|
1. Kwon, S.G., et al., Recent advances in stem cell therapeutics and tissue engineering strategies. Biomater Res, 2018. 22: p. 36. 2. Aguado, B.A., et al., Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng Part A, 2012. 18(7-8): p. 806-15. 3. Wahlberg, B., et al., Ex vivo biomechanical characterization of syringe-needle ejections for intracerebral cell delivery. Scientific Reports, 2018. 8(1): p. 9194. 4. He, N., et al., Extracellular Matrix can Recover the Downregulation of Adhesion Molecules after Cell Detachment and Enhance Endothelial Cell Engraftment. Scientific Reports, 2015. 5(1): p. 10902. 5. Bartosh, T.J., et al., Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci U S A, 2010. 107(31): p. 13724- 9. 6. Park, I.S., J.W. Rhie, and S.H. Kim, A novel three-dimensional adipose-derived stem cell cluster for vascular regeneration in ischemic tissue. Cytotherapy, 2014. 16(4): p. 508-22. 7. Evans, N.D., E. Gentleman, and J.M. Polak, Scaffolds for stem cells. Materials Today, 2006. 9(12): p. 26-33. 8. Benton, G., et al., Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliv Rev, 2014. 79-80: p. 3-18. 9. Hussey, G.S., J.L. Dziki, and S.F. Badylak, Extracellular matrix-based materials for regenerative medicine. Nature Reviews Materials, 2018. 3(7): p. 159-173. 10. Kumar, P., et al., Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies. Scientific Reports, 2015. 5(1): p. 8729. 11. Chan, D., et al., Regulation of procollagen synthesis and processing during ascorbate-induced extracellular matrix accumulation in vitro. The Biochemical journal, 1990. 269(1): p. 175-181. 12. Gattazzo, F., A. Urciuolo, and P. Bonaldo, Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochimica et Biophysica Acta (BBA) - General Subjects, 2014. 1840(8): p. 2506-2519. 13. Huleihel, L., et al., Matrix-bound nanovesicles within ECM bioscaffolds. Science Advances, 2016. 2(6): p. e1600502. 14. Huang, G., et al., Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chemical Reviews, 2017. 117(20): p. 12764-12850. 15. Badylak, S.F., D.O. Freytes, and T.W. Gilbert, Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater, 2009. 5(1): p. 1-13. 16. Rozario, T. and D.W. DeSimone, The extracellular matrix in development and morphogenesis: A dynamic view. Developmental Biology, 2010. 341(1): p. 126-140. 17. Kular, J.K., S. Basu, and R.I. Sharma, The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J Tissue Eng, 2014. 5: p. 2041731414557112. 18. Mao, Y. and J.E. Schwarzbauer, Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol, 2005. 24(6): p. 389-99. 19. Rosso, F., et al., From cell-ECM interactions to tissue engineering. J Cell Physiol, 2004. 199(2): p. 174-80. 20. Iozzo, R.V. and L. Schaefer, Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol, 2015. 42: p. 11-55. 21. Mattson, J.M., R. Turcotte, and Y. Zhang, Glycosaminoglycans contribute to extracellular matrix fiber recruitment and arterial wall mechanics. Biomechanics and modeling in mechanobiology, 2017. 16(1): p. 213-225. 22. Eckes, B., R. Nischt, and T. Krieg, Cell-matrix interactions in dermal repair and scarring. Fibrogenesis & Tissue Repair, 2010. 3(1): p. 4. 23. Lu, P., et al., Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor perspectives in biology, 2011. 3(12): p. a005058. 24. Hall, D. and A.P. Minton, Macromolecular crowding: qualitative and semiquantitative successes, quantitative challenges. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2003. 1649(2): p. 127-139. 25. Peng, Y. and M. Raghunath, Learning from Nature: emulating macromolecular crowding to drive extracellular matrix enhancement for the creation of connective tissue. Tissue Engineering, In Teh, Vukovar, Croatia, 2010: p. 103-118. 26. Cheung, M.S., D. Klimov, and D. Thirumalai, Molecular crowding enhances native state stability and refolding rates of globular proteins. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(13): p. 4753. 27. Goobes, R., et al., Metabolic Buffering Exerted by Macromolecular Crowding on DNA−DNA Interactions: Origin and Physiological Significance. Biochemistry, 2003. 42(8): p. 2431-2440. 28. Minton, A.P., The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem, 2001. 276(14): p. 10577-80. 29. Chen, C., et al., Applying macromolecular crowding to enhance extracellular matrix deposition and its remodeling in vitro for tissue engineering and cell-based therapies. Advanced Drug Delivery Reviews, 2011. 63(4): p. 277-290. 30. van der Valk, J., et al., Optimization of chemically defined cell culture media--replacing fetal bovine serum in mammalian in vitro methods. Toxicol In Vitro, 2010. 24(4): p. 1053-63. 31. Ellis, R.J., Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol, 2001. 11(1): p. 114-9. 32. Badowski, C., et al., Molecular Crowding – (in Cell Culture), in Cell Engineering and Regeneration. 2018. p. 1-27. 33. Lareu, R.R., et al., In vitro enhancement of collagen matrix formation and crosslinking for applications in tissue engineering: a preliminary study. Tissue Eng, 2007. 13(2): p. 385-91. 34. Ang, X.M., et al., Macromolecular crowding amplifies adipogenesis of human bone marrow-derived mesenchymal stem cells by enhancing the pro-adipogenic microenvironment. Tissue Eng Part A, 2014. 20(5-6): p. 966-81. 35. Zeiger, A.S., et al., Macromolecular crowding directs extracellular matrix organization and mesenchymal stem cell behavior. PLoS One, 2012. 7(5): p. e37904. 36. Harve, K.S., et al., MACROMOLECULAR CROWDING IN BIOLOGICAL SYSTEMS: DYNAMIC LIGHT SCATTERING (DLS) TO QUANTIFY THE EXCLUDED VOLUME EFFECT (EVE). Biophysical Reviews and Letters, 2006. 01: p. 317-325. 37. Dewavrin, J.Y., et al., Synergistic rate boosting of collagen fibrillogenesis in heterogeneous mixtures of crowding agents. J Phys Chem B, 2015. 119(12): p. 4350-8. 38. Bateman, J.F. and S.B. Golub, Assessment of procollagen processing defects by fibroblasts cultured in the presence of dextran sulphate. Biochem J, 1990. 267(3): p. 573-7. 39. Lareu, R.R., et al., Collagen matrix deposition is dramatically enhanced in vitro when crowded with charged macromolecules: the biological relevance of the excluded volume effect. FEBS Lett, 2007. 581(14): p. 2709-14. 40. Satyam, A., et al., Macromolecular crowding meets tissue engineering by self-assembly: a paradigm shift in regenerative medicine. Adv Mater, 2014. 26(19): p. 3024-34. 41. Magno, V., et al., Macromolecular crowding for tailoring tissue-derived fibrillated matrices. Acta Biomater, 2017. 55: p. 109-119. 42. Bert van den Berg, R.J.E.a.C.M.D., Effects of macromolecular crowding on protein folding and aggregation. The EMBO Journal, 1999. 18(24): p. 6927-6933. 43. Chen, C.Z., et al., The Scar-in-a-Jar: studying potential antifibrotic compounds from the epigenetic to extracellular level in a single well. Br J Pharmacol, 2009. 158(5): p. 1196-209. 44. Benny, P., et al., Making more matrix: enhancing the deposition of dermal-epidermal junction components in vitro and accelerating organotypic skin culture development, using macromolecular crowding. Tissue Eng Part A, 2015. 21(1-2): p. 183-92. 45. Cigognini, D., et al., Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture - A step closer to physiologically relevant in vitro organogenesis. Scientific reports, 2016. 6: p. 30746-30746. 46. Chiang, C.E., et al., Bioactive Decellularized Extracellular Matrix Derived from 3D Stem Cell Spheroids under Macromolecular Crowding Serves as a Scaffold for Tissue Engineering. Adv Healthc Mater, 2021. 10(11): p. e2100024. 47. D'Aniello, C., et al., Vitamin C in Stem Cell Biology: Impact on Extracellular Matrix Homeostasis and Epigenetics. Stem Cells Int, 2017. 2017: p. 8936156. 48. Graham, M.F., et al., Role of ascorbic acid in procollagen expression and secretion by human intestinal smooth muscle cells. J Cell Physiol, 1995. 162(2): p. 225-33. 49. Esteban, M.A., et al., Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell, 2010. 6(1): p. 71-9. 50. Blaschke, K., et al., Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature, 2013. 500(7461): p. 222-226. 51. D'Aniello, C., et al., Vitamin C and l-Proline Antagonistic Effects Capture Alternative States in the Pluripotency Continuum. Stem cell reports, 2017. 8(1): p. 1-10. 52. Canty, E.G. and K.E. Kadler, Procollagen trafficking, processing and fibrillogenesis. Journal of Cell Science, 2005. 118(7): p. 1341. 53. Yamauchi, M. and M. Sricholpech, Lysine post-translational modifications of collagen. Essays in biochemistry, 2012. 52: p. 113-133. 54. John Kao, G.H., Richard Kao, Robert Stern, Ascorbic acid stimulates production of glycosaminoglycans in cultured fibroblasts. Experimental and Molecular Pathology, 1990. 53: p. 10. 55. Prewitz, M.C., et al., Extracellular matrix deposition of bone marrow stroma enhanced by macromolecular crowding. Biomaterials, 2015. 73: p. 60-69. 56. Mehrbani Azar, Y., et al., Antioxidant Preconditioning Improves the Paracrine Responsiveness of Mouse Bone Marrow Mesenchymal Stem Cells to Diabetic Wound Fluid. Stem cells and development, 2018. 27(23): p. 1646-1657. 57. Bocelli-Tyndall, C., et al., Human articular chondrocytes suppress in vitro proliferation of anti- CD3 activated peripheral blood mononuclear cells. J Cell Physiol, 2006. 209(3): p. 732-4. 58. Uccelli, A., L. Moretta, and V. Pistoia, Mesenchymal stem cells in health and disease. Nat Rev Immunol, 2008. 8(9): p. 726-36. 59. Boese, A.C., et al., Neural stem cell therapy for subacute and chronic ischemic stroke. Stem Cell Research & Therapy, 2018. 9(1): p. 154. 60. Yan, Y., et al., Differential effects of acellular embryonic matrices on pluripotent stem cell expansion and neural differentiation. Biomaterials, 2015. 73: p. 231-242. 61. Shin, J.Y., et al., Transplantation of heterospheroids of islet cells and mesenchymal stem cells for effective angiogenesis and antiapoptosis. Tissue Eng Part A, 2015. 21(5-6): p. 1024-35. 62. Sheikh, A.M., et al., A Mesenchymal stem cell line (B10) increases angiogenesis in a rat MCAO model. Exp Neurol, 2019. 311: p. 182-193. 63. Gutiérrez-Fernández, M., et al., Effects of intravenous administration of allogenic bone marrow-and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke. Stem Cell Res Ther, 2013. 4(1): p. 11. 64. Abdi, R., et al., Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes, 2008. 57(7): p. 1759-67. 65. Ohtaki, H., et al., Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. Proc Natl Acad Sci U S A, 2008. 105(38): p. 14638-43. 66. Madec, A.M., et al., Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia, 2009. 52(7): p. 1391-1399. 67. Zanier, E.R., et al., Bone marrow mesenchymal stromal cells drive protective M2 microglia polarization after brain trauma. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, 2014. 11(3): p. 679-695. 68. Meirelles Lda, S., et al., Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev, 2009. 20(5-6): p. 419-27. 69. Kinnaird, T., et al., Bone-marrow-derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circ Res, 2004. 95(4): p. 354-63. 70. Kinnaird, T., et al., Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation, 2004. 109(12): p. 1543-9. 71. Koike, N., et al., Tissue engineering: creation of long-lasting blood vessels. Nature, 2004. 428(6979): p. 138-9. 72. Okazaki, T., et al., Intravenous administration of bone marrow stromal cells increases survivin and Bcl-2 protein expression and improves sensorimotor function following ischemia in rats. Neurosci Lett, 2008. 430(2): p. 109-14. 73. Wang, S.P., et al., Therapeutic effect of mesenchymal stem cells in rats with intracerebral hemorrhage: reduced apoptosis and enhanced neuroprotection. Mol Med Rep, 2012. 6(4): p. 848-54. 74. Green, D.R. and J.C. Reed, Mitochondria and Apoptosis. Science, 1998. 281(5381): p. 1309. 75. Oltvai, Z.N., C.L. Milliman, and S.J. Korsmeyer, Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell, 1993. 74(4): p. 609-19. 76. Tang, Y.L., et al., Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. The Annals of thoracic surgery, 2005. 80(1): p. 229-237. 77. Pan, G.-z., et al., Bone marrow mesenchymal stem cells ameliorate hepatic ischemia/reperfusion injuries via inactivation of the MEK/ERK signaling pathway in rats. Journal of Surgical Research, 2012. 178(2): p. 935-948. 78. Gerber, H.-P., V. Dixit, and N. Ferrara, Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. Journal of biological chemistry, 1998. 273(21): p. 13313-13316. 79. Fisher, A.B., Reactive oxygen species and cell signaling in lung ischemia, in Cell Signaling in Vascular Inflammation. 2005, Springer. p. 125-135. 80. Lull, M.E. and M.L. Block, Microglial activation and chronic neurodegeneration. Neurotherapeutics, 2010. 7(4): p. 354-365. 81. Liu, D., et al., Human stanniocalcin-1 suppresses angiotensin II-induced superoxide generation in cardiomyocytes through UCP3-mediated anti-oxidant pathway. PloS one, 2012. 7(5): p. e36994. 82. Ohkouchi, S., et al., Mesenchymal stromal cells protect cancer cells from ROS-induced apoptosis and enhance the Warburg effect by secreting STC1. Molecular Therapy, 2012. 20(2): p. 417-423. 83. Li, J., et al., Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats. Journal of Inflammation, 2012. 9(1): p. 33. 84. Chang, C.-P., et al., Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clinical Science, 2013. 124(3): p. 165-176. 85. Luo, Y., et al., Pretreating mesenchymal stem cells with interleukin-1β and transforming growth factor-β synergistically increases vascular endothelial growth factor production and improves mesenchymal stem cell–mediated myocardial protection after acute ischemia. Surgery, 2012. 151(3): p. 353-363. 86. Hou, Y., et al., IL‐8 enhances the angiogenic potential of human bone marrow mesenchymal stem cells by increasing vascular endothelial growth factor. Cell biology international, 2014. 38(9): p. 1050-1059. 87. Liang, X., et al., Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell transplantation, 2014. 23(9): p. 1045-1059. 88. Jiang, X.-X., et al., Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood, 2005. 105(10): p. 4120-4126. 89. Ramasamy, R., et al., Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation, 2007. 83(1): p. 71-76. 90. Aggarwal, S. and M.F. Pittenger, Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 2005. 105(4): p. 1815-1822. 91. Spaggiari, G.M., et al., Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood, 2006. 107(4): p. 1484-1490. 92. Raffaghello, L., et al., Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem cells, 2008. 26(1): p. 151-162. 93. Glennie, S., et al., Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 2005. 105(7): p. 2821-2827. 94. Benvenuto, F., et al., Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem cells, 2007. 25(7): p. 1753-1760. 95. Zappia, E., et al., Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 2005. 106(5): p. 1755-1761. 96. Rasmusson, I., et al., Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation, 2003. 76(8): p. 1208-1213. 97. Maccario, R., et al., Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica, 2005. 90(4): p. 516-525. 98. Jiang, W. and J. Xu, Immune modulation by mesenchymal stem cells. Cell Prolif, 2020. 53(1): p. e12712. 99. Ren, G., et al., Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell stem cell, 2008. 2(2): p. 141-150. 100. Ortiz, L.A., et al., Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proceedings of the National Academy of Sciences, 2007. 104(26): p. 11002-11007. 101. Roura, S., et al., Potential of Extracellular Vesicle-Associated TSG-6 from Adipose Mesenchymal Stromal Cells in Traumatic Brain Injury. Int J Mol Sci, 2020. 21(18). 102. Li, Y., et al., Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. neurology, 2002. 59(4): p. 514-523. 103. Lee, R.H., et al., Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proceedings of the National Academy of Sciences, 2006. 103(46): p. 17438-17443. 104. Urbán, V.S., et al., Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem cells, 2008. 26(1): p. 244-253. 105. Togel, F., et al., Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. American Journal of Physiology-Renal Physiology, 2005. 289(1): p. F31-F42. 106. Filiano, A.J., S.P. Gadani, and J. Kipnis, Interactions of innate and adaptive immunity in brain development and function. Brain Res, 2015. 1617: p. 18-27. 107. Jochen Gehrmann, Y.M., Georg W.Kreutzberg, Microglia: Intrinsic immuneffector cell of the brain. Brain Research Reviews, 1995. 20(3). 108. Neumann, H., Control of glial immune function by neurons. Glia, 2001. 36(2): p. 191-9. 109. Nakagawa, Y. and K. Chiba, Diversity and plasticity of microglial cells in psychiatric and neurological disorders. Pharmacol Ther, 2015. 154: p. 21-35. 110. Zhang, B., et al., Targeting MAPK Pathways by Naringenin Modulates Microglia M1/M2 Polarization in Lipopolysaccharide-Stimulated Cultures. Front Cell Neurosci, 2018. 12: p. 531. 111. Jha, K.A., et al., TSG-6 in conditioned media from adipose mesenchymal stem cells protects against visual deficits in mild traumatic brain injury model through neurovascular modulation. Stem Cell Res Ther, 2019. 10(1): p. 318. 112. Shinsmon Jose, S.W.T., Yin Yin Ooi, Rajesh Ramasamy and Sharmili Vidyadaran, Mesenchymal stem cells exert anti-proliferative effect on lipopolysaccharide-stimulated BV2 microglia by reducing tumour necrosis factor-α levels. Journal of Neuroinflammation, 2014. 11. 113. Ylostalo, J.H., et al., Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype. Stem Cells, 2012. 30(10): p. 2283-96. 114. Liang, H.-F., et al., Novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate as a pH-sensitive hydrogel. Biomacromolecules, 2004. 5(5): p. 1917-1925. 115. Chen, C.-H., et al., Novel living cell sheet harvest system composed of thermoreversible methylcellulose hydrogels. Biomacromolecules, 2006. 7(3): p. 736-743. 116. Huang, C.C., et al., Injectable cell constructs fabricated via culture on a thermoresponsive methylcellulose hydrogel system for the treatment of ischemic diseases. Advanced healthcare materials, 2014. 3(8): p. 1133-1148. 117. Cheng, N.-C., S. Wang, and T.-H. Young, The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials, 2012. 33(6): p. 1748-1758. 118. Kim, H., et al., Comprehensive Molecular Profiles of Functionally Effective MSC-Derived Extracellular Vesicles in Immunomodulation. Molecular Therapy, 2020. 119. Bhang, S.H., et al., Transplantation of cord blood mesenchymal stem cells as spheroids enhances vascularization. Tissue Engineering Part A, 2012. 18(19-20): p. 2138-2147. 120. Guo, L., et al., Three-dimensional spheroid-cultured mesenchymal stem cells devoid of embolism attenuate brain stroke injury after intra-arterial injection. Stem cells and development, 2014. 23(9): p. 978-989. 121. Chen, D.-Y., et al., Three-dimensional cell aggregates composed of HUVECs and cbMSCs for therapeutic neovascularization in a mouse model of hindlimb ischemia. Biomaterials, 2013. 34(8): p. 1995-2004. 122. Yu, C.P., et al., Enhancement of subcutaneously transplanted β cell survival using 3d stem cell spheroids with proangiogenic and prosurvival potential. Advanced Biosystems, 2020. 4(3): p. 1900254. 123. Hsu, T.W., et al., Transplantation of 3D MSC/HUVEC spheroids with neuroprotective and proangiogenic potentials ameliorates ischemic stroke brain injury. Biomaterials, 2021. 272: p. 120765. 124. Smith, C.J. and A.M. Osborn, Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS microbiology ecology, 2009. 67(1): p. 6-20. 125. Kevin M Curtis, L.A.G., Carmen Rios, Elisa Garbayo, Ami P Raval, Miguel A Perez-Pinzon, Paul C Schiller, EF1a and RPL13a represent normalization genes suitable for RT-qPCR analysis of bone marrow derived mesenchymal stem cells. BMC Molecular Biology, 2010. 11. 126. Wack, S., et al., Telomerase transcriptional targeting of inducible Bax/TRAIL gene therapy improves gemcitabine treatment of pancreatic cancer. Mol Ther, 2008. 16(2): p. 252-60. 127. Zhao, X., et al., BCL2 Amplicon Loss and Transcriptional Remodeling Drives ABT-199 Resistance in B Cell Lymphoma Models. Cancer Cell, 2019. 35(5): p. 752-766 e9. 128. Chen, W., et al., Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2- mediated antioxidant response. Mol Cell, 2009. 34(6): p. 663-73. 129. Wang, Z., et al., Prodigiosin inhibits Wnt/beta-catenin signaling and exerts anticancer activity in breast cancer cells. Proc Natl Acad Sci U S A, 2016. 113(46): p. 13150-13155. 130. Ma, Y., et al., ADAMTS1 and HSPG2 mRNA levels in cumulus cells are related to human oocyte quality and controlled ovarian hyperstimulation outcomes. J Assist Reprod Genet, 2020. 37(3): p. 657-667. 131. O'Reilly, S., et al., IL-13 mediates collagen deposition via STAT6 and microRNA-135b: a role for epigenetics. Sci Rep, 2016. 6: p. 25066. 132. Sung, Y.C., et al., Delivery of nitric oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies. Nat Nanotechnol, 2019. 14(12): p. 1160- 1169. 133. Liu, P., et al., Enhanced renoprotective effect of IGF-1 modified human umbilical cord-derived mesenchymal stem cells on gentamicin-induced acute kidney injury. Sci Rep, 2016. 6: p. 20287. 134. Li, Y., et al., hepatocyte growth factor is a downstream effector that mediates the antifibrotic action of peroxisome proliferator-activated receptor-gamma agonists. J Am Soc Nephrol, 2006. 17(1): p. 54-65. 135. Aoki, R., et al., Protective effect of indole-3-pyruvate against ultraviolet b-induced damage to cultured HaCaT keratinocytes and the skin of hairless mice. PLoS One, 2014. 9(5): p. e96804. 136. Liu, L., et al., TSG-6 secreted by human umbilical cord-MSCs attenuates severe burn-induced excessive inflammation via inhibiting activations of P38 and JNK signaling. Sci Rep, 2016. 6: p. 30121. 137. Barnes, N.A., et al., Amino acid deprivation links BLIMP-1 to the immunomodulatory enzyme indoleamine 2,3-dioxygenase. J Immunol, 2009. 183(9): p. 5768-77. 138. Kirwan, R.P., et al., Hypoxia regulated gene transcription in human optic nerve lamina cribrosa cells in culture. Invest Ophthalmol Vis Sci, 2012. 53(4): p. 2243-55. 139. Parate, D., et al., Pulsed electromagnetic fields potentiate the paracrine function of mesenchymal stem cells for cartilage regeneration. Stem Cell Res Ther, 2020. 11(1): p. 46. 140. Wang, Z., et al., CtBP1 promotes tumour-associated macrophage infiltration and progression in non-small-cell lung cancer. J Cell Mol Med, 2020. 24(19): p. 11445-11456. 141. Umebashi, K., et al., Interleukin-33 induces interleukin-8 expression via JNK/c-Jun/AP-1 pathway in human umbilical vein endothelial cells. PLoS One, 2018. 13(1): p. e0191659. 142. Rokonay, R., et al., Role of IL-24 in the mucosal remodeling of children with coeliac disease. J Transl Med, 2020. 18(1): p. 36. 143. Dey, A., et al., Biphasic activity of resveratrol on indomethacin-induced gastric ulcers. Biochem Biophys Res Commun, 2009. 381(1): p. 90-5. 144. Daniels, M.J.D., et al., CRISPR/Cas9 mediated mutation of mouse IL-1alpha nuclear localisation sequence abolishes expression. Sci Rep, 2017. 7(1): p. 17077. 145. Ryu, N.E., S.H. Lee, and H. Park, Spheroid Culture System Methods and Applications for Mesenchymal Stem Cells. Cells, 2019. 8(12). 146. Wang, M. and P. Liang, Interleukin-24 and its receptors. Immunology, 2005. 114(2): p. 166-70. |