帳號:guest(3.141.12.254)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):江晨瑋
作者(外文):Chiang, Chen-Wei
論文名稱(中文):可變形高分子修飾之BCNO奈米粒子於診斷治療之應用
論文名稱(外文):Size and charge transformable polymer-coated boron carbon oxynitride (BCNO) nanoparticle for theranostic application
指導教授(中文):龔佩雲
指導教授(外文):Keng, Pei-Yuin
口試委員(中文):王子威
潘柏申
口試委員(外文):Wang, Tzu-Wei
Pan, Po-Shen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:108035515
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:102
中文關鍵詞:高分子硼碳氮氧奈米粒子硼中子治療
外文關鍵詞:polymerboron carbon oxynitridenanoparticleboron neutron capture therapy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:382
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
硼中子治療(BNCT)是一種新穎的癌症治療方式,此種治療方式當含硼藥物經過低能的中子輻射激發後開始作用治療,可以破壞癌症細胞並不會傷害到正盛的細胞。個別來說,中子熱能和含硼藥物皆不會對任何細胞造成傷害,當兩種東西加在一起作用時,高能的線性能量游離轉換(LET)可以對癌症細胞的DNA造成不可逆的破壞。傳統的放射治療和化學治療,放射線治療不僅會對癌症細胞造成傷害也會對一般細胞造成影響,所以接受傳統化療/放射治療的癌症患者會遭受到很多的副作用,並且生活品質也會大幅下降。硼中子治療(BNCT)雖然已經被用於實驗性治療多種癌症像是頭頸癌,但是臨床前和臨床的研究都還沒有決定性的結論。硼中子治療藥物研發的困難點在於藥物需要具有高選擇性,並且能夠將含有足夠含量的 10B 送到癌症細胞內。為了克服硼中子治療(BNCT)的困難點,此論文希望能研究出用聰明,多功能性的奈米載體來輸送含硼藥物。這個奈米藥物載體具有高中子截面積使其具有治療癌症的功效。這個多功能性的癌症藥物不僅可以跨過生物屏障也可以將具有癌症治療功效的藥物輸送到癌症細胞,並最終提升癌症患者的治療指數。此次提出的可變化具有治療性的奈米藥物含有硼的奈米粒子可以自我組裝成100-200奈米大小且具有良好的表面電位以利於穿透癌症的微環境. 在癌症酸性的微環境當中,對酸性敏感的化學鍵結將會被打斷並釋出極小的,且帶有正電的硼奈米粒子。此轉換電性以及改變大小是為了提高對癌症細胞的穿透性以及提高在癌症細胞內的擴散速度,並加速進入到癌症區域進行治療。與此同時,含硼藥物會在癌症腫瘤位子釋放。在這個論文所提出的可變化含硼藥物可有效的將高含量的10B輸送到癌症的微環境,並且降低整體系統的毒性進而提升對癌症變換的治療效果,以防止病症的再次發生。
Boron neutron capture therapy (BNCT) is an emerging cancer treatment modality that allows selective destruction of individual cancer cells when a particular boron drug is administered without harming neighboring healthy cells upon low energy epithermal neutron irradiation. Individually, epithermal and boron medication do not create any harm to the cell. When combined, high linear energy transfer (LET) ionization resulted in irreversible damage to the DNA of the cancer cell. In contrast to conventional radiotherapy and chemotherapy, both cancer and healthy cells are affected by anticancer treatment. Consequently, cancer patients undergoing traditional radio- and chemotherapy suffer from many side effects and reduced quality of life during treatment. While BCNT has been used in an experimental treatment for several different tumors, including head and neck cancer, both preclinical and clinical studies are non-conclusive. One of the major challenges in BCNT is in developing a highly selective boron carrier that could deliver a sufficient concentration of 10B into every single cancer cell.
