帳號:guest(18.219.86.191)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝麗虹
作者(外文):Hsieh, Li-Hung
論文名稱(中文):可釋放一氧化氮之雙亞硝基鐵錯合物用於增進間葉幹細胞移植後的存活與治療潛能
論文名稱(外文):Mesenchymal Stem Cells Primed with Nitric Oxide-Releasing Dinitrosyl Iron Complex Exhibit Enhanced Post-engrafted Survival and Therapeutic Potential
指導教授(中文):黃玠誠
指導教授(外文):Huang, Chieh-Cheng
口試委員(中文):魯才德
陳靖昀
蕭慧怡
口試委員(外文):Lu, Tsai-Te
Chen, Ching-Yun
Hsiao, Hui-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:108038507
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:91
中文關鍵詞:間葉幹細胞雙亞硝基鐵錯合物細胞保護血管新生免疫調節
外文關鍵詞:Mesenchymal stem cellDinitrosyl Iron Complexcytoprotective effectangiogenesisimmunomodulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,許多臨床試驗證實間葉幹細胞 (mesenchymal stem cell, MSC) 細胞療法應用於許多種疾病中,是具有展望性的治療方法,但移植後的低細胞存活率限制了其療效。現存可提升細胞存活率的方法,皆仍存有各自的應用限制。一氧化氮為生物體內重要的訊息傳遞者,已被證實可提升細胞抗氧化能力,具細胞保護效果。另有文獻指出其會影響 MSC 多種調節能力,其中以促血管新生能力最被廣為探討,但根據一氧化氮供體與使用濃度不同,細胞表現出截然不同的結果,至於免疫調節能力則目前仍無文獻探討。比起其他一氧化氮供體,雙亞硝基鐵錯合物 (dinitrosyl iron complex, DNIC) 具有許多優勢,然而仍無文獻探討其對於 MSC 的影響。在本篇研究中,我們利用 DNIC 刺激 MSC 的方式,一為提升移植後的細胞存活率,二是探討其對於MSC多種調節能力之影響。結果顯示,比起市售一氧化氮供體S-Nitroso-N-acetyl-DL-penicillamine,DNIC 的一氧化氮釋放曲線可更有效提升細胞的第一型血紅素氧化酶基因與蛋白質表現,於氧化壓力下展現良好細胞保護效果。由促血管新生相關基因和蛋白質表現變化,證實在 DNIC 刺激後不會抑制細胞的促進血管新生能力。由多樣性磁珠偵測系統分析結果可知,DNIC 會影響細胞所分泌的細胞激素,尤其是 interleukin-1 receptor antagonist (IL-1RA),並且其條件培養基可抑制微膠細胞往 M1 極化和促發炎因子的表現。另外,經 DNIC 刺激的 MSC 於發炎環境下會顯著提升 IL-1RA 基因表現,因此本研究認為 DNIC 的作用可能是透過提高細胞 IL-1RA 基因與蛋白質表現,使其具更好的免疫抑制能力。在動物實驗中,將細胞植入小鼠腦中風的受損區域後,利用非侵入式 3D 活體分子影像系統追蹤植入細胞存活情況。結果顯示移植後短時間內,有 DNIC 刺激過的細胞確實具較高細胞存活率。綜論以上結果,利用 DNIC 刺激 MSC 的方法,可提升移植後細胞存活率;更重要的是該方法不但不會抑制細胞促血管新生能力,還能提升其免疫調節潛能。未來作為提升 MSC 移植後存活率及治療潛能的方法,是具有展望性的。
Over the past decades, mesenchymal stem cell (MSC)-based therapy has been shown great therapeutic potential in many different pathologies. However, the poor survival rate after transplantation is a crucial reason accounting for hampering the repair effect of MSC. To date, some strategies have been used to solve this problem, but there are still some obstacles that need to be overcome. Nitric oxide is an important messenger that mediates diverse biological functions. Some researchers have suggested that nitric oxide could exert a cytoprotective effect and regulate multiple functions on MSC. However, the half-life of nitric oxide is extremely short, therefore series of nitric oxide donors have been developed. Dinitrosyl Iron Complex (DNIC) is a nitric oxide donor with lots of advantages over others, but it has never been reported for its functions on MSC. We therefore pre-actived MSC with DNIC to evaluated their cytoprotective effect on MSC and the influence on MSC’s pro-angiogenic and immunomodulatory potential. The results of in vitro study revealed that compared with another nitric oxide donor, S-Nitroso-N-acetyl-DL-penicillamine, DNIC with a specific release profile could more significantly elevate heme oxygenase-1 mRNA and protein expression in MSC, thus further improving cell viability under oxidative stress. The results of pro-angiogenic related gene and protein expression exhibited that DNIC does not suppress MSC’s pro-angiogenic ability. Besides, it could promote MSC’s immunosuppressive capacity, and further inhibits microglia M1 polarization and pro-inflammatory cytokines expression, which may resulted from increasing IL1RN/IL-1RA expression. The results of in vivo study demonstrated that MSC primed with DNIC indeed showed better cell viability in short-term period after transplanting cells into ischemic stroke mice. To sum up, MSC primed with DNIC is very promising as a strategy for improving post-engrafted survival and enhancing therapeutic potential.
摘要...............................................................I
Abstract..........................................................II
誌謝..............................................................III
目錄..............................................................IV
圖目錄...........................................................VIII
表目錄.............................................................XI
第一章、緒論........................................................1
1-1、間葉幹細胞.....................................................1
1-2、間葉幹細胞療法 .................................................3
1-2-1、促進血管新生能力..............................................3
1-2-2、促神經再生能力................................................4
1-2-3、免疫調節能力..................................................5
1-3、細胞療法的主要限制.............................................11
1-4、提升間葉幹細胞存活率之方法......................................12
1-4-1、與生醫材料共移植系統.........................................12
1-4-2、與其他細胞共移植.............................................14
1-4-3、基因工程 (gene modification)................................14
1-4-4、預處理細胞(Pre-conditioning)................................15
1-5、一氧化氮對於幹細胞之影響.......................................18
1-5-1、 細胞存活、增生及遷移能力....................................19
1-5-2、血管新生能力................................................22
1-5-3、分化能力...................................................26
1-5-4、免疫調節能力................................................27
1-6、一氧化氮供體..................................................28
1-7、研究動機與實驗目的............................................32
第二章、材料和方法.................................................35
2-1、格里斯試驗 (Griess assay).....................................35
2-2、細胞培養......................................................36
2-3、一氧化氮供體配置及預處理細胞....................................37
2-4、配置瓦解之雙亞硝基鐵錯合物(decayed DNIC)........................37
2-5、細胞存活率試驗 (Cell viability test)...........................37
2-6、細胞存活/死亡染色 (Live/Dead Staining).........................38
2-7、抗氧化壓力試驗.................................................38
2-8、條件培養基(conditioned medium)製備.............................38
2-9、體外發炎模型建立...............................................39
2-10、間葉幹細胞與微膠細胞共培養系統(Transwell co-culture system)....39
2-11、即時聚合酶連鎖反應(Quantitative real-time PCR)................40
2-12、西方墨點法 (Western blotting)................................46
2-13、酵素連結免疫吸附分析法(ELISA).................................50
2-14、多樣性磁珠偵測系統 (Bio-Plex® Multiplex Assays)...............50
2-15、小鼠腦中風動物模型建立(middle cerebral artery occlusion, MCAO)52
2-16、統計方法.....................................................53
第三章、實驗結果與討論..............................................54
3-1、一氧化氮供體之釋放曲線.........................................54
3-2、一氧化氮供體對於細胞存活率之影響................................55
3-2-1、不同一氧化氮供體濃度下的細胞存活情況...........................55
3-2-2、促細胞存活/凋亡相關基因表現 ..................................57
3-3、一氧化氮供體對細胞型態之影響....................................58
3-4、一氧化氮供體調節第一型血紅素氧化酶表現及可能機制探討..............59
3-4-1、HMOX1 基因表現..............................................59
3-4-2、Heme oxygenase-1蛋白質表現..................................61
3-4-3、雙亞硝基鐵錯合物提升HO-1的可能機制之探討.......................62
3-5、一氧化氮供體於氧化壓力下對細胞保護之能力.........................65
3-6、雙亞硝基鐵錯合物對於細胞的促進血管新生潛能之影響..................67
3-7、雙亞硝基鐵錯合物對於細胞的免疫調節能力之影響.....................68
3-7-1、正常培養環境下對免疫調節相關基因與蛋白質之影響..................68
3-7-2、條件培養基對微膠細胞之影響....................................71
3-7-3、發炎環境下對免疫調節基因之影響................................72
3-7-4、共培養系統對於間葉幹細胞的免疫調節基因之影響...................74
3-8、動物實驗......................................................75
第四章、結論.......................................................78
參考文獻...........................................................79
1. DiMarino, A.M., A.I. Caplan, and T.L. Bonfield, Mesenchymal stem cells in tissue repair. Frontiers in immunology, 2013. 4: p. 201.
2. Mimeault, M., R. Hauke, and S.K. Batra, Stem cells: a revolution in therapeutics—recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clinical Pharmacology & Therapeutics, 2007. 82(3): p. 252-264.
3. Trounson, A., et al., Clinical trials for stem cell therapies. BMC medicine, 2011. 9(1): p. 52.
4. Laflamme, M.A. and C.E. Murry, Regenerating the heart. Nature biotechnology, 2005. 23(7): p. 845-856.
5. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell, 2006. 126(4): p. 663-676.
6. Hu, K., All roads lead to induced pluripotent stem cells: the technologies of iPSC generation. Stem cells and development, 2014. 23(12): p. 1285-1300.
