|
1. DiMarino, A.M., A.I. Caplan, and T.L. Bonfield, Mesenchymal stem cells in tissue repair. Frontiers in immunology, 2013. 4: p. 201. 2. Mimeault, M., R. Hauke, and S.K. Batra, Stem cells: a revolution in therapeutics—recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clinical Pharmacology & Therapeutics, 2007. 82(3): p. 252-264. 3. Trounson, A., et al., Clinical trials for stem cell therapies. BMC medicine, 2011. 9(1): p. 52. 4. Laflamme, M.A. and C.E. Murry, Regenerating the heart. Nature biotechnology, 2005. 23(7): p. 845-856. 5. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell, 2006. 126(4): p. 663-676. 6. Hu, K., All roads lead to induced pluripotent stem cells: the technologies of iPSC generation. Stem cells and development, 2014. 23(12): p. 1285-1300. 7. Nelakanti, R.V., N.G. Kooreman, and J.C. Wu, Teratoma formation: a tool for monitoring pluripotency in stem cell research. Current protocols in stem cell biology, 2015. 32(1): p. 4A. 8.1-4A. 8.17. 8. Lee, S.H., The advantages and limitations of mesenchymal stem cells in clinical application for treating human diseases. Osteoporosis and sarcopenia, 2018. 4(4): p. 150. 9. Biancone, L., et al., Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrology Dialysis Transplantation, 2012. 27(8): p. 3037-3042. 10. Dazzi, F. and N.J. Horwood, Potential of mesenchymal stem cell therapy. Current opinion in oncology, 2007. 19(6): p. 650-655. 11. Harrell, C.R., et al., Molecular mechanisms responsible for therapeutic potential of mesenchymal stem cell-derived secretome. Cells, 2019. 8(5): p. 467. 12. Katsuda, T., et al., The therapeutic potential of mesenchymal stem cell‐derived extracellular vesicles. Proteomics, 2013. 13(10-11): p. 1637-1653. 13. Krampera, M., et al., Regenerative and immunomodulatory potential of mesenchymal stem cells. Current opinion in pharmacology, 2006. 6(4): p. 435-441. 14. Maumus, M., C. Jorgensen, and D. Noël, Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: role of secretome and exosomes. Biochimie, 2013. 95(12): p. 2229-2234. 15. Martino, M.M., et al., Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine. Frontiers in bioengineering and biotechnology, 2015. 3: p. 45. 16. Kang, M.-L., et al., Hydrogel cross-linking–programmed release of nitric oxide regulates source-dependent angiogenic behaviors of human mesenchymal stem cell. Science advances, 2020. 6(9): p. eaay5413. 17. Sorrell, J.M., M.A. Baber, and A.I. Caplan, Influence of adult mesenchymal stem cells on in vitro vascular formation. Tissue Engineering Part A, 2009. 15(7): p. 1751-1761. 18. Tao, H., et al., Proangiogenic features of mesenchymal stem cells and their therapeutic applications. Stem cells international, 2016. 2016. 19. Yue, W.-M., et al., Mesenchymal stem cells differentiate into an endothelial phenotype, reduce neointimal formation, and enhance endothelial function in a rat vein grafting model. Stem cells and development, 2008. 17(4): p. 785-794. 20. Baraniak, P.R. and T.C. McDevitt, Stem cell paracrine actions and tissue regeneration. Regenerative medicine, 2010. 5(1): p. 121-143. 21. Bronckaers, A., et al., Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis. Pharmacology & therapeutics, 2014. 143(2): p. 181-196. 22. Bian, S., et al., Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. Journal of molecular medicine, 2014. 92(4): p. 387-397. 23. Gong, M., et al., Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget, 2017. 8(28): p. 45200. 24. Merino-González, C., et al., Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potencial clinical application. Frontiers in physiology, 2016. 7: p. 24. 25. Prather, W.R., et al., The role of placental-derived adherent stromal cell (PLX-PAD) in the treatment of critical limb ischemia. Cytotherapy, 2009. 11(4): p. 427-434. 26. Yong, K.W., et al., Mesenchymal stem cell therapy for ischemic tissues. Stem Cells International, 2018. 2018. 27. Cooney, D.S., et al., Mesenchymal stem cells enhance nerve regeneration in a rat sciatic nerve repair and hindlimb transplant model. Scientific reports, 2016. 6(1): p. 1-12. 28. Dabrowska, S., et al., Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles. Journal of neuroinflammation, 2019. 16(1): p. 1-17. 29. Bao, X., et al., Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats. Brain research, 2011. 1367: p. 103-113. 30. Li, W., et al., Mesenchymal stem cells: a double-edged sword in regulating immune responses. Cell Death & Differentiation, 2012. 19(9): p. 1505-1513. 31. Cho, D.-I., et al., Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Experimental & molecular medicine, 2014. 46(1): p. e70-e70. 32. Gao, F., et al., Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell death & disease, 2016. 7(1): p. e2062-e2062. 33. Le Blanc, K. and O. Ringden, Immunomodulation by mesenchymal stem cells and clinical experience. Journal of internal medicine, 2007. 262(5): p. 509-525. 34. Pittenger, M.F., et al., Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regenerative medicine, 2019. 4(1): p. 1-15. 35. Yagi, H., et al., Mesenchymal stem cells: mechanisms of immunomodulation and homing. Cell transplantation, 2010. 19(6-7): p. 667-679. 36. Wang, Y., et al., Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nature immunology, 2014. 15(11): p. 1009. 37. Atri, C., F.Z. Guerfali, and D. Laouini, Role of Human Macrophage Polarization in Inflammation during Infectious Diseases. Int J Mol Sci, 2018. 19(6). 38. Hirayama, D., T. Iida, and H. Nakase, The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis. Int J Mol Sci, 2017. 19(1). 39. Liang, X., et al., Mesenchymal stem cells attenuate sepsis-induced liver injury via inhibiting M1 polarization of Kupffer cells. Mol Cell Biochem, 2019. 452(1-2): p. 187-197. 40. Song, X., et al., Mesenchymal stem cells alleviate experimental asthma by inducing polarization of alveolar macrophages. Inflammation, 2015. 38(2): p. 485-92. 41. Liu, Y., et al., Mesenchymal stem cells inhibit lipopolysaccharide-induced inflammatory responses of BV2 microglial cells through TSG-6. Journal of neuroinflammation, 2014. 11(1): p. 1-12. 42. Luz‐Crawford, P., et al., Mesenchymal stem cell‐derived Interleukin 1 receptor antagonist promotes macrophage polarization and inhibits B cell differentiation. Stem Cells, 2016. 34(2): p. 483-492. 43. Ortiz, L.A., et al., Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proceedings of the National Academy of Sciences, 2007. 104(26): p. 11002-11007. 44. Sato, K., et al., Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood, 2007. 109(1): p. 228-34. 45. Djouad, F., et al., Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin‐6‐dependent mechanism. Stem cells, 2007. 25(8): p. 2025-2032. 46. Moore, K.W., et al., Interleukin-10 and the interleukin-10 receptor. Annual review of immunology, 2001. 19(1): p. 683-765. 47. Jiang, W. and J. Xu, Immune modulation by mesenchymal stem cells. Cell Prolif, 2020. 53(1): p. e12712. 48. Chen, K., et al., Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clin Immunol, 2010. 135(3): p. 448-58. 49. Sala, E., et al., Mesenchymal Stem Cells Reduce Colitis in Mice via Release of TSG6, Independently of Their Localization to the Intestine. Gastroenterology, 2015. 149(1): p. 163-176 e20. 50. Mougiakakos, D., et al., The impact of inflammatory licensing on heme oxygenase-1-mediated induction of regulatory T cells by human mesenchymal stem cells. Blood, 2011. 117(18): p. 4826-35. 51. Chabannes, D., et al., A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood, 2007. 110(10): p. 3691-4. 52. Chen, X., et al., Mesenchymal stem cells modified with heme oxygenase-1 have enhanced paracrine function and attenuate lipopolysaccharide-induced inflammatory and oxidative damage in pulmonary microvascular endothelial cells. Cellular Physiology and Biochemistry, 2018. 49(1): p. 101-122. 53. Le Blanc, K., et al., Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. The Lancet, 2008. 371(9624): p. 1579-1586. 54. Ringdén, O., et al., Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation, 2006. 81(10): p. 1390-1397. 55. Augello, A., et al., Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen‐induced arthritis. Arthritis & Rheumatism, 2007. 56(4): p. 1175-1186. 56. Haller, M.J., et al., Autologous umbilical cord blood infusion for type 1 diabetes. Experimental hematology, 2008. 36(6): p. 710-715. 57. Tyndall, A. and A. Uccelli, Multipotent mesenchymal stromal cells for autoimmune diseases: teaching new dogs old tricks. Bone marrow transplantation, 2009. 43(11): p. 821-828. 58. Sandvig, I., et al., Strategies to Enhance Implantation and Survival of Stem Cells After Their Injection in Ischemic Neural Tissue. Stem Cells Dev, 2017. 26(8): p. 554-565. 59. Toma, C., et al., Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 2002. 105(1): p. 93-8. 60. McGinley, L.M., et al., Mesenchymal stem cell survival in the infarcted heart is enhanced by lentivirus vector-mediated heat shock protein 27 expression. Hum Gene Ther, 2013. 24(10): p. 840-51. 61. Hofmann, M., et al., Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation, 2005. 111(17): p. 2198-202. 62. Li, L., et al., How to Improve the Survival of Transplanted Mesenchymal Stem Cell in Ischemic Heart? Stem Cells Int, 2016. 2016: p. 9682757. 63. Malliaras, K. and E. Marban, Cardiac cell therapy: where we've been, where we are, and where we should be headed. Br Med Bull, 2011. 98: p. 161-85. 64. Jin, J., et al., Transplantation of mesenchymal stem cells within a poly(lactide-co-epsilon-caprolactone) scaffold improves cardiac function in a rat myocardial infarction model. Eur J Heart Fail, 2009. 11(2): p. 147-53. 65. Nikolova, M.P. and M.S. Chavali, Recent advances in biomaterials for 3D scaffolds: A review. Bioact Mater, 2019. 4: p. 271-292. 66. Yamato, M. and T. Okano, Cell sheet engineering. Materials Today, 2004. 7(5): p. 42-47. 67. Evangelatov, A. and R. Pankov, The Evolution of Three-Dimensional Cell Cultures Towards Unimpeded Regenerative Medicine and Tissue Engineering, in Regenerative Medicine and Tissue Engineering. 2013. 68. Facciabene, A., et al., Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature, 2011. 475(7355): p. 226-30. 69. Facciabene, A., G.T. Motz, and G. Coukos, T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res, 2012. 72(9): p. 2162-71. 70. Zhou, Y., et al., Regulatory T cells enhance mesenchymal stem cell survival and proliferation following autologous cotransplantation in ischemic myocardium. J Thorac Cardiovasc Surg, 2014. 148(3): p. 1131-7; discussiom 1117. 71. Brewster, B.D., et al., Toll-like receptor 4 ablation improves stem cell survival after hypoxic injury. J Surg Res, 2012. 177(2): p. 330-3. 72. Wang, Y., et al., TLR4 inhibits mesenchymal stem cell (MSC) STAT3 activation and thereby exerts deleterious effects on MSC-mediated cardioprotection. PLoS One, 2010. 5(12): p. e14206. 73. Motterlini, R., et al., NO-mediated activation of heme oxygenase: endogenous cytoprotection against oxidative stress to endothelium. American Journal of Physiology-Heart and Circulatory Physiology, 1996. 270(1): p. H107-H114. 74. Kawamoto, S., et al., Heme oxygenase-1 induction enhances cell survival and restores contractility to unvascularized three-dimensional adult cardiomyocyte grafts implanted in vivo. Tissue Eng Part A, 2011. 17(11-12): p. 1605-14. 75. Luo, J., et al., Cobalt protoporphyrin pretreatment protects human embryonic stem cell-derived cardiomyocytes from hypoxia/reoxygenation injury in vitro and increases graft size and vascularization in vivo. Stem Cells Transl Med, 2014. 3(6): p. 734-44. 76. Cai, C., et al., Preconditioning Human Cardiac Stem Cells with an HO-1 Inducer Exerts Beneficial Effects After Cell Transplantation in the Infarcted Murine Heart. Stem Cells, 2015. 33(12): p. 3596-607. 77. Tang, Y.L., et al., Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol, 2005. 46(7): p. 1339-50. 78. Huang, F., et al., Overexpression of MicroRNA-1 improves the efficacy of mesenchymal stem cell transplantation after myocardial infarction. Cardiology, 2013. 125(1): p. 18-30. 79. Park, J.S., et al., Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods, 2015. 84: p. 3-16. 80. Konala, V.B., et al., The current landscape of the mesenchymal stromal cell secretome: A new paradigm for cell-free regeneration. Cytotherapy, 2016. 18(1): p. 13-24. 81. Ferreira, J.R., et al., Mesenchymal stromal cell secretome: influencing therapeutic potential by cellular pre-conditioning. Frontiers in immunology, 2018. 9: p. 2837. 82. Hu, X., et al., Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg, 2008. 135(4): p. 799-808. 83. Kiani, A.A., et al., HIF-1alpha confers resistance to induced stress in bone marrow-derived mesenchymal stem cells. Arch Med Res, 2013. 44(3): p. 185-93. 84. Garcia-Sanchez, D., et al., Enhancing survival, engraftment, and osteogenic potential of mesenchymal stem cells. World J Stem Cells, 2019. 11(10): p. 748-763. 85. Das, R., et al., The role of hypoxia in bone marrow–derived mesenchymal stem cells: considerations for regenerative medicine approaches. Tissue Engineering Part B: Reviews, 2010. 16(2): p. 159-168. 86. Cicione, C., et al., Effects of severe hypoxia on bone marrow mesenchymal stem cells differentiation potential. Stem Cells Int, 2013. 2013: p. 232896. 87. Follin, B., et al., Increased paracrine immunomodulatory potential of mesenchymal stromal cells in three-dimensional culture. Tissue Engineering Part B: Reviews, 2016. 22(4): p. 322-329. 88. Yu, C.P., et al., Enhancement of subcutaneously transplanted β cell survival using 3d stem cell spheroids with proangiogenic and prosurvival potential. Advanced Biosystems, 2020. 4(3): p. 1900254. 89. Yang, C.M., Y.J. Huang, and S.H. Hsu, Enhanced Autophagy of Adipose-Derived Stem Cells Grown on Chitosan Substrates. Biores Open Access, 2015. 4(1): p. 89-96. 90. Petrenko, Y., E. Sykova, and S. Kubinova, The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids. Stem Cell Res Ther, 2017. 8(1): p. 94. 91. Pasha, Z., et al., Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res, 2008. 77(1): p. 134-42. 92. Tang, Y., et al., Melatonin Pretreatment Improves the Survival and Function of Transplanted Mesenchymal Stem Cells after Focal Cerebral Ischemia. Cell Transplant, 2014. 23(10): p. 1279-1291. 93. Li, N., et al., Intravenous administration of atorvastatin-pretreated mesenchymal stem cells improves cardiac performance after acute myocardial infarction: role of CXCR4. American journal of translational research, 2015. 7(6): p. 1058. 94. Liu, J., et al., Pretreatment of Adipose Derived Stem Cells with Curcumin Facilitates Myocardial Recovery via Antiapoptosis and Angiogenesis. Stem Cells Int, 2015. 2015: p. 638153. 95. Rogers, N.M., et al., Thrombospondin-1 and CD47 regulation of cardiac, pulmonary and vascular responses in health and disease. Matrix Biol, 2014. 37: p. 92-101. 96. Sung, Y.-C., et al., Delivery of nitric oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies. Nature nanotechnology, 2019. 14(12): p. 1160-1169. 97. Bonafe, F., C. Guarnieri, and C. Muscari, Nitric oxide regulates multiple functions and fate of adult progenitor and stem cells. J Physiol Biochem, 2015. 71(1): p. 141-53. 98. Midgley, A.C., et al., Nitric-Oxide-Releasing Biomaterial Regulation of the Stem Cell Microenvironment in Regenerative Medicine. Adv Mater, 2020. 32(3): p. e1805818. 99. Thomas, D.D., et al., The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Biol Med, 2008. 45(1): p. 18-31. 100. Wong, J.C. and R.R. Fiscus, Essential roles of the nitric oxide (no)/cGMP/protein kinase G type-Ialpha (PKG-Ialpha) signaling pathway and the atrial natriuretic peptide (ANP)/cGMP/PKG-Ialpha autocrine loop in promoting proliferation and cell survival of OP9 bone marrow stromal cells. J Cell Biochem, 2011. 112(3): p. 829-39. 101. Carreira, B.P., et al., Differential contribution of the guanylyl cyclase-cyclic GMP-protein kinase G pathway to the proliferation of neural stem cells stimulated by nitric oxide. Neurosignals, 2013. 21(1-2): p. 1-13. 102. Polte, T., et al., Heme oxygenase-1 is a cGMP-inducible endothelial protein and mediates the cytoprotective action of nitric oxide. Arteriosclerosis, thrombosis, and vascular biology, 2000. 20(5): p. 1209-1215. 103. Abraham, N.G. and A. Kappas, Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev, 2008. 60(1): p. 79-127. 104. Teng, L., E. Bennett, and C. Cai, Preconditioning c-Kit-positive Human Cardiac Stem Cells with a Nitric Oxide Donor Enhances Cell Survival through Activation of Survival Signaling Pathways. J Biol Chem, 2016. 291(18): p. 9733-47. 105. Zhang, K., et al., A nitric oxide-releasing hydrogel for enhancing the therapeutic effects of mesenchymal stem cell therapy for hindlimb ischemia. Acta Biomater, 2020. 113: p. 289-304. 106. Cui, X., et al., Nitric oxide donor upregulation of stromal cell-derived factor-1/chemokine (CXC motif) receptor 4 enhances bone marrow stromal cell migration into ischemic brain after stroke. Stem Cells, 2007. 25(11): p. 2777-85. 107. Li, N., et al., Endothelial nitric oxide synthase promotes bone marrow stromal cell migration to the ischemic myocardium via upregulation of stromal cell-derived factor-1alpha. Stem Cells, 2009. 27(4): p. 961-70. 108. He, H., et al., A Photo-triggered and photo-calibrated nitric oxide donor: Rational design, spectral characterizations, and biological applications. Free Radic Biol Med, 2018. 123: p. 1-7. 109. Berardi, G.R., et al., Transplantation of SNAP-treated adipose tissue-derived stem cells improves cardiac function and induces neovascularization after myocardium infarct in rats. Exp Mol Pathol, 2011. 90(2): p. 149-56. 110. Bassaneze, V., et al., Shear stress induces nitric oxide-mediated vascular endothelial growth factor production in human adipose tissue mesenchymal stem cells. Stem Cells Dev, 2010. 19(3): p. 371-8. 111. Wang, Y., et al., Nitric oxide suppresses the secretion of vascular endothelial growth factor and hepatocyte growth factor from human mesenchymal stem cells. Shock, 2008. 30(5): p. 527-31. 112. Du, W., et al., Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer. Biomaterials, 2017. 133: p. 70-81. 113. Jalnapurkar, S., et al., Microvesicles Secreted by Nitric Oxide-Primed Mesenchymal Stromal Cells Boost the Engraftment Potential of Hematopoietic Stem Cells. Stem Cells, 2019. 37(1): p. 128-138. 114. Mujoo, K., et al., Role of nitric oxide signaling components in differentiation of embryonic stem cells into myocardial cells. Proceedings of the National Academy of Sciences, 2008. 105(48): p. 18924-18929. 115. Regmi, S., et al., A three-dimensional assemblage of gingiva-derived mesenchymal stem cells and NO-releasing microspheres for improved differentiation. Int J Pharm, 2017. 520(1-2): p. 163-172. 116. Shi, Y., et al., How mesenchymal stem cells interact with tissue immune responses. Trends Immunol, 2012. 33(3): p. 136-43. 117. Ren, G., et al., Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell, 2008. 2(2): p. 141-50. 118. Chen, H., et al., Pre-activation of mesenchymal stem cells with TNF-alpha, IL-1beta and nitric oxide enhances its paracrine effects on radiation-induced intestinal injury. Sci Rep, 2015. 5: p. 8718. 119. Webb, D.J. and I.L. Megson, Nitric oxide donor drugs: current status and future trends. Expert opinion on investigational drugs, 2002. 11(5): p. 587-601. 120. Miller, M.R. and I.L. Megson, Recent developments in nitric oxide donor drugs. Br J Pharmacol, 2007. 151(3): p. 305-21. 121. Akentieva, N.P., et al., Cytoprotective Effects of Dinitrosyl Iron Complexes on Viability of Human Fibroblasts and Cardiomyocytes. Front Pharmacol, 2019. 10: p. 1277. 122. Morley, D., et al., Mechanism of vascular relaxation induced by the nitric oxide (NO)/nucleophile complexes, a new class of NO-based vasodilators. Journal of cardiovascular pharmacology, 1993. 21(4): p. 670-676. 123. Brilli, R.J., et al., Intratracheal instillation of a novel NO/nucleophile adduct selectively reduces pulmonary hypertension. Journal of Applied Physiology, 1997. 83(6): p. 1968-1975. 124. Saavedra, J.E., et al., Targeting nitric oxide (NO) delivery in vivo. Design of a liver-selective NO donor prodrug that blocks tumor necrosis factor-α-induced apoptosis and toxicity in the liver. Journal of medicinal chemistry, 1997. 40(13): p. 1947-1954. 125. Hou, Y., et al., [26] Glyco-S-nitrosothiols: Sugar-SNAP, a new type of nitric oxide donor, in Methods in enzymology. 1999, Elsevier. p. 242-249. 126. Radomski, M.W., et al., S-nitroso-glutathione inhibits platelet activation in vitro and in vivo. British journal of pharmacology, 1992. 107(3): p. 745. 127. Gonzalez, C., et al., Relative potency of nitrovasodilators on human placental vessels from normal and preeclamptic pregnancies. Gynecologic and obstetric investigation, 1997. 43(4): p. 219-224. 128. Kurjak, M., et al., Evidence for a feedback inhibition of NO synthesis in enteric synaptosomes via a nitrosothiol intermediate. American Journal of Physiology-Gastrointestinal and Liver Physiology, 1999. 277(4): p. G875-G884. 129. Maurya, R. and J. Mir, Medicinal industrial & environmental relevance of metal nitrosyl complexes: a review. Int. J. Sci. Eng. Res, 2014. 5: p. 305-320. 130. Kapelko, V.I., et al., Protective effects of dinitrosyl iron complexes under oxidative stress in the heart. Oxidative medicine and cellular longevity, 2017. 2017. 131. Hsiao, H.-Y., et al., Fe in biosynthesis, translocation, and signal transduction of NO: toward bioinorganic engineering of dinitrosyl iron complexes into NO-delivery scaffolds for tissue engineering. Dalton Transactions, 2019. 48(26): p. 9431-9453. 132. Sun, J., et al., Measurement of nitric oxide production in biological systems by using Griess reaction assay. Sensors, 2003. 3(8): p. 276-284. 133. Smith, C.J. and A.M. Osborn, Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol, 2009. 67(1): p. 6-20. 134. Wack, S., et al., Telomerase transcriptional targeting of inducible Bax/TRAIL gene therapy improves gemcitabine treatment of pancreatic cancer. Molecular Therapy, 2008. 16(2): p. 252-260. 135. Zhao, X., et al., BCL2 amplicon loss and transcriptional remodeling drives ABT-199 resistance in B cell lymphoma models. Cancer cell, 2019. 35(5): p. 752-766. e9. 136. Chen, W., et al., Direct interaction between Nrf2 and p21Cip1/WAF1 upregulates the Nrf2-mediated antioxidant response. Molecular cell, 2009. 34(6): p. 663-673. 137. Liu, P., et al., Enhanced renoprotective effect of IGF-1 modified human umbilical cord-derived mesenchymal stem cells on gentamicin-induced acute kidney injury. Scientific reports, 2016. 6(1): p. 1-14. 138. Li, Y., et al., Hepatocyte growth factor is a downstream effector that mediates the antifibrotic action of peroxisome proliferator–activated receptor-γ agonists. Journal of the American Society of Nephrology, 2006. 17(1): p. 54-65. 139. Tsumuraya, T., et al., Human mesenchymal stem/stromal cells suppress spinal inflammation in mice with contribution of pituitary adenylate cyclase-activating polypeptide (PACAP). Journal of neuroinflammation, 2015. 12(1): p. 1-13. 140. Orimo, A., et al., Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 2005. 121(3): p. 335-348. 141. Wan, S., et al., FAK-and YAP/TAZ dependent mechanotransduction pathways are required for enhanced immunomodulatory properties of adipose-derived mesenchymal stem cells induced by aligned fibrous scaffolds. Biomaterials, 2018. 171: p. 107-117. 142. Wang, Z., et al., CtBP1 promotes tumour‐associated macrophage infiltration and progression in non–small‐cell lung cancer. Journal of Cellular and Molecular Medicine, 2020. 24(19): p. 11445-11456. 143. Barnes, N.A., et al., Amino acid deprivation links BLIMP-1 to the immunomodulatory enzyme indoleamine 2, 3-dioxygenase. The Journal of Immunology, 2009. 183(9): p. 5768-5777. 144. Aoki, R., et al., Protective effect of indole-3-pyruvate against ultraviolet b-induced damage to cultured HaCaT keratinocytes and the skin of hairless mice. PloS one, 2014. 9(5): p. e96804. 145. Liu, L., et al., TSG-6 secreted by human umbilical cord-MSCs attenuates severe burn-induced excessive inflammation via inhibiting activations of P38 and JNK signaling. Scientific reports, 2016. 6(1): p. 1-13. 146. Kirwan, R.P., et al., Hypoxia regulated gene transcription in human optic nerve lamina cribrosa cells in culture. Investigative ophthalmology & visual science, 2012. 53(4): p. 2243-2255. 147. Daniels, M.J., et al., CRISPR/Cas9 mediated mutation of mouse IL-1α nuclear localisation sequence abolishes expression. Scientific reports, 2017. 7(1): p. 1-12. 148. Mishra, M., S. Tiwari, and A.V. Gomes, Protein purification and analysis: next generation Western blotting techniques. Expert Rev Proteomics, 2017. 14(11): p. 1037-1053. 149. Houser, B., Bio-Rad's Bio-Plex(R) suspension array system, xMAP technology overview. Arch Physiol Biochem, 2012. 118(4): p. 192-6. 150. Campbell, B.C., et al., Ischaemic stroke. Nature Reviews Disease Primers, 2019. 5(1): p. 1-22. 151. Hsu, T.-W., et al., Transplantation of 3D MSC/HUVEC spheroids with neuroprotective and proangiogenic potentials ameliorates ischemic stroke brain injury. Biomaterials, 2021. 272: p. 120765. 152. Perlman, H., et al., An elevated bax/bcl-2 ratio corresponds with the onset of prostate epithelial cell apoptosis. Cell Death & Differentiation, 1999. 6(1): p. 48-54. 153. Foresti, R. and R. Motterlini, The heme oxygenase pathway and its interaction with nitric oxide in the control of cellular homeostasis. Free radical research, 1999. 31(6): p. 459-475. 154. IMMENSCHUH, S., et al., Transcriptional activation of the haem oxygenase-1 gene by cGMP via a cAMP response element/activator protein-1 element in primary cultures of rat hepatocytes. Biochemical Journal, 1998. 334(1): p. 141-146. 155. Hartsfield, C.L., et al., Regulation of heme oxygenase-1 gene expression in vascular smooth muscle cells by nitric oxide. American Journal of Physiology-Lung Cellular and Molecular Physiology, 1997. 273(5): p. L980-L988. 156. Um, H.-C., et al., Nitric oxide activates Nrf2 through S-nitrosylation of Keap1 in PC12 cells. Nitric Oxide, 2011. 25(2): p. 161-168. 157. Foresti, R., et al., Thiol compounds interact with nitric oxide in regulating heme oxygenase-1 induction in endothelial cells: involvement of superoxide and peroxynitrite anions. Journal of Biological Chemistry, 1997. 272(29): p. 18411-18417. 158. Motterlini, R., et al., Endothelial Heme Oxygenase-1 Induction by Hypoxia: MODULATION BY INDUCIBLE NITRIC-OXIDE SYNTHASE ANDS-NITROSOTHIOLS. Journal of Biological Chemistry, 2000. 275(18): p. 13613-13620. 159. Vizoso, F.J., et al., Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. International journal of molecular sciences, 2017. 18(9): p. 1852. 160. Fahey, T.d., et al., Macrophage inflammatory protein 1 modulates macrophage function. The Journal of Immunology, 1992. 148(9): p. 2764-2769. 161. Basu, S., A. Dunn, and A. Ward, G-CSF: function and modes of action. International journal of molecular medicine, 2002. 10(1): p. 3-10. 162. Bernhardt, J., et al., Agreed definitions and a shared vision for new standards in stroke recovery research: the stroke recovery and rehabilitation roundtable taskforce. International Journal of Stroke, 2017. 12(5): p. 444-450.
|