To overcome challenges associated with BNCT, this thesis aims to engineer a size and charge transformable nanocarrier, in which the nanocarrier itself is composed of materials with therapeutics properties, specifically with a large neutron cross-section. The size and charge transformable nanocarrier not only can overcome biological barriers but is also capable of delivering boron-containing therapeutics agents to the cancer site, and minimizing systemic toxicity, and ultimately improved the therapeutic index for cancer patients. The transformable nanotherapeutic is composed of ultrasmall boron nanoparticles that self-assembled into uniformly sized vesicles of optimal size range between 100-200 nm and with an optimal surface charge for infiltration into the tumor microenvironment. At the tumor microenvironment, the slightly acidic pH microenvironment triggers the disassembly of the boron vesicles into ultrasmall, positively charge boron nanoparticles. The size and charge transformation of the boron vesicles into ultrasmall, positively charged nanoparticles aims at enhancing cell internalization and diffusion into a solid tumor. Simultaneously, the boron vesicle releases boron containing BCNO at the tumor microenvironment. This research thesis aims to develop transformable boron vesicles that could effectively deliver both a high concentration of 10B in the tumor microenvironment with minimal systemic toxicity and thus increase therapeutic index for the patients and in preventing disease relapse after BNCT.
Table of Content

Chapter 1 Introduction
1.1 Executive summary 9
Chapter 2 Literature Review
2.1 Boron neutron capture therapy 13
2.2 Boron delivery agents 14
2.3 Boron carbon oxynitride (BCNO) 18
2.4 Challenge of in vivo drug delivery 21
2.5 Stimuli-responsive chemical linker for better drug delivery 24
Chapter 3 Preparation and Design of Experiments
3.1 Synthesis BCNO nanoparticle 29
3.2 Functionalized BCNO with polymer ligand (PEI, PEG, and PSMA-CRs) 31
3.3 Synthesis of aldehyde end-functionalized PEG 32
3.4 Preparation and characterization of PEG-b-PEI@BCNO nanoparticle 32
3.5 Preparation of PEI@BCNO-b-PEG aggregated nanoparticle 33
3.6 Material characterization 34
3.7 Cell viability assay of BCNO 35
3.8 In vitro cell uptake of BCNO containing solution 36
Chapter 4 Results and Discussion
4.1 Synthesis and characterization of BCNO 40
4.1.1 Microwave synthesis of BCNO 40
4.1.2 Thermal annealed BCNO and thermal cut synthesis BCNO 43
4.2 BCNO chemical structure investigation 50
4.2.1 Structural analysis of the thermal annealed BCNO nanoparticle 50
4.2.2 Structural analysis of the BCNO nanosheet 53
4.3 BCNO functionalization with polymer ligand (PEG, PEI, and PSMA-CRs) 59
4.3.1 Characterization of the PEG@BCNO and PEI@BCNO 60
4.3.2 Cytotoxicity and cell uptake study of the BCNO, polymer-coated BCNO 65
4.3.3 Characterization of PSMA-CRs@BCNO 69
4.4 Size and charge transformable self-assemble polymer-coated BCNO synthesis and characterization 72
4.4.1 Synthesis of aldehyde end-functionalized PEG 73
4.4.2 Characterization of self-assemble PEG-b-PEI@BCNO nanostructure 76
4.4.3 Self-assembly mechanism of the PEG-b-PEI@BCNO 81
4.5 Cytotoxicity and cell uptake of PEG-b-PEI@BCNO 89
Chapter 5 Conclusion 94
References 95
Reference
[1] Barth R F 2003 A critical assessment of boron neutron capture therapy: an overview J. Neurooncol. 62 1–5
[2] Barth R F, H Vicente Mg, Harling O K, Kiger W, Riley K J, Binns P J, Wagner F M, Suzuki M, Aihara T, Kato I and Kawabata S 2012 Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer Radiat. Oncol. 7 146
[3] Barth R F, Goodman J H, Gupta N and Yang W 2018 Boron Neutron Capture Therapy of Brain Tumors: An Emerging Therapeutic Modality 18
[4] Hatanaka H, Sweet W H, Sano K and Ellis F 1991 The present status of boron-neutron capture therapy for tumors Pure Appl. Chem. 63 373–4
[5] Slatkin D N 1991 A HISTORY OF BORON NEUTRON CAPTURE THERAPY OF BRAIN TUMOURS: POSTULATION OF A BRAIN RADIATION DOSE TOLERANCE LIMIT Brain 114 1609–29
[6] Kankaanranta L, Seppälä T, Koivunoro H, Saarilahti K, Atula T, Collan J, Salli E, Kortesniemi M, Uusi-Simola J, Välimäki P, Mäkitie A, Seppänen M, Minn H, Revitzer H, Kouri M, Kotiluoto P, Seren T, Auterinen I, Savolainen S and Joensuu H 2012 Boron Neutron Capture Therapy in the Treatment of Locally Recurred Head-and-Neck Cancer: Final Analysis of a Phase I/II Trial Int. J. Radiat. Oncol. 82 e67–75
[7] Wang L W, Wang S J, Chu P Y, Ho C Y, Jiang S H, Liu Y W H, Liu Y H, Liu H M, Peir J J, Chou F I, Yen S H, Lee Y L, Chang C W, Liu C S, Chen Y W and Ono K 2011 BNCT for locally recurrent head and neck cancer: Preliminary clinical experience from a phase I/II trial at Tsing Hua Open-Pool Reactor Appl. Radiat. Isot. 69 1803–6
[8] Dymova M A, Taskaev S Y, Richter V A and Kuligina E V 2020 Boron neutron capture therapy: Current status and future perspectives Cancer Commun. 40 406–21
[9] Hu K 2020 Boron agents for neutron capture therapy Coord. Chem. Rev. 20
[10] Nedunchezhian K 2016 Boron Neutron Capture Therapy - A Literature Review J. Clin. Diagn. Res.