7. Nelakanti, R.V., N.G. Kooreman, and J.C. Wu, Teratoma formation: a tool for monitoring pluripotency in stem cell research. Current protocols in stem cell biology, 2015. 32(1): p. 4A. 8.1-4A. 8.17.
8. Lee, S.H., The advantages and limitations of mesenchymal stem cells in clinical application for treating human diseases. Osteoporosis and sarcopenia, 2018. 4(4): p. 150.
9. Biancone, L., et al., Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrology Dialysis Transplantation, 2012. 27(8): p. 3037-3042.
10. Dazzi, F. and N.J. Horwood, Potential of mesenchymal stem cell therapy. Current opinion in oncology, 2007. 19(6): p. 650-655.
11. Harrell, C.R., et al., Molecular mechanisms responsible for therapeutic potential of mesenchymal stem cell-derived secretome. Cells, 2019. 8(5): p. 467.
12. Katsuda, T., et al., The therapeutic potential of mesenchymal stem cell‐derived extracellular vesicles. Proteomics, 2013. 13(10-11): p. 1637-1653.
13. Krampera, M., et al., Regenerative and immunomodulatory potential of mesenchymal stem cells. Current opinion in pharmacology, 2006. 6(4): p. 435-441.
14. Maumus, M., C. Jorgensen, and D. Noël, Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: role of secretome and exosomes. Biochimie, 2013. 95(12): p. 2229-2234.
15. Martino, M.M., et al., Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine. Frontiers in bioengineering and biotechnology, 2015. 3: p. 45.
16. Kang, M.-L., et al., Hydrogel cross-linking–programmed release of nitric oxide regulates source-dependent angiogenic behaviors of human mesenchymal stem cell. Science advances, 2020. 6(9): p. eaay5413.
17. Sorrell, J.M., M.A. Baber, and A.I. Caplan, Influence of adult mesenchymal stem cells on in vitro vascular formation. Tissue Engineering Part A, 2009. 15(7): p. 1751-1761.
18. Tao, H., et al., Proangiogenic features of mesenchymal stem cells and their therapeutic applications. Stem cells international, 2016. 2016.
19. Yue, W.-M., et al., Mesenchymal stem cells differentiate into an endothelial phenotype, reduce neointimal formation, and enhance endothelial function in a rat vein grafting model. Stem cells and development, 2008. 17(4): p. 785-794.
20. Baraniak, P.R. and T.C. McDevitt, Stem cell paracrine actions and tissue regeneration. Regenerative medicine, 2010. 5(1): p. 121-143.
21. Bronckaers, A., et al., Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis. Pharmacology & therapeutics, 2014. 143(2): p. 181-196.
22. Bian, S., et al., Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. Journal of molecular medicine, 2014. 92(4): p. 387-397.
23. Gong, M., et al., Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget, 2017. 8(28): p. 45200.
24. Merino-González, C., et al., Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potencial clinical application. Frontiers in physiology, 2016. 7: p. 24.
25. Prather, W.R., et al., The role of placental-derived adherent stromal cell (PLX-PAD) in the treatment of critical limb ischemia. Cytotherapy, 2009. 11(4): p. 427-434.
26. Yong, K.W., et al., Mesenchymal stem cell therapy for ischemic tissues. Stem Cells International, 2018. 2018.
27. Cooney, D.S., et al., Mesenchymal stem cells enhance nerve regeneration in a rat sciatic nerve repair and hindlimb transplant model. Scientific reports, 2016. 6(1): p. 1-12.
28. Dabrowska, S., et al., Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles. Journal of neuroinflammation, 2019. 16(1): p. 1-17.
29. Bao, X., et al., Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats. Brain research, 2011. 1367: p. 103-113.
30. Li, W., et al., Mesenchymal stem cells: a double-edged sword in regulating immune responses. Cell Death & Differentiation, 2012. 19(9): p. 1505-1513.
31. Cho, D.-I., et al., Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Experimental & molecular medicine, 2014. 46(1): p. e70-e70.
32. Gao, F., et al., Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell death & disease, 2016. 7(1): p. e2062-e2062.
33. Le Blanc, K. and O. Ringden, Immunomodulation by mesenchymal stem cells and clinical experience. Journal of internal medicine, 2007. 262(5): p. 509-525.
34. Pittenger, M.F., et al., Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regenerative medicine, 2019. 4(1): p. 1-15.
35. Yagi, H., et al., Mesenchymal stem cells: mechanisms of immunomodulation and homing. Cell transplantation, 2010. 19(6-7): p. 667-679.
36. Wang, Y., et al., Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nature immunology, 2014. 15(11): p. 1009.
37. Atri, C., F.Z. Guerfali, and D. Laouini, Role of Human Macrophage Polarization in Inflammation during Infectious Diseases. Int J Mol Sci, 2018. 19(6).
38. Hirayama, D., T. Iida, and H. Nakase, The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis. Int J Mol Sci, 2017. 19(1).
39. Liang, X., et al., Mesenchymal stem cells attenuate sepsis-induced liver injury via inhibiting M1 polarization of Kupffer cells. Mol Cell Biochem, 2019. 452(1-2): p. 187-197.
40. Song, X., et al., Mesenchymal stem cells alleviate experimental asthma by inducing polarization of alveolar macrophages. Inflammation, 2015. 38(2): p. 485-92.
41. Liu, Y., et al., Mesenchymal stem cells inhibit lipopolysaccharide-induced inflammatory responses of BV2 microglial cells through TSG-6. Journal of neuroinflammation, 2014. 11(1): p. 1-12.
42. Luz‐Crawford, P., et al., Mesenchymal stem cell‐derived Interleukin 1 receptor antagonist promotes macrophage polarization and inhibits B cell differentiation. Stem Cells, 2016. 34(2): p. 483-492.
43. Ortiz, L.A., et al., Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proceedings of the National Academy of Sciences, 2007. 104(26): p. 11002-11007.
44. Sato, K., et al., Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood, 2007. 109(1): p. 228-34.
45. Djouad, F., et al., Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin‐6‐dependent mechanism. Stem cells, 2007. 25(8): p. 2025-2032.
46. Moore, K.W., et al., Interleukin-10 and the interleukin-10 receptor. Annual review of immunology, 2001. 19(1): p. 683-765.
47. Jiang, W. and J. Xu, Immune modulation by mesenchymal stem cells. Cell Prolif, 2020. 53(1): p. e12712.
48. Chen, K., et al., Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clin Immunol, 2010. 135(3): p. 448-58.
49. Sala, E., et al., Mesenchymal Stem Cells Reduce Colitis in Mice via Release of TSG6, Independently of Their Localization to the Intestine. Gastroenterology, 2015. 149(1): p. 163-176 e20.
50. Mougiakakos, D., et al., The impact of inflammatory licensing on heme oxygenase-1-mediated induction of regulatory T cells by human mesenchymal stem cells. Blood, 2011. 117(18): p. 4826-35.
51. Chabannes, D., et al., A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood, 2007. 110(10): p. 3691-4.
52. Chen, X., et al., Mesenchymal stem cells modified with heme oxygenase-1 have enhanced paracrine function and attenuate lipopolysaccharide-induced inflammatory and oxidative damage in pulmonary microvascular endothelial cells. Cellular Physiology and Biochemistry, 2018. 49(1): p. 101-122.
53. Le Blanc, K., et al., Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. The Lancet, 2008. 371(9624): p. 1579-1586.
54. Ringdén, O., et al., Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation, 2006. 81(10): p. 1390-1397.
55. Augello, A., et al., Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen‐induced arthritis. Arthritis & Rheumatism, 2007. 56(4): p. 1175-1186.
56. Haller, M.J., et al., Autologous umbilical cord blood infusion for type 1 diabetes. Experimental hematology, 2008. 36(6): p. 710-715.
57. Tyndall, A. and A. Uccelli, Multipotent mesenchymal stromal cells for autoimmune diseases: teaching new dogs old tricks. Bone marrow transplantation, 2009. 43(11): p. 821-828.
58. Sandvig, I., et al., Strategies to Enhance Implantation and Survival of Stem Cells After Their Injection in Ischemic Neural Tissue. Stem Cells Dev, 2017. 26(8): p. 554-565.
59. Toma, C., et al., Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 2002. 105(1): p. 93-8.
60. McGinley, L.M., et al., Mesenchymal stem cell survival in the infarcted heart is enhanced by lentivirus vector-mediated heat shock protein 27 expression. Hum Gene Ther, 2013. 24(10): p. 840-51.
61. Hofmann, M., et al., Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation, 2005. 111(17): p. 2198-202.
62. Li, L., et al., How to Improve the Survival of Transplanted Mesenchymal Stem Cell in Ischemic Heart? Stem Cells Int, 2016. 2016: p. 9682757.
63. Malliaras, K. and E. Marban, Cardiac cell therapy: where we've been, where we are, and where we should be headed. Br Med Bull, 2011. 98: p. 161-85.
64. Jin, J., et al., Transplantation of mesenchymal stem cells within a poly(lactide-co-epsilon-caprolactone) scaffold improves cardiac function in a rat myocardial infarction model. Eur J Heart Fail, 2009. 11(2): p. 147-53.
65. Nikolova, M.P. and M.S. Chavali, Recent advances in biomaterials for 3D scaffolds: A review. Bioact Mater, 2019. 4: p. 271-292.
66. Yamato, M. and T. Okano, Cell sheet engineering. Materials Today, 2004. 7(5): p. 42-47.
67. Evangelatov, A. and R. Pankov, The Evolution of Three-Dimensional Cell Cultures Towards Unimpeded Regenerative Medicine and Tissue Engineering, in Regenerative Medicine and Tissue Engineering. 2013.
68. Facciabene, A., et al., Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature, 2011. 475(7355): p. 226-30.
69. Facciabene, A., G.T. Motz, and G. Coukos, T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res, 2012. 72(9): p. 2162-71.
70. Zhou, Y., et al., Regulatory T cells enhance mesenchymal stem cell survival and proliferation following autologous cotransplantation in ischemic myocardium. J Thorac Cardiovasc Surg, 2014. 148(3): p. 1131-7; discussiom 1117.
71. Brewster, B.D., et al., Toll-like receptor 4 ablation improves stem cell survival after hypoxic injury. J Surg Res, 2012. 177(2): p. 330-3.
72. Wang, Y., et al., TLR4 inhibits mesenchymal stem cell (MSC) STAT3 activation and thereby exerts deleterious effects on MSC-mediated cardioprotection. PLoS One, 2010. 5(12): p. e14206.
73. Motterlini, R., et al., NO-mediated activation of heme oxygenase: endogenous cytoprotection against oxidative stress to endothelium. American Journal of Physiology-Heart and Circulatory Physiology, 1996. 270(1): p. H107-H114.
74. Kawamoto, S., et al., Heme oxygenase-1 induction enhances cell survival and restores contractility to unvascularized three-dimensional adult cardiomyocyte grafts implanted in vivo. Tissue Eng Part A, 2011. 17(11-12): p. 1605-14.
75. Luo, J., et al., Cobalt protoporphyrin pretreatment protects human embryonic stem cell-derived cardiomyocytes from hypoxia/reoxygenation injury in vitro and increases graft size and vascularization in vivo. Stem Cells Transl Med, 2014. 3(6): p. 734-44.
76. Cai, C., et al., Preconditioning Human Cardiac Stem Cells with an HO-1 Inducer Exerts Beneficial Effects After Cell Transplantation in the Infarcted Murine Heart. Stem Cells, 2015. 33(12): p. 3596-607.
77. Tang, Y.L., et al., Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol, 2005. 46(7): p. 1339-50.
78. Huang, F., et al., Overexpression of MicroRNA-1 improves the efficacy of mesenchymal stem cell transplantation after myocardial infarction. Cardiology, 2013. 125(1): p. 18-30.
79. Park, J.S., et al., Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods, 2015. 84: p. 3-16.
80. Konala, V.B., et al., The current landscape of the mesenchymal stromal cell secretome: A new paradigm for cell-free regeneration. Cytotherapy, 2016. 18(1): p. 13-24.
81. Ferreira, J.R., et al., Mesenchymal stromal cell secretome: influencing therapeutic potential by cellular pre-conditioning. Frontiers in immunology, 2018. 9: p. 2837.
82. Hu, X., et al., Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg, 2008. 135(4): p. 799-808.
83. Kiani, A.A., et al., HIF-1alpha confers resistance to induced stress in bone marrow-derived mesenchymal stem cells. Arch Med Res, 2013. 44(3): p. 185-93.
84. Garcia-Sanchez, D., et al., Enhancing survival, engraftment, and osteogenic potential of mesenchymal stem cells. World J Stem Cells, 2019. 11(10): p. 748-763.
85. Das, R., et al., The role of hypoxia in bone marrow–derived mesenchymal stem cells: considerations for regenerative medicine approaches. Tissue Engineering Part B: Reviews, 2010. 16(2): p. 159-168.
86. Cicione, C., et al., Effects of severe hypoxia on bone marrow mesenchymal stem cells differentiation potential. Stem Cells Int, 2013. 2013: p. 232896.
87. Follin, B., et al., Increased paracrine immunomodulatory potential of mesenchymal stromal cells in three-dimensional culture. Tissue Engineering Part B: Reviews, 2016. 22(4): p. 322-329.
88. Yu, C.P., et al., Enhancement of subcutaneously transplanted β cell survival using 3d stem cell spheroids with proangiogenic and prosurvival potential. Advanced Biosystems, 2020. 4(3): p. 1900254.
89. Yang, C.M., Y.J. Huang, and S.H. Hsu, Enhanced Autophagy of Adipose-Derived Stem Cells Grown on Chitosan Substrates. Biores Open Access, 2015. 4(1): p. 89-96.
90. Petrenko, Y., E. Sykova, and S. Kubinova, The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids. Stem Cell Res Ther, 2017. 8(1): p. 94.
91. Pasha, Z., et al., Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res, 2008. 77(1): p. 134-42.
92. Tang, Y., et al., Melatonin Pretreatment Improves the Survival and Function of Transplanted Mesenchymal Stem Cells after Focal Cerebral Ischemia. Cell Transplant, 2014. 23(10): p. 1279-1291.
93. Li, N., et al., Intravenous administration of atorvastatin-pretreated mesenchymal stem cells improves cardiac performance after acute myocardial infarction: role of CXCR4. American journal of translational research, 2015. 7(6): p. 1058.
94. Liu, J., et al., Pretreatment of Adipose Derived Stem Cells with Curcumin Facilitates Myocardial Recovery via Antiapoptosis and Angiogenesis. Stem Cells Int, 2015. 2015: p. 638153.
95. Rogers, N.M., et al., Thrombospondin-1 and CD47 regulation of cardiac, pulmonary and vascular responses in health and disease. Matrix Biol, 2014. 37: p. 92-101.
96. Sung, Y.-C., et al., Delivery of nitric oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies. Nature nanotechnology, 2019. 14(12): p. 1160-1169.
97. Bonafe, F., C. Guarnieri, and C. Muscari, Nitric oxide regulates multiple functions and fate of adult progenitor and stem cells. J Physiol Biochem, 2015. 71(1): p. 141-53.
98. Midgley, A.C., et al., Nitric-Oxide-Releasing Biomaterial Regulation of the Stem Cell Microenvironment in Regenerative Medicine. Adv Mater, 2020. 32(3): p. e1805818.
99. Thomas, D.D., et al., The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Biol Med, 2008. 45(1): p. 18-31.
100. Wong, J.C. and R.R. Fiscus, Essential roles of the nitric oxide (no)/cGMP/protein kinase G type-Ialpha (PKG-Ialpha) signaling pathway and the atrial natriuretic peptide (ANP)/cGMP/PKG-Ialpha autocrine loop in promoting proliferation and cell survival of OP9 bone marrow stromal cells. J Cell Biochem, 2011. 112(3): p. 829-39.
101. Carreira, B.P., et al., Differential contribution of the guanylyl cyclase-cyclic GMP-protein kinase G pathway to the proliferation of neural stem cells stimulated by nitric oxide. Neurosignals, 2013. 21(1-2): p. 1-13.
102. Polte, T., et al., Heme oxygenase-1 is a cGMP-inducible endothelial protein and mediates the cytoprotective action of nitric oxide. Arteriosclerosis, thrombosis, and vascular biology, 2000. 20(5): p. 1209-1215.
103. Abraham, N.G. and A. Kappas, Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev, 2008. 60(1): p. 79-127.
104. Teng, L., E. Bennett, and C. Cai, Preconditioning c-Kit-positive Human Cardiac Stem Cells with a Nitric Oxide Donor Enhances Cell Survival through Activation of Survival Signaling Pathways. J Biol Chem, 2016. 291(18): p. 9733-47.
105. Zhang, K., et al., A nitric oxide-releasing hydrogel for enhancing the therapeutic effects of mesenchymal stem cell therapy for hindlimb ischemia. Acta Biomater, 2020. 113: p. 289-304.
106. Cui, X., et al., Nitric oxide donor upregulation of stromal cell-derived factor-1/chemokine (CXC motif) receptor 4 enhances bone marrow stromal cell migration into ischemic brain after stroke. Stem Cells, 2007. 25(11): p. 2777-85.
107. Li, N., et al., Endothelial nitric oxide synthase promotes bone marrow stromal cell migration to the ischemic myocardium via upregulation of stromal cell-derived factor-1alpha. Stem Cells, 2009. 27(4): p. 961-70.
108. He, H., et al., A Photo-triggered and photo-calibrated nitric oxide donor: Rational design, spectral characterizations, and biological applications. Free Radic Biol Med, 2018. 123: p. 1-7.
109. Berardi, G.R., et al., Transplantation of SNAP-treated adipose tissue-derived stem cells improves cardiac function and induces neovascularization after myocardium infarct in rats. Exp Mol Pathol, 2011. 90(2): p. 149-56.
110. Bassaneze, V., et al., Shear stress induces nitric oxide-mediated vascular endothelial growth factor production in human adipose tissue mesenchymal stem cells. Stem Cells Dev, 2010. 19(3): p. 371-8.
111. Wang, Y., et al., Nitric oxide suppresses the secretion of vascular endothelial growth factor and hepatocyte growth factor from human mesenchymal stem cells. Shock, 2008. 30(5): p. 527-31.
112. Du, W., et al., Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer. Biomaterials, 2017. 133: p. 70-81.
113. Jalnapurkar, S., et al., Microvesicles Secreted by Nitric Oxide-Primed Mesenchymal Stromal Cells Boost the Engraftment Potential of Hematopoietic Stem Cells. Stem Cells, 2019. 37(1): p. 128-138.
114. Mujoo, K., et al., Role of nitric oxide signaling components in differentiation of embryonic stem cells into myocardial cells. Proceedings of the National Academy of Sciences, 2008. 105(48): p. 18924-18929.
115. Regmi, S., et al., A three-dimensional assemblage of gingiva-derived mesenchymal stem cells and NO-releasing microspheres for improved differentiation. Int J Pharm, 2017. 520(1-2): p. 163-172.
116. Shi, Y., et al., How mesenchymal stem cells interact with tissue immune responses. Trends Immunol, 2012. 33(3): p. 136-43.
117. Ren, G., et al., Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell, 2008. 2(2): p. 141-50.
118. Chen, H., et al., Pre-activation of mesenchymal stem cells with TNF-alpha, IL-1beta and nitric oxide enhances its paracrine effects on radiation-induced intestinal injury. Sci Rep, 2015. 5: p. 8718.
119. Webb, D.J. and I.L. Megson, Nitric oxide donor drugs: current status and future trends. Expert opinion on investigational drugs, 2002. 11(5): p. 587-601.
120. Miller, M.R. and I.L. Megson, Recent developments in nitric oxide donor drugs. Br J Pharmacol, 2007. 151(3): p. 305-21.
121. Akentieva, N.P., et al., Cytoprotective Effects of Dinitrosyl Iron Complexes on Viability of Human Fibroblasts and Cardiomyocytes. Front Pharmacol, 2019. 10: p. 1277.
122. Morley, D., et al., Mechanism of vascular relaxation induced by the nitric oxide (NO)/nucleophile complexes, a new class of NO-based vasodilators. Journal of cardiovascular pharmacology, 1993. 21(4): p. 670-676.
123. Brilli, R.J., et al., Intratracheal instillation of a novel NO/nucleophile adduct selectively reduces pulmonary hypertension. Journal of Applied Physiology, 1997. 83(6): p. 1968-1975.
124. Saavedra, J.E., et al., Targeting nitric oxide (NO) delivery in vivo. Design of a liver-selective NO donor prodrug that blocks tumor necrosis factor-α-induced apoptosis and toxicity in the liver. Journal of medicinal chemistry, 1997. 40(13): p. 1947-1954.
125. Hou, Y., et al., [26] Glyco-S-nitrosothiols: Sugar-SNAP, a new type of nitric oxide donor, in Methods in enzymology. 1999, Elsevier. p. 242-249.
126. Radomski, M.W., et al., S-nitroso-glutathione inhibits platelet activation in vitro and in vivo. British journal of pharmacology, 1992. 107(3): p. 745.
127. Gonzalez, C., et al., Relative potency of nitrovasodilators on human placental vessels from normal and preeclamptic pregnancies. Gynecologic and obstetric investigation, 1997. 43(4): p. 219-224.
128. Kurjak, M., et al., Evidence for a feedback inhibition of NO synthesis in enteric synaptosomes via a nitrosothiol intermediate. American Journal of Physiology-Gastrointestinal and Liver Physiology, 1999. 277(4): p. G875-G884.
129. Maurya, R. and J. Mir, Medicinal industrial & environmental relevance of metal nitrosyl complexes: a review. Int. J. Sci. Eng. Res, 2014. 5: p. 305-320.
130. Kapelko, V.I., et al., Protective effects of dinitrosyl iron complexes under oxidative stress in the heart. Oxidative medicine and cellular longevity, 2017. 2017.
131. Hsiao, H.-Y., et al., Fe in biosynthesis, translocation, and signal transduction of NO: toward bioinorganic engineering of dinitrosyl iron complexes into NO-delivery scaffolds for tissue engineering. Dalton Transactions, 2019. 48(26): p. 9431-9453.
132. Sun, J., et al., Measurement of nitric oxide production in biological systems by using Griess reaction assay. Sensors, 2003. 3(8): p. 276-284.
133. Smith, C.J. and A.M. Osborn, Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol, 2009. 67(1): p. 6-20.
134. Wack, S., et al., Telomerase transcriptional targeting of inducible Bax/TRAIL gene therapy improves gemcitabine treatment of pancreatic cancer. Molecular Therapy, 2008. 16(2): p. 252-260.
135. Zhao, X., et al., BCL2 amplicon loss and transcriptional remodeling drives ABT-199 resistance in B cell lymphoma models. Cancer cell, 2019. 35(5): p. 752-766. e9.
136. Chen, W., et al., Direct interaction between Nrf2 and p21Cip1/WAF1 upregulates the Nrf2-mediated antioxidant response. Molecular cell, 2009. 34(6): p. 663-673.
137. Liu, P., et al., Enhanced renoprotective effect of IGF-1 modified human umbilical cord-derived mesenchymal stem cells on gentamicin-induced acute kidney injury. Scientific reports, 2016. 6(1): p. 1-14.
138. Li, Y., et al., Hepatocyte growth factor is a downstream effector that mediates the antifibrotic action of peroxisome proliferator–activated receptor-γ agonists. Journal of the American Society of Nephrology, 2006. 17(1): p. 54-65.
139. Tsumuraya, T., et al., Human mesenchymal stem/stromal cells suppress spinal inflammation in mice with contribution of pituitary adenylate cyclase-activating polypeptide (PACAP). Journal of neuroinflammation, 2015. 12(1): p. 1-13.
140. Orimo, A., et al., Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 2005. 121(3): p. 335-348.
141. Wan, S., et al., FAK-and YAP/TAZ dependent mechanotransduction pathways are required for enhanced immunomodulatory properties of adipose-derived mesenchymal stem cells induced by aligned fibrous scaffolds. Biomaterials, 2018. 171: p. 107-117.
142. Wang, Z., et al., CtBP1 promotes tumour‐associated macrophage infiltration and progression in non–small‐cell lung cancer. Journal of Cellular and Molecular Medicine, 2020. 24(19): p. 11445-11456.
143. Barnes, N.A., et al., Amino acid deprivation links BLIMP-1 to the immunomodulatory enzyme indoleamine 2, 3-dioxygenase. The Journal of Immunology, 2009. 183(9): p. 5768-5777.
144. Aoki, R., et al., Protective effect of indole-3-pyruvate against ultraviolet b-induced damage to cultured HaCaT keratinocytes and the skin of hairless mice. PloS one, 2014. 9(5): p. e96804.
145. Liu, L., et al., TSG-6 secreted by human umbilical cord-MSCs attenuates severe burn-induced excessive inflammation via inhibiting activations of P38 and JNK signaling. Scientific reports, 2016. 6(1): p. 1-13.
146. Kirwan, R.P., et al., Hypoxia regulated gene transcription in human optic nerve lamina cribrosa cells in culture. Investigative ophthalmology & visual science, 2012. 53(4): p. 2243-2255.
147. Daniels, M.J., et al., CRISPR/Cas9 mediated mutation of mouse IL-1α nuclear localisation sequence abolishes expression. Scientific reports, 2017. 7(1): p. 1-12.
148. Mishra, M., S. Tiwari, and A.V. Gomes, Protein purification and analysis: next generation Western blotting techniques. Expert Rev Proteomics, 2017. 14(11): p. 1037-1053.
149. Houser, B., Bio-Rad's Bio-Plex(R) suspension array system, xMAP technology overview. Arch Physiol Biochem, 2012. 118(4): p. 192-6.
150. Campbell, B.C., et al., Ischaemic stroke. Nature Reviews Disease Primers, 2019. 5(1): p. 1-22.
151. Hsu, T.-W., et al., Transplantation of 3D MSC/HUVEC spheroids with neuroprotective and proangiogenic potentials ameliorates ischemic stroke brain injury. Biomaterials, 2021. 272: p. 120765.
152. Perlman, H., et al., An elevated bax/bcl-2 ratio corresponds with the onset of prostate epithelial cell apoptosis. Cell Death & Differentiation, 1999. 6(1): p. 48-54.
153. Foresti, R. and R. Motterlini, The heme oxygenase pathway and its interaction with nitric oxide in the control of cellular homeostasis. Free radical research, 1999. 31(6): p. 459-475.
154. IMMENSCHUH, S., et al., Transcriptional activation of the haem oxygenase-1 gene by cGMP via a cAMP response element/activator protein-1 element in primary cultures of rat hepatocytes. Biochemical Journal, 1998. 334(1): p. 141-146.
155. Hartsfield, C.L., et al., Regulation of heme oxygenase-1 gene expression in vascular smooth muscle cells by nitric oxide. American Journal of Physiology-Lung Cellular and Molecular Physiology, 1997. 273(5): p. L980-L988.
156. Um, H.-C., et al., Nitric oxide activates Nrf2 through S-nitrosylation of Keap1 in PC12 cells. Nitric Oxide, 2011. 25(2): p. 161-168.
157. Foresti, R., et al., Thiol compounds interact with nitric oxide in regulating heme oxygenase-1 induction in endothelial cells: involvement of superoxide and peroxynitrite anions. Journal of Biological Chemistry, 1997. 272(29): p. 18411-18417.
158. Motterlini, R., et al., Endothelial Heme Oxygenase-1 Induction by Hypoxia: MODULATION BY INDUCIBLE NITRIC-OXIDE SYNTHASE ANDS-NITROSOTHIOLS. Journal of Biological Chemistry, 2000. 275(18): p. 13613-13620.
159. Vizoso, F.J., et al., Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. International journal of molecular sciences, 2017. 18(9): p. 1852.
160. Fahey, T.d., et al., Macrophage inflammatory protein 1 modulates macrophage function. The Journal of Immunology, 1992. 148(9): p. 2764-2769.
161. Basu, S., A. Dunn, and A. Ward, G-CSF: function and modes of action. International journal of molecular medicine, 2002. 10(1): p. 3-10.
162. Bernhardt, J., et al., Agreed definitions and a shared vision for new standards in stroke recovery research: the stroke recovery and rehabilitation roundtable taskforce. International Journal of Stroke, 2017. 12(5): p. 444-450.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *