帳號:guest(3.144.250.160)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):方怡喬
作者(外文):Fang, Yi-Qiao
論文名稱(中文):利用巨分子擁擠現象及抗壞血酸提升三維間葉幹細胞球體於細胞治療之潛能
論文名稱(外文):Macromolecular Crowding Combining with Ascorbic Acid Enhances Therapeutic Potential of Three-Dimensional Mesenchymal Stem Cell Spheroids
指導教授(中文):黃玠誠
指導教授(外文):Huang, Chieh-Cheng
口試委員(中文):陳盈潔
陳宏吉
李亦宸
李亦淇
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:108038501
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:74
中文關鍵詞:三維細胞球體間葉幹細胞巨分子擁擠現象抗壞血酸細胞治療
外文關鍵詞:3D cell spheroidsmesenchymal stem cellmacromolecular crowdingascorbic acidcell therapy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:29
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,組織工程學以回復受損器官之功能為重要研究方向,並基於組織工程學原理利用自組裝的治療策略,也就是利用細胞本身固有之分泌細胞外基質以及細胞激素能力來建立一個適合植入受損區域的細胞移植物。但是,在固有的細胞培養環境中,培養基為一過度稀釋的微環境,需要耗費許多時間才得以使細胞分泌出足夠豐富去治療受損區域的細胞外基質。先前已有許多文獻指出,間葉幹細胞本身能夠分泌大量的細胞外基質以及細胞激素,並且在培養時利用巨分子擁擠現象原理,即便在低血清濃度的培養基微環境下,亦可模擬體內較為擁擠之培養環境,便可以有效提升二維細胞的細胞外基質沉積量並影響細胞外基質的型態;另有研究指出在培養間葉幹細胞時加入抗壞血酸(Ascorbic acid)能夠提升膠原蛋白的分泌量。然而,即便利用巨分子擁擠現象或是在培養時加入抗壞血酸,要產生出足夠豐富的細胞外基質量仍須花費一定的時間。又先前本實驗室有研究指出製備三維幹細胞球體相較於傳統二維培養幹細胞能夠縮短培養時間並且分泌更多的細胞外基質以及更多的促神經生長、促存活及血管新生因子以達到更好的治療效果。為更有效提升三維幹細胞球之治療潛能,本研究使用甲基纖維素水膠系統使間葉幹細胞自我貼附並沉降細胞外基質,並綜合本實驗室先前之實驗中所證實Ficoll 400 做為巨分子擁擠分子時能後提升細胞外基質的分泌量結果,於培養過程中加入Ficoll 400 做為巨分子並添加抗壞血酸,分析不同條件增加間葉幹細胞之細胞外基質沉降速度、細胞激素含量以及免疫調節能力,優化培養條件以達到短時間建立可應用於臨床治療之富含細胞外基質及細胞激素之三維幹細胞球體。體外實驗中,我們以醣胺聚糖定量分析、膠原蛋白定量分析以及酵素連結免疫吸附分析法等方式確認培養基內有巨分子以及抗壞血酸的存在確實能夠影響細胞外基質及細胞激素的沉積量及分泌量;並以即時聚合酶連鎖反應以及免疫螢光染色等方式確認不同培養條件之三維間葉幹細胞球體之免疫調節能力;最後在體內實驗則以冷光訊號偵測檢驗不同培養貼件之三維幹細胞球體之細胞存活能力。希望可以藉由優化最適當的三維幹細胞球培養環境,以達到縮短細胞治療時之準備時間,提升三維幹細胞球之細胞治療潛力並應用於受損區域。
In recent years, the most important research goal in tissue engineering is recover the function of injured organs. Based on the self-assembly principal of tissue engineering, which is, using the extracellular matrix (ECM) and cytokines excreted by cells, to construct a transplant suitable for embedding into the injured area. However, in normal culture environment, the media are diluted microenvironment, obstructing cells to excrete sufficient ECM to cure the injured area. According to studies, mesenchymal stem cells (MSC) itself can not only secrete abundant ECM and cytokines. In addition, by utilizing macromolecular crowding, even in the low-serum media can simulate the crowded culture in vivo. In this way, we can efficiently increase the 2-dimensional(2D) ECM deposition and effect the morphology of the ECM. Other studies showed that by adding ascorbic acid can promote the deposition of collagen. However, even by utilizing macromolecular crowding or adding ascorbic acid in the media, it still takes long time to excrete sufficient ECM. Additionally, our previous research show that we can shorten the culture time by using 3-dimensional (3D) MSC spheroid and allow it to secrete more ECM and other pro-neurogenic and pro-angiogenic potentials comparing to 2D culture. In order to promote the therapeutic potential of 3D MSC spheroid, our study uses self adhesion and deposition of ECM in our methylcellulose hydrogel system. Combining our previous studies, which proved the Ficoll 400 can be used to promote ECM deposition in macromolecular crowding, we add Ficoll 400 as macromolecules and ascorbic acid to optimize the different parameters that accelerate MSC to deposit ECM, cytokines, and immuno-modulation ability. In in vitro studies, we quantify the glycosaminoglycan, collagen and growth factors to confirm that the macromolecules and ascorbic acid added in medium can affect the ECM deposition and cytokine secretion. Besides, we use real-time PCR and immunofluorescence staining to analyze the different ways in immuno-modulation. Finally, we use luminescence signal to test the viability in in vivo studies, in order to shorten the cell preparation time and promote therapeutic potential at the injured site by optimizing the best culture environment.