[11] Goodman J H, Yang W, Barth R F, Gao Z, Boesel C P, Staubus A E, Gupta N, Gahbauer R A, Adams D M, Gibson C R, Ferketich A K, Moeschberger M L, Soloway A H, Carpenter D E, Albertson B J, Bauer W F, Zhang M Z and Wang C C 2000 Boron Neutron Capture Therapy of Brain Tumors: Biodistribution, Pharmacokinetics, and Radiation Dosimetry of Sodium Borocaptate in Patients with Gliomas Neurosurgery 47 608–22
[12] Yao S, Zhang K, Zhou Q-Q, Zhao Y, Shi D-Q and Xiao W-J 2018 Photoredox-promoted alkyl radical addition/semipinacol rearrangement sequences of alkenylcyclobutanols: rapid access to cyclic ketones Chem. Commun. 54 8096–9
[13] Altieri S, Balzi M, Bortolussi S, Bruschi P, Ciani L, Clerici A M, Faraoni P, Ferrari C, Gadan M A, Panza L, Pietrangeli D, Ricciardi G and Ristori S 2009 Carborane Derivatives Loaded into Liposomes as Efficient Delivery Systems for Boron Neutron Capture Therapy † J. Med. Chem. 52 7829–35
[14] Feakes D A, Shelly K and Hawthorne M F 1995 Selective boron delivery to murine tumors by lipophilic species incorporated in the membranes of unilamellar liposomes. Proc. Natl. Acad. Sci. 92 1367–70
[15] Feng B, Tomizawa K, Michiue H, Miyatake S, Han X-J, Fujimura A, Seno M, Kirihata M and Matsui H 2009 Delivery of sodium borocaptate to glioma cells using immunoliposome conjugated with anti-EGFR antibodies by ZZ-His Biomaterials 30 1746–55
[16] Malam Y, Loizidou M and Seifalian A M 2009 Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer Trends Pharmacol. Sci. 30 592–9
[17] Shelly K, Feakes D A, Hawthorne M F, Schmidt P G, Krisch T A and Bauer W F 1992 Model studies directed toward the boron neutron-capture therapy of cancer: boron delivery to murine tumors with liposomes. Proc. Natl. Acad. Sci. 89 9039–43
[18] Chen J, Yang Q, Liu M, Lin M, Wang T, Zhang Z, Zhong X, Guo N, Lu Y, Xu J, Wang C, Han M and Wei Q 2019 Remarkable Boron Delivery Of iRGD-Modified Polymeric Nanoparticles For Boron Neutron Capture Therapy Int. J. Nanomedicine Volume 14 8161–77
[19] Liu J, Ai X, Zhang H, Zhuo W and Mi P 2019 Polymeric Micelles with Endosome Escape and Redox-Responsive Functions for Enhanced Intracellular Drug Delivery J. Biomed. Nanotechnol. 15 373–81
[20] Iguchi Y, Michiue H, Kitamatsu M, Hayashi Y, Takenaka F, Nishiki T and Matsui H 2015 Tumor-specific delivery of BSH-3R for boron neutron capture therapy and positron emission tomography imaging in a mouse brain tumor model Biomaterials 56 10–7
[21] Petersen M S, Petersen C C, Agger R, Sutmuller M, Jensen M R, Sørensen P G, Mortensen M W, Hansen T, Bjørnholm T, Gundersen H J, Huiskamp R and Hokland M 2008 Boron Nanoparticles Inhibit Tumour Growth by Boron Neutron Capture Therapy in the Murine B16-OVA Model ANTICANCER Res. 6
[22] Kuthala N, Vankayala R, Li Y-N, Chiang C-S and Hwang K C 2017 Engineering Novel Targeted Boron-10-Enriched Theranostic Nanomedicine to Combat against Murine Brain Tumors via MR Imaging-Guided Boron Neutron Capture Therapy Adv. Mater. 29 1700850
[23] Ferreira T, Miranda M, Rocha Z, Leal A, Gomes D and Sousa E 2017 An Assessment of the Potential Use of BNNTs for Boron Neutron Capture Therapy Nanomaterials 7 82
[24] Merlo A 2018 Boron nitride nanomaterials: biocompatibility and bio-applications Biomater. Sci. 14
[25] Sharker S Md 2019 Hexagonal Boron Nitrides (White Graphene): A Promising Method for Cancer Drug Delivery Int. J. Nanomedicine Volume 14 9983–93
[26] Pakdel A, Zhi C, Bando Y, Nakayama T and Golberg D 2011 Boron Nitride Nanosheet Coatings with Controllable Water Repellency ACS Nano 5 6507–15
[27] Singh B, Kaur G, Singh P, Singh K, Kumar B, Vij A, Kumar M, Bala R, Meena R, Singh A, Thakur A and Kumar A 2016 Nanostructured Boron Nitride With High Water Dispersibility For Boron Neutron Capture Therapy Sci. Rep. 6 35535
[28] Ogi T, Kaihatsu Y, Iskandar F, Wang W-N and Okuyama K 2008 Facile Synthesis of New Full-Color-Emitting BCNO Phosphors with High Quantum Efficiency Adv. Mater. 20 3235–8
[29] Chen T, Zhang Q, Xie Z, Tan C, Chen P, Zeng Y, Wang F, Liu H, Liu Y, Liu G and Lv W 2018 Carbon nitride modified hexagonal boron nitride interface as highly efficient blue LED light-driven photocatalyst Appl. Catal. B Environ. 238 410–21
[30] Fang S, Li G, Zhao M, Zhang Y, Yang L and Li L 2017 Non-rare earth containing BCNO phosphors: Chemical activation for LED application J. Lumin. 192 428–35
[31] Ogi T, Kaihatsu Y, Iskandar F, Wang W-N and Okuyama K 2008 Facile Synthesis of New Full-Color-Emitting BCNO Phosphors with High Quantum Efficiency Adv. Mater. 20 3235–8
[32] Jia X, Li L, Yu J, Gao X, Yang X, Lu Z, Zhang X and Liu H 2018 Facile synthesis of BCNO quantum dots with applications for ion detection, chemosensor and fingerprint identification 8
[33] Kanodarwala F K, Moret S, Spindler X, Lennard C and Roux C 2019 Nanoparticles used for fingermark detection—A comprehensive review Wiley Interdiscip. Rev. Forensic Sci. 1
[34] Ren M, Han W, Bai Y, Ge C, He L and Zhang X 2020 Melamine sponge-assisted synthesis of porous BCNO phosphor with yellow-green luminescence for Cr6+ detection Mater. Chem. Phys. 244 122673
[35] Wu Z, Zhou Y, Huang H, Su Z, Chen S and Rong M 2021 BCNO QDs and ROS synergistic oxidation effect on fluorescence enhancement sensing of tetracycline Sens. Actuators B Chem. 332 129530
[36] Gupta B K, Kumar P, Kedawat G, Kanika K, Vithayathil S A, Gangwar A K, Singh S, Kashyap P K, Lahon R, Singh V N, Deshmukh A D, Narayanan T N, Singh N, Gupta S and Kaipparettu B A 2017 Tunable luminescence from two dimensional BCNO nanophosphor for high-contrast cellular imaging RSC Adv. 7 41486–94
[37] Xue Q, Zhang H, Zhu M, Wang Z, Pei Z, Huang Y, Huang Y, Song X, Zeng H and Zhi C 2016 Hydrothermal synthesis of blue-fluorescent monolayer BN and BCNO quantum dots for bio-imaging probes RSC Adv. 6 79090–4
[38] Wang W-N, Widiyastuti W, Ogi T, Lenggoro I W and Okuyama K 2007 Correlations between Crystallite/Particle Size and Photoluminescence Properties of Submicrometer Phosphors Chem. Mater. 19 1723–30
[39] Wang W-N, Ogi T, Kaihatsu Y, Iskandar F and Okuyama K 2011 Novel rare-earth-free tunable-color-emitting BCNO phosphors J. Mater. Chem. 21 5183
[40] Matsoso B J, Ranganathan K, Mutuma B K, Lerotholi T, Jones G and Coville N J 2017 Synthesis and characterization of boron carbon oxynitride films with tunable composition using methane, boric acid and ammonia New J. Chem. 41 9497–504
[41] Nuryadin B W, Permatasari F A, Nuryantini A Y, Faryuni I D, Abdullah M and Iskandar F 2017 A red emitting of manganese-doped boron carbon oxynitride (BCNO) phosphor materials: facile approach and photoluminescence properties RSC Adv. 7 4161–6
[42] Tippo P, Singjai P, Choopun S and Sakulsermsuk S 2018 Preparation and electrical properties of nanocrystalline BCNO Mater. Lett. 211 51–4
[43] Zhang X, Jia X, Liu H, Lu Z, Ma X, Meng F, Zhao J and Tang C 2015 Spectral properties and luminescence mechanism of red emitting BCNO phosphors RSC Adv. 5 40864–71
[44] Zhang X, Lu Z, Liu H, Lin J, Xu X, Meng F, Zhao J and Tang C 2015 Blue emitting BCNO phosphors with high quantum yields J. Mater. Chem. C 3 3311–7
[45] Tang C, Bando Y, Zhi C and Golberg D 2007 Boron–oxygen luminescence centres in boron–nitrogen systems Chem. Commun. 4599
[46] Dong G, Liu X, Xiao X, Zhang Q, Lin G, Ma Z, Chen D and Qiu J 2009 Tunable Emission of BCNO Nanoparticle-Embedded Polymer Electrospun Nanofibers Electrochem. Solid-State Lett. 12 K53
[47] Suryamas A B, Munir M M, Ogi T, Khairurrijal and Okuyama K 2011 Intense green and yellow emissions from electrospun BCNO phosphor nanofibers J. Mater. Chem. 21 12629
[48] Tong R and Kohane D S 2016 New Strategies in Cancer Nanomedicine Annu. Rev. Pharmacol. Toxicol. 56 41–57
[49] Mignani S, Bryszewska M, Klajnert-Maculewicz B, Zablocka M and Majoral J-P 2015 Advances in Combination Therapies Based on Nanoparticles for Efficacious Cancer Treatment: An Analytical Report Biomacromolecules 16 1–27
[50] Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L and Bernardino L 2016 Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases J. Controlled Release 235 34–47
[51] Torchilin V P 2014 Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery Nat. Rev. Drug Discov. 13 813–27
[52] Otsuka H, Nagasaki Y and Kataoka K 2003 PEGylated nanoparticles for biological and pharmaceutical applications Adv. Drug Deliv. Rev. 55 403–19
[53] Owensiii D and Peppas N 2006 Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles Int. J. Pharm. 307 93–102
[54] Zalipsky S, Brandeis E, Newman M S and Woodle M C 1994 Long circulating, cationic liposomes containing amino-PEG-phosphatidylethanolamine FEBS Lett. 353 71–4
[55] Brannon-Peppas L and Blanchette J O 2004 Nanoparticle and targeted systems for cancer therapy Adv. Drug Deliv. Rev. 56 1649–59
[56] Leroueil P R, Hong S, Mecke A, Baker J R, Orr B G and Banaszak Holl M M 2007 Nanoparticle Interaction with Biological Membranes: Does Nanotechnology Present a Janus Face? Acc. Chem. Res. 40 335–42
[57] Leroueil P R, Berry S A, Duthie K, Han G, Rotello V M, McNerny D Q, Baker J R, Orr B G and Banaszak Holl M M 2008 Wide Varieties of Cationic Nanoparticles Induce Defects in Supported Lipid Bilayers Nano Lett. 8 420–4
[58] Verma A and Stellacci F 2010 Effect of Surface Properties on Nanoparticle–Cell Interactions Small 6 12–21
[59] Guan X, Guo Z, Wang T, Lin L, Chen J, Tian H and Chen X 2017 A pH-Responsive Detachable PEG Shielding Strategy for Gene Delivery System in Cancer Therapy Biomacromolecules 18 1342–9
[60] Pang X, Jiang Y, Xiao Q, Leung A W, Hua H and Xu C 2016 pH-responsive polymer–drug conjugates: Design and progress J. Controlled Release 222 116–29
[61] Xin Y and Yuan J 2012 Schiff’s base as a stimuli-responsive linker in polymer chemistry Polym. Chem. 3 3045
[62] Zhang Y, Tao L, Li S and Wei Y 2011 Synthesis of Multiresponsive and Dynamic Chitosan-Based Hydrogels for Controlled Release of Bioactive Molecules Biomacromolecules 12 2894–901
[63] Ratemi E 2018 pH-responsive polymers for drug delivery applications Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, Volume 1 (Elsevier) pp 121–41
[64] Chen J, Zhao Y, Mao Z, Wang D and Bie L 2017 Microwave synthesis of non-crystalline BCNO phosphors using thiourea as nitrogen source and their tunable luminescence Chem. Phys. Lett. 669 171–5
[65] Faryuni I D, Ramdhani F, Sampurno J, Nuryadin B W, Noor F A and Iskandar F 2017 Microwave Synthesis of BCNO/SiO 2 Nanocomposite Material IOP Conf. Ser. Mater. Sci. Eng. 214 012016
[66] Iwasaki H, Ogi T, Iskandar F, Aishima K and Okuyama K 2015 Microwave synthesis of homogeneous and highly luminescent BCNO nanoparticles for the light emitting polymer materials J. Lumin. 166 148–55
[67] Nuryadin B W, Septia E C, Iskandar F, Ogi T, Okuyama K, Mikrajuddin A, and Khairurrijal 2014 Microwave-Assisted Solid State Synthesis of Red-Emitting BCNO Phosphor and its Characteristics Adv. Mater. Res. 896 464–7
[68] Wei Y-Z, Chu Y-F, Uliyanchenko E, Schoenmakers P J, Zhuo R-X and Jiang X-L 2016 Separation and characterization of benzaldehyde-functional polyethylene glycols by liquid chromatography under critical conditions Polym. Chem. 7 7506–13
[69] Hu K, Yang Z, Zhang L, Xie L, Wang L, Xu H, Josephson L, Liang S H and Zhang M-R 2020 Boron agents for neutron capture therapy Coord. Chem. Rev. 405 213139
[70] Zuo X, Chang K, Zhao J, Xie Z, Tang H, Li B and Chang Z 2016 Bubble-template-assisted synthesis of hollow fullerene-like MoS 2 nanocages as a lithium ion battery anode material J. Mater. Chem. A 4 51–8
[71] Ashbrook S E and Duer M J 2006 Structural information from quadrupolar nuclei in solid state NMR Concepts Magn. Reson. Part A 28A 183–248
[72] Dorn R W, Ryan M J, Kim T-H, Goh T W, Venkatesh A, Heintz P M, Zhou L, Huang W and Rossini A J 2020 Identifying the Molecular Edge Termination of Exfoliated Hexagonal Boron Nitride Nanosheets with Solid-State NMR Spectroscopy and Plane-Wave DFT Calculations Chem. Mater. 32 3109–21
[73] Gervais C, Framery E, Duriez C, Maquet J, Vaultier M and Babonneau F 2005 11B and 15N solid state NMR investigation of a boron nitride preceramic polymer prepared by ammonolysis of borazine J. Eur. Ceram. Soc. 25 129–35
[74] Kroeker S and Stebbins J F 2001 Three-Coordinated Boron-11 Chemical Shifts in Borates Inorg. Chem. 40 6239–46
[75] Love A M, Thomas B, Specht S E, Hanrahan M P, Venegas J M, Burt S P, Grant J T, Cendejas M C, McDermott W P, Rossini A J and Hermans I 2019 Probing the Transformation of Boron Nitride Catalysts under Oxidative Dehydrogenation Conditions J. Am. Chem. Soc. 141 182–90
[76] Neumair S C, Vanicek S, Kaindl R, Többens D M, Martineau C, Taulelle F, Senker J and Huppertz H 2011 HP-KB3O5 Highlights the Structural Diversity of Borates: Corner-Sharing BO3/BO4 Groups in Combination with Edge-Sharing BO4 Tetrahedra Eur. J. Inorg. Chem. 2011 4147–52
[77] Matsoso B J, Ranganathan K, Mutuma B K, Lerotholi T, Jones G and Coville N J 2017 Synthesis and characterization of boron carbon oxynitride films with tunable composition using methane, boric acid and ammonia New J. Chem. 41 9497–504
[78] Beniwal S, Hooper J, Miller D P, Costa P S, Chen G, Liu S-Y, Dowben P A, Sykes E C H, Zurek E and Enders A 2017 Graphene-like Boron–Carbon–Nitrogen Monolayers ACS Nano 11 2486–93
[79] Dontsova D, Fettkenhauer C, Papaefthimiou V, Schmidt J and Antonietti M 2016 1,2,4-Triazole-Based Approach to Noble-Metal-Free Visible-Light Driven Water Splitting over Carbon Nitrides Chem. Mater. 28 772–8
[80] Stadie N P, Billeter E, Piveteau L, Kravchyk K V, Döbeli M and Kovalenko M V 2017 Direct Synthesis of Bulk Boron-Doped Graphitic Carbon Chem. Mater. 29 3211–8
[81] Li L and Dong T 2018 Photoluminescence tuning in carbon dots: surface passivation or/and functionalization, heteroatom doping J. Mater. Chem. C 6 7944–70
[82] Srivastava I, Khamo J S, Pandit S, Fathi P, Huang X, Cao A, Haasch R T, Nie S, Zhang K and Pan D 2019 Influence of Electron Acceptor and Electron Donor on the Photophysical Properties of Carbon Dots: A Comparative Investigation at the Bulk‐State and Single‐Particle Level Adv. Funct. Mater. 29 1902466
[83] Yang S, Sun J, Li X, Zhou W, Wang Z, He P, Ding G, Xie X, Kang Z and Jiang M 2014 Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection J. Mater. Chem. A 2 8660
[84] Huang K, Liang L, Chai S, Tumuluri U, Li M, Wu Z, Sumpter B G and Dai S 2017 Aminopolymer functionalization of boron nitride nanosheets for highly efficient capture of carbon dioxide J. Mater. Chem. A 5 16241–8
[85] Wang Y, Tong L, You Y, Tu L, Zhou M and Liu X 2019 Polyethylenimine Assisted Bio-Inspired Surface Functionalization of Hexagonal Boron Nitride for Enhancing the Crystallization and the Properties of Poly(Arylene Ether Nitrile) Nanomaterials 9 760
[86] Chen T, Zheng, Li, Zhang, Zheng, and Wong 2012 PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction Int. J. Nanomedicine 3939
[87] Wu Y, He Y, Zhou T, Chen C, Zhong F, Xia Y, Xie P and Zhang C 2020 Synergistic functionalization of h-BN by mechanical exfoliation and PEI chemical modification for enhancing the corrosion resistance of waterborne epoxy coating Prog. Org. Coat. 142 105541
[88] Mateti S, Wong C S, Liu Z, Yang W, Li Y, Li L H and Chen Y 2018 Biocompatibility of boron nitride nanosheets Nano Res. 11 334–42
[89] Taskin I C 2020 Hexagonal boron nitrides reduce the oxidative stress on cells 11
[90] Wang N, Wang H, Tang C, Lei S, Shen W, Wang C, Wang G, Wang Z and Wang L 2017 Toxicity evaluation of boron nitride nanospheres and water-soluble boron nitride in Caenorhabditis elegans Int. J. Nanomedicine Volume 12 5941–57
[91] Kafil V and Omidi Y 2011 Cytotoxic Impacts of Linear and Branched Polyethylenimine Nanostructures in A431 Cells 8
[92] Moghimi S M, Symonds P, Murray J C, Hunter A C, Debska G and Szewczyk A 2005 A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy Mol. Ther. 11 990–5
[93] Fukuo Y, Hattori Y, Kawabata S, Kashiwagi H, Kanemitsu T, Takeuchi K, Futamura G, Hiramatsu R, Watanabe T, Hu N, Takata T, Tanaka H, Suzuki M, Miyatake S-I, Kirihata M and Wanibuchi M 2020 The Therapeutic Effects of Dodecaborate Containing Boronophenylalanine for Boron Neutron Capture Therapy in a Rat Brain Tumor Model Biology 9 437
[94] Wada Y, Hirose K, Harada T, Sato M, Watanabe T, Anbai A, Hashimoto M and Takai Y 2018 Impact of oxygen status on 10B-BPA uptake into human glioblastoma cells, referring to significance in boron neutron capture therapy J. Radiat. Res. (Tokyo) 59 122–8
[95] Akin M, Bongartz R, Walter J G, Demirkol D O, Stahl F, Timur S and Scheper T 2012 PAMAM-functionalized water soluble quantum dots for cancer cell targeting J. Mater. Chem. 22 11529
[96] Cotoruelo L M, Marqués M D, Díaz F J, Rodríguez-Mirasol J, Rodríguez J J and Cordero T 2010 Equilibrium and Kinetic Study of Congo Red Adsorption onto Lignin-Based Activated Carbons Transp. Porous Media 83 573–90
[97] Kashyout A-H, Soliman H, Nabil M and Bishara A 2015 Impact of Congo red dye in nano-porous silicon as pH-sensor Sens. Actuators B Chem. 216 279–85
[98] Sun J, Ling P and Gao F 2017 A Mitochondria-Targeted Ratiometric Biosensor for pH Monitoring and Imaging in Living Cells with Congo-Red-Functionalized Dual-Emission Semiconducting Polymer Dots Anal. Chem. 89 11703–10
[99] Espargaró A, Llabrés S, Saupe S J, Curutchet C, Luque F J and Sabaté R 2020 On the Binding of Congo Red to Amyloid Fibrils Angew. Chem. Int. Ed. 59 8104–7
[100] Jagusiak A, Konieczny L, Krol M, Marszalek P, Piekarska B, Piwowar P, Roterman I, Rybarska J, Stopa B and Zemanek G 2015 Intramolecular Immunological Signal Hypothesis Revived - Structural Background of Signalling Revealed by Using Congo Red as a Specific Tool Mini-Rev. Med. Chem. 14 1104–13
[101] Klunk W 1995 Chrysamine-G binding to Alzheimer and control brain: Autopsy study of a new amyloid probe Neurobiol. Aging 16 541–8
[102] Yakupova E I, Bobyleva L G, Vikhlyantsev I M and Bobylev A G 2019 Congo Red and amyloids: history and relationship Biosci. Rep. 39 BSR20181415
[103] Zemanek G, Jagusiak A, Chłopaś K, Piekarska B and Stopa B 2017 Congo red fluorescence upon binding to macromolecules – a possible explanation for the enhanced intensity Bio-Algorithms Med-Syst. 13
[104] AL-Thabaiti S A, Aazam E S, Khan Z and Bashir O 2016 Aggregation of Congo red with surfactants and Ag-nanoparticles in an aqueous solution Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 156 28–35
[105] Litefti K, Freire M S, Stitou M and González-Álvarez J 2019 Adsorption of an anionic dye (Congo red) from aqueous solutions by pine bark Sci. Rep. 9 16530
[106] Costa A L, Gomes A C, Lopes A D, Da Silva J P, Pillinger M, Gonçalves I S and Seixas de Melo J S 2020 Evaluation of the supramolecular interaction of Congo red with cucurbiturils using mass spectrometry and spectroscopic methods New J. Chem. 44 2587–96
[107] Deirram N, Zhang C, Kermaniyan S S, Johnston A P R and Such G K 2019 pH‐Responsive Polymer Nanoparticles for Drug Delivery Macromol. Rapid Commun. 40 1800917
[108] Smith S A, Selby L I, Johnston A P R and Such G K 2019 The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery Bioconjug. Chem. 30 263–72
[109] Vaidyanathan S, Chen J, Orr B G and Banaszak Holl M M 2016 Cationic Polymer Intercalation into the Lipid Membrane Enables Intact Polyplex DNA Escape from Endosomes for Gene Delivery Mol. Pharm. 13 1967–78
[110] Qi L, Cölfen H and Antonietti M 2001 Synthesis and Characterization of CdS Nanoparticles Stabilized by Double-Hydrophilic Block Copolymers Nano Lett. 1 61–5
[111] Petersen H, Fechner P M, Fischer D and Kissel T 2002 Synthesis, Characterization, and Biocompatibility of Polyethylenimine- g raft -poly(ethylene glycol) Block Copolymers Macromolecules 35 6867–74
[112] Rueda-Gensini L, Cifuentes J, Castellanos M C, Puentes P R, Serna J A, Muñoz-Camargo C and Cruz J C 2020 Tailoring Iron Oxide Nanoparticles for Efficient Cellular Internalization and Endosomal Escape Nanomaterials 10 1816
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *