Mater. Chem. B, 2016. 4. 106. Abdi, S.I.H., S.M. Ng, and J.O. Lim, An enzyme-modulated oxygen-producing micro-system for regenerative therapeutics. International Journal of Pharmaceutics, 2011. 409(1): p. 203-205. 107. Kim, H.Y., et al., Oxygen-Releasing Microparticles for Cell Survival and Differentiation Ability under Hypoxia for Effective Bone Regeneration. Biomacromolecules, 2019. 20(2): p. 1087-1097. 108. Park, J.C., et al., Maturation of alveolar bone following implantation of an rhGDF-5/PLGA composite into 1-wall intra-bony defects in dogs: 24-week histometric observations. J Clin Periodontol, 2012. 39(6): p. 565-73. 109. Fu, S., et al., Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration. Biomaterials, 2012. 33(19): p. 4801-9. 110. Rezwan, K., et al., Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 2006. 27(18): p. 3413-3431. 111. Lee, H., et al., Designed hybrid scaffolds consisting of polycaprolactone microstrands and electrospun collagen-nanofibers for bone tissue regeneration. J Biomed Mater Res B Appl Biomater, 2011. 97(2): p. 263-70. 112. Sisson, K., et al., Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin. J Biomed Mater Res A, 2010. 94(4): p. 1312-20. 113. O'Brien, F.J., Biomaterials & scaffolds for tissue engineering. Materials Today, 2011. 14(3): p. 88-95. 114. Cegielski, M., et al., Development of foreign body giant cells in response to implantation of Spongostan as a scaffold for cartilage tissue engineering. In Vivo, 2008. 22(2): p. 203-6. 115. Klangjorhor, J., et al., Hyaluronan production and chondrogenic properties of primary human chondrocyte on gelatin based hematostatic spongostan scaffold. Journal of Orthopaedic Surgery and Research, 2012. 7(1): p. 40. 116. Anders, J.O., et al., Gelatin-based haemostyptic Spongostan as a possible three-dimensional scaffold for a chondrocyte matrix?: an experimental study with bovine chondrocytes. J Bone Joint Surg Br, 2009. 91(3): p. 409-16. 117. Goodstone, N.J., A. Cartwright, and B. Ashton, Effects of high molecular weight hyaluronan on chondrocytes cultured within a resorbable gelatin sponge. Tissue Eng, 2004. 10(3-4): p. 621-31. 118. Kuo, Z.K., et al., Osteogenic differentiation of preosteoblasts on a hemostatic gelatin sponge. Sci Rep, 2016. 6: p. 32884. 119. Song C, Y.X., Lei Y, et al., Evaluation of efficacy on RANKL induced osteoclast from RAW264.7 cells. . J Cell Physiol. , 2019. 234: p. 7. 120. Dey, A., et al., Biphasic activity of resveratrol on indomethacin-induced gastric ulcers. Biochem Biophys Res Commun, 2009. 381(1): p. 90-5. 121. Sung, Y.C., et al., Delivery of nitric oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies. Nat Nanotechnol, 2019. 14(12): p. 1160-1169. 122. Daniels, M.J.D., et al., CRISPR/Cas9 mediated mutation of mouse IL-1alpha nuclear localisation sequence abolishes expression. Sci Rep, 2017. 7(1): p. 17077. 123. Feng, P., et al., Interleukin-10 Is Produced by a Specific Subset of Taste Receptor Cells and Critical for Maintaining Structural Integrity of Mouse Taste Buds. The Journal of Neuroscience, 2014. 34(7): p. 2689-2701. 124. Steenwinckel, V., et al., IL-13 Mediates In Vivo IL-9 Activities on Lung Epithelial Cells but Not on Hematopoietic Cells. The Journal of Immunology, 2007. 178(5): p. 3244-3251. 125. Malairaman, U., K. Dandapani, and A. Katyal, Effect of Ca2EDTA on Zinc Mediated Inflammation and Neuronal Apoptosis in Hippocampus of an In Vivo Mouse Model of Hypobaric Hypoxia. PLOS ONE, 2014. 9(10): p. e110253. 126. Hamajima, K., et al., Suppression of osteoclastogenesis via α2-adrenergic receptors. Biomedical reports, 2018. 8(5): p. 407-416. 127. Niedermair, T., et al., Substance P modulates bone remodeling properties of murine osteoblasts and osteoclasts. Sci Rep, 2018. 8(1): p. 9199. 128. Jenkins, M.J. and K.L. Harrison, The effect of crystalline morphology on the degradation of polycaprolactone in a solution of phosphate buffer and lipase. Polymers for Advanced Technologies, 2008. 19(12): p. 1901-1906. 129. Gending Ji, G.X., Jianlin Ma and Chenyu Dong, Concentration dependence of crystallinity of polycarbonate by shock-cooling and subsequent freeze-drying of its various solutions POLYMER, 1996 37: p. 8. 130. Huang, Y.Z., et al., Strontium Promotes the Proliferation and Osteogenic Differentiation of Human Placental Decidual Basalis- and Bone Marrow-Derived MSCs in a Dose-Dependent Manner. Stem Cells Int, 2019. 2019: p. 4242178.
|