摘要 ....................................................................................................................................................... I Abstract .............................................................................................................................................. II
目錄 .................................................................................................................................................... III
圖目錄 ................................................................................................................................................ VI
表目錄 ................................................................................................................................................ IX
第一章、緒論 ...................................................................................................................................... 1
1-1、前言 ............................................................................................................................................ 1
1-2、細胞外基質 (Extracellular matrix, ECM) .............................................................................. 2
1-2-1、結構性蛋白質 (Structural protein) ................................................................................. 3
1-2-2、非結構性蛋白質 (Non-structural protein) ...................................................................... 3
1-2-3、蛋白聚醣 (Proteoglycans) ............................................................................................... 4
1-2-4、生長因子 (Growth factor) ............................................................................................... 4
1-2-5、基質金屬蛋白酶 (Matrix metalloproteinases, MMPs) .................................................. 4
1-3、巨分子擁擠現象 (Macromolecular crowding, MMC) ........................................................... 5
1-3-1、Dextran sulfate 500 kDa (DxS) ....................................................................................... 8
1-3-2、Ficoll 400 kDa (Fc400) ................................................................................................... 8
1-3-3、Cocktail of Ficoll 70 kDa (Fc70) and Ficoll 400 kDa ..................................................... 9
1-3-4、文獻回顧 ....................................................................................................................... 10
1-4、抗壞血酸 (L-Ascorbic acid, AA) ............................................................................................ 10
1-5、間葉幹細胞 (Mesenchymal stem cell, MSC) ........................................................................ 13
1-5-1、旁分泌作用 (Paracrine effects)..................................................................................... 15
1-5-2、免疫調節能力 (Immuno-modulation) .......................................................................... 16
1-5-3、細胞療法之應用 ........................................................................................................... 20
1-6、小鼠神經微膠質細胞 (Mouse microglial cell, BV2) ............................................................. 21
1-6-1、神經微膠質細胞的極化 ............................................................................................... 21
1-6-2、間葉幹細胞之細胞療法於發炎反應之應用 ............................................................... 23
1-7、甲基纖維素 (Methylcellulose, MC) ....................................................................................... 23
1-8、三維幹細胞球體於細胞療法的效用 ...................................................................................... 25
1-9、研究動機與實驗目的 .............................................................................................................. 27
第二章、材料和方法 ........................................................................................................................ 30
2-1、細胞培養 .................................................................................................................................. 30
2-2、甲基纖維素水膠製備 .............................................................................................................. 31
2-3、三維幹細胞球體製備 .............................................................................................................. 31
2-4、三維幹細胞球體型態分析 ...................................................................................................... 32
2-5、條件培養液 (Conditioned medium, CM) 製備 ..................................................................... 32
2-6、體外發炎反應模型建立 .......................................................................................................... 33
2-7、細胞免疫螢光染色 .................................................................................................................. 33
2-7-1、二維細胞免疫螢光染色 ............................................................................................... 33
2-7-2、三維幹細胞球體免疫螢光染色 ................................................................................... 33
2-8、醣胺聚醣定量分析 (Glycosaminoglycan assay) ................................................................... 34
2-9、天狼星紅快速綠色膠原蛋白染色分析 (Sirius red/fast green collagen staining assay) .... 35
2-10、管狀形成分析 (Tube formation assay)................................................................................ 35
2-11、酵素連結免疫吸附分析法 (Enzyme-linked immunosorbent assay, ELISA) ................... 36
2-12、即時聚合酶連鎖反應 (Real-time polymerase chain reaction, Real-time PCR) .............. 37
2-13、動物模式 (In vivo study) ....................................................................................................... 42
2-14、統計分析 ................................................................................................................................ 42
第三章、實驗結果與討論 ................................................................................................................ 43
3-1、三維幹細胞球體型態和特性 .................................................................................................. 43
3-2、加入巨分子擁擠分子後三維幹細胞球體的細胞活性及抗細胞凋亡能力 .......................... 45
3-3、加入巨分子擁擠分子後三維幹細胞球分泌細胞外基質之能力 .......................................... 46
3-3-1、細胞外基質 (Extracellular matrix) 分布 ...................................................................... 46
3-3-2、醣胺聚醣定量分析 ....................................................................................................... 47
3-3-3、天狼星紅快速綠色膠原蛋白染色分析 ....................................................................... 47
3-3-4、即時聚合酶連鎖反應 ................................................................................................... 48
3-4、加入巨分子擁擠分子後三維幹細胞球分泌生長因子之能力 .............................................. 48
3-4-1、即時聚合酶連鎖反應 ................................................................................................... 49
3-4-2、人類血管內皮生長因子-A 酵素連結免疫吸附分析 .................................................. 49
3-5、加入巨分子擁擠分子後三維幹細胞球體的促血管新生能力 .............................................. 50
3-5-1、人類血管內皮生長因子-A 酵素連結免疫吸附分析 .................................................. 50
3-5-2、管狀形成分析 ............................................................................................................... 51
3-6、加入巨分子擁擠分子後三維幹細胞球體的免疫調節能力 .................................................. 52
3-6-1、即時聚合酶連鎖反應 ................................................................................................... 53
3-6-2、酵素連結免疫吸附分析法 ........................................................................................... 54
3-7、三維幹細胞球體調節體外發炎模型能力 .............................................................................. 56
3-7-1、免疫螢光染色 ............................................................................................................... 56
3-7-2、即時聚合酶連鎖反應 ................................................................................................... 59
3-8、動物實驗 .................................................................................................................................. 60
第四章、討論與結論 ........................................................................................................................ 63
參考文獻 ............................................................................................................................................ 64
1. Kwon, S.G., et al., Recent advances in stem cell therapeutics and tissue engineering strategies. Biomater Res, 2018. 22: p. 36.
2. Aguado, B.A., et al., Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng Part A, 2012. 18(7-8): p. 806-15.
3. Wahlberg, B., et al., Ex vivo biomechanical characterization of syringe-needle ejections for intracerebral cell delivery. Scientific Reports, 2018. 8(1): p. 9194.
4. He, N., et al., Extracellular Matrix can Recover the Downregulation of Adhesion Molecules after Cell Detachment and Enhance Endothelial Cell Engraftment. Scientific Reports, 2015. 5(1): p. 10902.
5. Bartosh, T.J., et al., Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci U S A, 2010. 107(31): p. 13724- 9.
6. Park, I.S., J.W. Rhie, and S.H. Kim, A novel three-dimensional adipose-derived stem cell cluster for vascular regeneration in ischemic tissue. Cytotherapy, 2014. 16(4): p. 508-22.
7. Evans, N.D., E. Gentleman, and J.M. Polak, Scaffolds for stem cells. Materials Today, 2006. 9(12): p. 26-33.
8. Benton, G., et al., Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliv Rev, 2014. 79-80: p. 3-18.
9. Hussey, G.S., J.L. Dziki, and S.F. Badylak, Extracellular matrix-based materials for regenerative medicine. Nature Reviews Materials, 2018. 3(7): p. 159-173.
10. Kumar, P., et al., Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies. Scientific Reports, 2015. 5(1): p. 8729.
11. Chan, D., et al., Regulation of procollagen synthesis and processing during ascorbate-induced extracellular matrix accumulation in vitro. The Biochemical journal, 1990. 269(1): p. 175-181.
12. Gattazzo, F., A. Urciuolo, and P. Bonaldo, Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochimica et Biophysica Acta (BBA) - General Subjects, 2014. 1840(8): p. 2506-2519.
13. Huleihel, L., et al., Matrix-bound nanovesicles within ECM bioscaffolds. Science Advances, 2016. 2(6): p. e1600502.
14. Huang, G., et al., Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chemical Reviews, 2017. 117(20): p. 12764-12850.
15. Badylak, S.F., D.O. Freytes, and T.W. Gilbert, Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater, 2009. 5(1): p. 1-13.
16. Rozario, T. and D.W. DeSimone, The extracellular matrix in development and morphogenesis: A dynamic view. Developmental Biology, 2010. 341(1): p. 126-140.
17. Kular, J.K., S. Basu, and R.I. Sharma, The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J Tissue Eng, 2014. 5: p. 2041731414557112.
18. Mao, Y. and J.E. Schwarzbauer, Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol, 2005. 24(6): p. 389-99.
19. Rosso, F., et al., From cell-ECM interactions to tissue engineering. J Cell Physiol, 2004. 199(2): p. 174-80.
20. Iozzo, R.V. and L. Schaefer, Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol, 2015. 42: p. 11-55.
21. Mattson, J.M., R. Turcotte, and Y. Zhang, Glycosaminoglycans contribute to extracellular matrix fiber recruitment and arterial wall mechanics. Biomechanics and modeling in mechanobiology, 2017. 16(1): p. 213-225.
22. Eckes, B., R. Nischt, and T. Krieg, Cell-matrix interactions in dermal repair and scarring. Fibrogenesis & Tissue Repair, 2010. 3(1): p. 4.
23. Lu, P., et al., Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor perspectives in biology, 2011. 3(12): p. a005058.
24. Hall, D. and A.P. Minton, Macromolecular crowding: qualitative and semiquantitative successes, quantitative challenges. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2003. 1649(2): p. 127-139.
25. Peng, Y. and M. Raghunath, Learning from Nature: emulating macromolecular crowding to drive extracellular matrix enhancement for the creation of connective tissue. Tissue Engineering, In Teh, Vukovar, Croatia, 2010: p. 103-118.
26. Cheung, M.S., D. Klimov, and D. Thirumalai, Molecular crowding enhances native state stability and refolding rates of globular proteins. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(13): p. 4753.
27. Goobes, R., et al., Metabolic Buffering Exerted by Macromolecular Crowding on DNA−DNA Interactions: Origin and Physiological Significance. Biochemistry, 2003. 42(8): p. 2431-2440.
28. Minton, A.P., The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem, 2001. 276(14): p. 10577-80.
29. Chen, C., et al., Applying macromolecular crowding to enhance extracellular matrix deposition and its remodeling in vitro for tissue engineering and cell-based therapies. Advanced Drug Delivery Reviews, 2011. 63(4): p. 277-290.
30. van der Valk, J., et al., Optimization of chemically defined cell culture media--replacing fetal bovine serum in mammalian in vitro methods. Toxicol In Vitro, 2010. 24(4): p. 1053-63.
31. Ellis, R.J., Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol, 2001. 11(1): p. 114-9.
32. Badowski, C., et al., Molecular Crowding – (in Cell Culture), in Cell Engineering and Regeneration. 2018. p. 1-27.
33. Lareu, R.R., et al., In vitro enhancement of collagen matrix formation and crosslinking for applications in tissue engineering: a preliminary study. Tissue Eng, 2007. 13(2): p. 385-91.
34. Ang, X.M., et al., Macromolecular crowding amplifies adipogenesis of human bone marrow-derived mesenchymal stem cells by enhancing the pro-adipogenic microenvironment. Tissue Eng Part A, 2014. 20(5-6): p. 966-81.
35. Zeiger, A.S., et al., Macromolecular crowding directs extracellular matrix organization and mesenchymal stem cell behavior. PLoS One, 2012. 7(5): p. e37904.
36. Harve, K.S., et al., MACROMOLECULAR CROWDING IN BIOLOGICAL SYSTEMS: DYNAMIC LIGHT SCATTERING (DLS) TO QUANTIFY THE EXCLUDED VOLUME EFFECT (EVE). Biophysical Reviews and Letters, 2006. 01: p. 317-325.
37. Dewavrin, J.Y., et al., Synergistic rate boosting of collagen fibrillogenesis in heterogeneous mixtures of crowding agents. J Phys Chem B, 2015. 119(12): p. 4350-8.
38. Bateman, J.F. and S.B. Golub, Assessment of procollagen processing defects by fibroblasts cultured in the presence of dextran sulphate. Biochem J, 1990. 267(3): p. 573-7.
39. Lareu, R.R., et al., Collagen matrix deposition is dramatically enhanced in vitro when crowded with charged macromolecules: the biological relevance of the excluded volume effect. FEBS Lett, 2007. 581(14): p. 2709-14.
40. Satyam, A., et al., Macromolecular crowding meets tissue engineering by self-assembly: a paradigm shift in regenerative medicine. Adv Mater, 2014. 26(19): p. 3024-34.
41. Magno, V., et al., Macromolecular crowding for tailoring tissue-derived fibrillated matrices. Acta Biomater, 2017. 55: p. 109-119.
42. Bert van den Berg, R.J.E.a.C.M.D., Effects of macromolecular crowding on protein folding and aggregation. The EMBO Journal, 1999. 18(24): p. 6927-6933.
43. Chen, C.Z., et al., The Scar-in-a-Jar: studying potential antifibrotic compounds from the epigenetic to extracellular level in a single well. Br J Pharmacol, 2009. 158(5): p. 1196-209.
44. Benny, P., et al., Making more matrix: enhancing the deposition of dermal-epidermal junction components in vitro and accelerating organotypic skin culture development, using macromolecular crowding. Tissue Eng Part A, 2015. 21(1-2): p. 183-92.
45. Cigognini, D., et al., Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture - A step closer to physiologically relevant in vitro organogenesis. Scientific reports, 2016. 6: p. 30746-30746.
46. Chiang, C.E., et al., Bioactive Decellularized Extracellular Matrix Derived from 3D Stem Cell Spheroids under Macromolecular Crowding Serves as a Scaffold for Tissue Engineering. Adv Healthc Mater, 2021. 10(11): p. e2100024.
47. D'Aniello, C., et al., Vitamin C in Stem Cell Biology: Impact on Extracellular Matrix Homeostasis and Epigenetics. Stem Cells Int, 2017. 2017: p. 8936156.
48. Graham, M.F., et al., Role of ascorbic acid in procollagen expression and secretion by human intestinal smooth muscle cells. J Cell Physiol, 1995. 162(2): p. 225-33.
49. Esteban, M.A., et al., Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell, 2010. 6(1): p. 71-9.
50. Blaschke, K., et al., Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature, 2013. 500(7461): p. 222-226.
51. D'Aniello, C., et al., Vitamin C and l-Proline Antagonistic Effects Capture Alternative States in the Pluripotency Continuum. Stem cell reports, 2017. 8(1): p. 1-10.
52. Canty, E.G. and K.E. Kadler, Procollagen trafficking, processing and fibrillogenesis. Journal of Cell Science, 2005. 118(7): p. 1341.
53. Yamauchi, M. and M. Sricholpech, Lysine post-translational modifications of collagen. Essays in biochemistry, 2012. 52: p. 113-133.
54. John Kao, G.H., Richard Kao, Robert Stern, Ascorbic acid stimulates production of glycosaminoglycans in cultured fibroblasts. Experimental and Molecular Pathology, 1990. 53: p. 10.
55. Prewitz, M.C., et al., Extracellular matrix deposition of bone marrow stroma enhanced by macromolecular crowding. Biomaterials, 2015. 73: p. 60-69.
56. Mehrbani Azar, Y., et al., Antioxidant Preconditioning Improves the Paracrine Responsiveness of Mouse Bone Marrow Mesenchymal Stem Cells to Diabetic Wound Fluid. Stem cells and development, 2018. 27(23): p. 1646-1657.
57. Bocelli-Tyndall, C., et al., Human articular chondrocytes suppress in vitro proliferation of anti- CD3 activated peripheral blood mononuclear cells. J Cell Physiol, 2006. 209(3): p. 732-4.
58. Uccelli, A., L. Moretta, and V. Pistoia, Mesenchymal stem cells in health and disease. Nat Rev Immunol, 2008. 8(9): p. 726-36.
59. Boese, A.C., et al., Neural stem cell therapy for subacute and chronic ischemic stroke. Stem Cell Research & Therapy, 2018. 9(1): p. 154.
60. Yan, Y., et al., Differential effects of acellular embryonic matrices on pluripotent stem cell expansion and neural differentiation. Biomaterials, 2015. 73: p. 231-242.
61. Shin, J.Y., et al., Transplantation of heterospheroids of islet cells and mesenchymal stem cells for effective angiogenesis and antiapoptosis. Tissue Eng Part A, 2015. 21(5-6): p. 1024-35.
62. Sheikh, A.M., et al., A Mesenchymal stem cell line (B10) increases angiogenesis in a rat MCAO model. Exp Neurol, 2019. 311: p. 182-193.
63. Gutiérrez-Fernández, M., et al., Effects of intravenous administration of allogenic bone marrow-and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke. Stem Cell Res Ther, 2013. 4(1): p. 11.
64. Abdi, R., et al., Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes, 2008. 57(7): p. 1759-67.
65. Ohtaki, H., et al., Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. Proc Natl Acad Sci U S A, 2008. 105(38): p. 14638-43.
66. Madec, A.M., et al., Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia, 2009. 52(7): p. 1391-1399.
67. Zanier, E.R., et al., Bone marrow mesenchymal stromal cells drive protective M2 microglia polarization after brain trauma. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, 2014. 11(3): p. 679-695.
68. Meirelles Lda, S., et al., Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev, 2009. 20(5-6): p. 419-27.
69. Kinnaird, T., et al., Bone-marrow-derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circ Res, 2004. 95(4): p. 354-63.
70. Kinnaird, T., et al., Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation, 2004. 109(12): p. 1543-9.
71. Koike, N., et al., Tissue engineering: creation of long-lasting blood vessels. Nature, 2004. 428(6979): p. 138-9.
72. Okazaki, T., et al., Intravenous administration of bone marrow stromal cells increases survivin and Bcl-2 protein expression and improves sensorimotor function following ischemia in rats. Neurosci Lett, 2008. 430(2): p. 109-14.
73. Wang, S.P., et al., Therapeutic effect of mesenchymal stem cells in rats with intracerebral hemorrhage: reduced apoptosis and enhanced neuroprotection. Mol Med Rep, 2012. 6(4): p. 848-54.
74. Green, D.R. and J.C. Reed, Mitochondria and Apoptosis. Science, 1998. 281(5381): p. 1309.
75. Oltvai, Z.N., C.L. Milliman, and S.J. Korsmeyer, Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell, 1993. 74(4): p. 609-19.
76. Tang, Y.L., et al., Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. The Annals of thoracic surgery, 2005. 80(1): p. 229-237.
77. Pan, G.-z., et al., Bone marrow mesenchymal stem cells ameliorate hepatic ischemia/reperfusion injuries via inactivation of the MEK/ERK signaling pathway in rats. Journal of Surgical Research, 2012. 178(2): p. 935-948.
78. Gerber, H.-P., V. Dixit, and N. Ferrara, Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. Journal of biological chemistry, 1998. 273(21): p. 13313-13316.
79. Fisher, A.B., Reactive oxygen species and cell signaling in lung ischemia, in Cell Signaling in Vascular Inflammation. 2005, Springer. p. 125-135.
80. Lull, M.E. and M.L. Block, Microglial activation and chronic neurodegeneration. Neurotherapeutics, 2010. 7(4): p. 354-365.
81. Liu, D., et al., Human stanniocalcin-1 suppresses angiotensin II-induced superoxide generation in cardiomyocytes through UCP3-mediated anti-oxidant pathway. PloS one, 2012. 7(5): p. e36994.
82. Ohkouchi, S., et al., Mesenchymal stromal cells protect cancer cells from ROS-induced apoptosis and enhance the Warburg effect by secreting STC1. Molecular Therapy, 2012. 20(2): p. 417-423.
83. Li, J., et al., Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats. Journal of Inflammation, 2012. 9(1): p. 33.
84. Chang, C.-P., et al., Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clinical Science, 2013. 124(3): p. 165-176.
85. Luo, Y., et al., Pretreating mesenchymal stem cells with interleukin-1β and transforming growth factor-β synergistically increases vascular endothelial growth factor production and improves mesenchymal stem cell–mediated myocardial protection after acute ischemia. Surgery, 2012. 151(3): p. 353-363.
86. Hou, Y., et al., IL‐8 enhances the angiogenic potential of human bone marrow mesenchymal stem cells by increasing vascular endothelial growth factor. Cell biology international, 2014. 38(9): p. 1050-1059.
87. Liang, X., et al., Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell transplantation, 2014. 23(9): p. 1045-1059.
88. Jiang, X.-X., et al., Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood, 2005. 105(10): p. 4120-4126.
89. Ramasamy, R., et al., Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation, 2007. 83(1): p. 71-76.
90. Aggarwal, S. and M.F. Pittenger, Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 2005. 105(4): p. 1815-1822.
91. Spaggiari, G.M., et al., Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood, 2006. 107(4): p. 1484-1490.
92. Raffaghello, L., et al., Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem cells, 2008. 26(1): p. 151-162.
93. Glennie, S., et al., Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 2005. 105(7): p. 2821-2827.
94. Benvenuto, F., et al., Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem cells, 2007. 25(7): p. 1753-1760.
95. Zappia, E., et al., Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 2005. 106(5): p. 1755-1761.
96. Rasmusson, I., et al., Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation, 2003. 76(8): p. 1208-1213.
97. Maccario, R., et al., Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica, 2005. 90(4): p. 516-525.
98. Jiang, W. and J. Xu, Immune modulation by mesenchymal stem cells. Cell Prolif, 2020. 53(1): p. e12712.
99. Ren, G., et al., Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell stem cell, 2008. 2(2): p. 141-150.
100. Ortiz, L.A., et al., Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proceedings of the National Academy of Sciences, 2007. 104(26): p. 11002-11007.
101. Roura, S., et al., Potential of Extracellular Vesicle-Associated TSG-6 from Adipose Mesenchymal Stromal Cells in Traumatic Brain Injury. Int J Mol Sci, 2020. 21(18).
102. Li, Y., et al., Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. neurology, 2002. 59(4): p. 514-523.
103. Lee, R.H., et al., Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proceedings of the National Academy of Sciences, 2006. 103(46): p. 17438-17443.
104. Urbán, V.S., et al., Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem cells, 2008. 26(1): p. 244-253.
105. Togel, F., et al., Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. American Journal of Physiology-Renal Physiology, 2005. 289(1): p. F31-F42.
106. Filiano, A.J., S.P. Gadani, and J. Kipnis, Interactions of innate and adaptive immunity in brain development and function. Brain Res, 2015. 1617: p. 18-27.
107. Jochen Gehrmann, Y.M., Georg W.Kreutzberg, Microglia: Intrinsic immuneffector cell of the brain. Brain Research Reviews, 1995. 20(3).
108. Neumann, H., Control of glial immune function by neurons. Glia, 2001. 36(2): p. 191-9.
109. Nakagawa, Y. and K. Chiba, Diversity and plasticity of microglial cells in psychiatric and neurological disorders. Pharmacol Ther, 2015. 154: p. 21-35.
110. Zhang, B., et al., Targeting MAPK Pathways by Naringenin Modulates Microglia M1/M2 Polarization in Lipopolysaccharide-Stimulated Cultures. Front Cell Neurosci, 2018. 12: p. 531.
111. Jha, K.A., et al., TSG-6 in conditioned media from adipose mesenchymal stem cells protects against visual deficits in mild traumatic brain injury model through neurovascular modulation. Stem Cell Res Ther, 2019. 10(1): p. 318.
112. Shinsmon Jose, S.W.T., Yin Yin Ooi, Rajesh Ramasamy and Sharmili Vidyadaran, Mesenchymal stem cells exert anti-proliferative effect on lipopolysaccharide-stimulated BV2 microglia by reducing tumour necrosis factor-α levels. Journal of Neuroinflammation, 2014. 11.
113. Ylostalo, J.H., et al., Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype. Stem Cells, 2012. 30(10): p. 2283-96.
114. Liang, H.-F., et al., Novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate as a pH-sensitive hydrogel. Biomacromolecules, 2004. 5(5): p. 1917-1925.
115. Chen, C.-H., et al., Novel living cell sheet harvest system composed of thermoreversible methylcellulose hydrogels. Biomacromolecules, 2006. 7(3): p. 736-743.
116. Huang, C.C., et al., Injectable cell constructs fabricated via culture on a thermoresponsive methylcellulose hydrogel system for the treatment of ischemic diseases. Advanced healthcare materials, 2014. 3(8): p. 1133-1148.
117. Cheng, N.-C., S. Wang, and T.-H. Young, The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials, 2012. 33(6): p. 1748-1758.
118. Kim, H., et al., Comprehensive Molecular Profiles of Functionally Effective MSC-Derived Extracellular Vesicles in Immunomodulation. Molecular Therapy, 2020.
119. Bhang, S.H., et al., Transplantation of cord blood mesenchymal stem cells as spheroids enhances vascularization. Tissue Engineering Part A, 2012. 18(19-20): p. 2138-2147.
120. Guo, L., et al., Three-dimensional spheroid-cultured mesenchymal stem cells devoid of embolism attenuate brain stroke injury after intra-arterial injection. Stem cells and development, 2014. 23(9): p. 978-989.
121. Chen, D.-Y., et al., Three-dimensional cell aggregates composed of HUVECs and cbMSCs for therapeutic neovascularization in a mouse model of hindlimb ischemia. Biomaterials, 2013. 34(8): p. 1995-2004.
122. Yu, C.P., et al., Enhancement of subcutaneously transplanted β cell survival using 3d stem cell spheroids with proangiogenic and prosurvival potential. Advanced Biosystems, 2020. 4(3): p. 1900254.
123. Hsu, T.W., et al., Transplantation of 3D MSC/HUVEC spheroids with neuroprotective and proangiogenic potentials ameliorates ischemic stroke brain injury. Biomaterials, 2021. 272: p. 120765.
124. Smith, C.J. and A.M. Osborn, Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS microbiology ecology, 2009. 67(1): p. 6-20.
125. Kevin M Curtis, L.A.G., Carmen Rios, Elisa Garbayo, Ami P Raval, Miguel A Perez-Pinzon, Paul C Schiller, EF1a and RPL13a represent normalization genes suitable for RT-qPCR analysis of bone marrow derived mesenchymal stem cells. BMC Molecular Biology, 2010. 11.
126. Wack, S., et al., Telomerase transcriptional targeting of inducible Bax/TRAIL gene therapy improves gemcitabine treatment of pancreatic cancer. Mol Ther, 2008. 16(2): p. 252-60.
127. Zhao, X., et al., BCL2 Amplicon Loss and Transcriptional Remodeling Drives ABT-199 Resistance in B Cell Lymphoma Models. Cancer Cell, 2019. 35(5): p. 752-766 e9.
128. Chen, W., et al., Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2- mediated antioxidant response. Mol Cell, 2009. 34(6): p. 663-73.
129. Wang, Z., et al., Prodigiosin inhibits Wnt/beta-catenin signaling and exerts anticancer activity in breast cancer cells. Proc Natl Acad Sci U S A, 2016. 113(46): p. 13150-13155.
130. Ma, Y., et al., ADAMTS1 and HSPG2 mRNA levels in cumulus cells are related to human oocyte quality and controlled ovarian hyperstimulation outcomes. J Assist Reprod Genet, 2020. 37(3): p. 657-667.
131. O'Reilly, S., et al., IL-13 mediates collagen deposition via STAT6 and microRNA-135b: a role for epigenetics. Sci Rep, 2016. 6: p. 25066.
132. Sung, Y.C., et al., Delivery of nitric oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies. Nat Nanotechnol, 2019. 14(12): p. 1160- 1169.
133. Liu, P., et al., Enhanced renoprotective effect of IGF-1 modified human umbilical cord-derived mesenchymal stem cells on gentamicin-induced acute kidney injury. Sci Rep, 2016. 6: p. 20287.
134. Li, Y., et al., hepatocyte growth factor is a downstream effector that mediates the antifibrotic action of peroxisome proliferator-activated receptor-gamma agonists. J Am Soc Nephrol, 2006. 17(1): p. 54-65.
135. Aoki, R., et al., Protective effect of indole-3-pyruvate against ultraviolet b-induced damage to cultured HaCaT keratinocytes and the skin of hairless mice. PLoS One, 2014. 9(5): p. e96804.
136. Liu, L., et al., TSG-6 secreted by human umbilical cord-MSCs attenuates severe burn-induced excessive inflammation via inhibiting activations of P38 and JNK signaling. Sci Rep, 2016. 6: p. 30121.
137. Barnes, N.A., et al., Amino acid deprivation links BLIMP-1 to the immunomodulatory enzyme indoleamine 2,3-dioxygenase. J Immunol, 2009. 183(9): p. 5768-77.
138. Kirwan, R.P., et al., Hypoxia regulated gene transcription in human optic nerve lamina cribrosa cells in culture. Invest Ophthalmol Vis Sci, 2012. 53(4): p. 2243-55.
139. Parate, D., et al., Pulsed electromagnetic fields potentiate the paracrine function of mesenchymal stem cells for cartilage regeneration. Stem Cell Res Ther, 2020. 11(1): p. 46.
140. Wang, Z., et al., CtBP1 promotes tumour-associated macrophage infiltration and progression in non-small-cell lung cancer. J Cell Mol Med, 2020. 24(19): p. 11445-11456.
141. Umebashi, K., et al., Interleukin-33 induces interleukin-8 expression via JNK/c-Jun/AP-1 pathway in human umbilical vein endothelial cells. PLoS One, 2018. 13(1): p. e0191659.
142. Rokonay, R., et al., Role of IL-24 in the mucosal remodeling of children with coeliac disease. J Transl Med, 2020. 18(1): p. 36.
143. Dey, A., et al., Biphasic activity of resveratrol on indomethacin-induced gastric ulcers. Biochem Biophys Res Commun, 2009. 381(1): p. 90-5.
144. Daniels, M.J.D., et al., CRISPR/Cas9 mediated mutation of mouse IL-1alpha nuclear localisation sequence abolishes expression. Sci Rep, 2017. 7(1): p. 17077.
145. Ryu, N.E., S.H. Lee, and H. Park, Spheroid Culture System Methods and Applications for Mesenchymal Stem Cells. Cells, 2019. 8(12).
146. Wang, M. and P. Liang, Interleukin-24 and its receptors. Immunology, 2005. 114(2): p. 166-70.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *