|
Reference [1] Barth R F 2003 A critical assessment of boron neutron capture therapy: an overview J. Neurooncol. 62 1–5 [2] Barth R F, H Vicente Mg, Harling O K, Kiger W, Riley K J, Binns P J, Wagner F M, Suzuki M, Aihara T, Kato I and Kawabata S 2012 Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer Radiat. Oncol. 7 146 [3] Barth R F, Goodman J H, Gupta N and Yang W 2018 Boron Neutron Capture Therapy of Brain Tumors: An Emerging Therapeutic Modality 18 [4] Hatanaka H, Sweet W H, Sano K and Ellis F 1991 The present status of boron-neutron capture therapy for tumors Pure Appl. Chem. 63 373–4 [5] Slatkin D N 1991 A HISTORY OF BORON NEUTRON CAPTURE THERAPY OF BRAIN TUMOURS: POSTULATION OF A BRAIN RADIATION DOSE TOLERANCE LIMIT Brain 114 1609–29 [6] Kankaanranta L, Seppälä T, Koivunoro H, Saarilahti K, Atula T, Collan J, Salli E, Kortesniemi M, Uusi-Simola J, Välimäki P, Mäkitie A, Seppänen M, Minn H, Revitzer H, Kouri M, Kotiluoto P, Seren T, Auterinen I, Savolainen S and Joensuu H 2012 Boron Neutron Capture Therapy in the Treatment of Locally Recurred Head-and-Neck Cancer: Final Analysis of a Phase I/II Trial Int. J. Radiat. Oncol. 82 e67–75 [7] Wang L W, Wang S J, Chu P Y, Ho C Y, Jiang S H, Liu Y W H, Liu Y H, Liu H M, Peir J J, Chou F I, Yen S H, Lee Y L, Chang C W, Liu C S, Chen Y W and Ono K 2011 BNCT for locally recurrent head and neck cancer: Preliminary clinical experience from a phase I/II trial at Tsing Hua Open-Pool Reactor Appl. Radiat. Isot. 69 1803–6 [8] Dymova M A, Taskaev S Y, Richter V A and Kuligina E V 2020 Boron neutron capture therapy: Current status and future perspectives Cancer Commun. 40 406–21 [9] Hu K 2020 Boron agents for neutron capture therapy Coord. Chem. Rev. 20 [10] Nedunchezhian K 2016 Boron Neutron Capture Therapy - A Literature Review J. Clin. Diagn. Res. [11] Goodman J H, Yang W, Barth R F, Gao Z, Boesel C P, Staubus A E, Gupta N, Gahbauer R A, Adams D M, Gibson C R, Ferketich A K, Moeschberger M L, Soloway A H, Carpenter D E, Albertson B J, Bauer W F, Zhang M Z and Wang C C 2000 Boron Neutron Capture Therapy of Brain Tumors: Biodistribution, Pharmacokinetics, and Radiation Dosimetry of Sodium Borocaptate in Patients with Gliomas Neurosurgery 47 608–22 [12] Yao S, Zhang K, Zhou Q-Q, Zhao Y, Shi D-Q and Xiao W-J 2018 Photoredox-promoted alkyl radical addition/semipinacol rearrangement sequences of alkenylcyclobutanols: rapid access to cyclic ketones Chem. Commun. 54 8096–9 [13] Altieri S, Balzi M, Bortolussi S, Bruschi P, Ciani L, Clerici A M, Faraoni P, Ferrari C, Gadan M A, Panza L, Pietrangeli D, Ricciardi G and Ristori S 2009 Carborane Derivatives Loaded into Liposomes as Efficient Delivery Systems for Boron Neutron Capture Therapy † J. Med. Chem. 52 7829–35 [14] Feakes D A, Shelly K and Hawthorne M F 1995 Selective boron delivery to murine tumors by lipophilic species incorporated in the membranes of unilamellar liposomes. Proc. Natl. Acad. Sci. 92 1367–70 [15] Feng B, Tomizawa K, Michiue H, Miyatake S, Han X-J, Fujimura A, Seno M, Kirihata M and Matsui H 2009 Delivery of sodium borocaptate to glioma cells using immunoliposome conjugated with anti-EGFR antibodies by ZZ-His Biomaterials 30 1746–55 [16] Malam Y, Loizidou M and Seifalian A M 2009 Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer Trends Pharmacol. Sci. 30 592–9 [17] Shelly K, Feakes D A, Hawthorne M F, Schmidt P G, Krisch T A and Bauer W F 1992 Model studies directed toward the boron neutron-capture therapy of cancer: boron delivery to murine tumors with liposomes. Proc. Natl. Acad. Sci. 89 9039–43 [18] Chen J, Yang Q, Liu M, Lin M, Wang T, Zhang Z, Zhong X, Guo N, Lu Y, Xu J, Wang C, Han M and Wei Q 2019 Remarkable Boron Delivery Of iRGD-Modified Polymeric Nanoparticles For Boron Neutron Capture Therapy Int. J. Nanomedicine Volume 14 8161–77 [19] Liu J, Ai X, Zhang H, Zhuo W and Mi P 2019 Polymeric Micelles with Endosome Escape and Redox-Responsive Functions for Enhanced Intracellular Drug Delivery J. Biomed. Nanotechnol. 15 373–81 [20] Iguchi Y, Michiue H, Kitamatsu M, Hayashi Y, Takenaka F, Nishiki T and Matsui H 2015 Tumor-specific delivery of BSH-3R for boron neutron capture therapy and positron emission tomography imaging in a mouse brain tumor model Biomaterials 56 10–7 [21] Petersen M S, Petersen C C, Agger R, Sutmuller M, Jensen M R, Sørensen P G, Mortensen M W, Hansen T, Bjørnholm T, Gundersen H J, Huiskamp R and Hokland M 2008 Boron Nanoparticles Inhibit Tumour Growth by Boron Neutron Capture Therapy in the Murine B16-OVA Model ANTICANCER Res. 6 [22] Kuthala N, Vankayala R, Li Y-N, Chiang C-S and Hwang K C 2017 Engineering Novel Targeted Boron-10-Enriched Theranostic Nanomedicine to Combat against Murine Brain Tumors via MR Imaging-Guided Boron Neutron Capture Therapy Adv. Mater. 29 1700850 [23] Ferreira T, Miranda M, Rocha Z, Leal A, Gomes D and Sousa E 2017 An Assessment of the Potential Use of BNNTs for Boron Neutron Capture Therapy Nanomaterials 7 82 [24] Merlo A 2018 Boron nitride nanomaterials: biocompatibility and bio-applications Biomater. Sci. 14 [25] Sharker S Md 2019 Hexagonal Boron Nitrides (White Graphene): A Promising Method for Cancer Drug Delivery Int. J. Nanomedicine Volume 14 9983–93 [26] Pakdel A, Zhi C, Bando Y, Nakayama T and Golberg D 2011 Boron Nitride Nanosheet Coatings with Controllable Water Repellency ACS Nano 5 6507–15 [27] Singh B, Kaur G, Singh P, Singh K, Kumar B, Vij A, Kumar M, Bala R, Meena R, Singh A, Thakur A and Kumar A 2016 Nanostructured Boron Nitride With High Water Dispersibility For Boron Neutron Capture Therapy Sci. Rep. 6 35535 [28] Ogi T, Kaihatsu Y, Iskandar F, Wang W-N and Okuyama K 2008 Facile Synthesis of New Full-Color-Emitting BCNO Phosphors with High Quantum Efficiency Adv. Mater. 20 3235–8 [29] Chen T, Zhang Q, Xie Z, Tan C, Chen P, Zeng Y, Wang F, Liu H, Liu Y, Liu G and Lv W 2018 Carbon nitride modified hexagonal boron nitride interface as highly efficient blue LED light-driven photocatalyst Appl. Catal. B Environ. 238 410–21 [30] Fang S, Li G, Zhao M, Zhang Y, Yang L and Li L 2017 Non-rare earth containing BCNO phosphors: Chemical activation for LED application J. Lumin. 192 428–35 [31] Ogi T, Kaihatsu Y, Iskandar F, Wang W-N and Okuyama K 2008 Facile Synthesis of New Full-Color-Emitting BCNO Phosphors with High Quantum Efficiency Adv. Mater. 20 3235–8 [32] Jia X, Li L, Yu J, Gao X, Yang X, Lu Z, Zhang X and Liu H 2018 Facile synthesis of BCNO quantum dots with applications for ion detection, chemosensor and fingerprint identification 8 [33] Kanodarwala F K, Moret S, Spindler X, Lennard C and Roux C 2019 Nanoparticles used for fingermark detection—A comprehensive review Wiley Interdiscip. Rev. Forensic Sci. 1 [34] Ren M, Han W, Bai Y, Ge C, He L and Zhang X 2020 Melamine sponge-assisted synthesis of porous BCNO phosphor with yellow-green luminescence for Cr6+ detection Mater. Chem. Phys. 244 122673 [35] Wu Z, Zhou Y, Huang H, Su Z, Chen S and Rong M 2021 BCNO QDs and ROS synergistic oxidation effect on fluorescence enhancement sensing of tetracycline Sens. Actuators B Chem. 332 129530 [36] Gupta B K, Kumar P, Kedawat G, Kanika K, Vithayathil S A, Gangwar A K, Singh S, Kashyap P K, Lahon R, Singh V N, Deshmukh A D, Narayanan T N, Singh N, Gupta S and Kaipparettu B A 2017 Tunable luminescence from two dimensional BCNO nanophosphor for high-contrast cellular imaging RSC Adv. 7 41486–94 [37] Xue Q, Zhang H, Zhu M, Wang Z, Pei Z, Huang Y, Huang Y, Song X, Zeng H and Zhi C 2016 Hydrothermal synthesis of blue-fluorescent monolayer BN and BCNO quantum dots for bio-imaging probes RSC Adv. 6 79090–4 [38] Wang W-N, Widiyastuti W, Ogi T, Lenggoro I W and Okuyama K 2007 Correlations between Crystallite/Particle Size and Photoluminescence Properties of Submicrometer Phosphors Chem. Mater. 19 1723–30 [39] Wang W-N, Ogi T, Kaihatsu Y, Iskandar F and Okuyama K 2011 Novel rare-earth-free tunable-color-emitting BCNO phosphors J. Mater. Chem. 21 5183 [40] Matsoso B J, Ranganathan K, Mutuma B K, Lerotholi T, Jones G and Coville N J 2017 Synthesis and characterization of boron carbon oxynitride films with tunable composition using methane, boric acid and ammonia New J. Chem. 41 9497–504 [41] Nuryadin B W, Permatasari F A, Nuryantini A Y, Faryuni I D, Abdullah M and Iskandar F 2017 A red emitting of manganese-doped boron carbon oxynitride (BCNO) phosphor materials: facile approach and photoluminescence properties RSC Adv. 7 4161–6 [42] Tippo P, Singjai P, Choopun S and Sakulsermsuk S 2018 Preparation and electrical properties of nanocrystalline BCNO Mater. Lett. 211 51–4 [43] Zhang X, Jia X, Liu H, Lu Z, Ma X, Meng F, Zhao J and Tang C 2015 Spectral properties and luminescence mechanism of red emitting BCNO phosphors RSC Adv. 5 40864–71 [44] Zhang X, Lu Z, Liu H, Lin J, Xu X, Meng F, Zhao J and Tang C 2015 Blue emitting BCNO phosphors with high quantum yields J. Mater. Chem. C 3 3311–7 [45] Tang C, Bando Y, Zhi C and Golberg D 2007 Boron–oxygen luminescence centres in boron–nitrogen systems Chem. Commun. 4599 [46] Dong G, Liu X, Xiao X, Zhang Q, Lin G, Ma Z, Chen D and Qiu J 2009 Tunable Emission of BCNO Nanoparticle-Embedded Polymer Electrospun Nanofibers Electrochem. Solid-State Lett. 12 K53 [47] Suryamas A B, Munir M M, Ogi T, Khairurrijal and Okuyama K 2011 Intense green and yellow emissions from electrospun BCNO phosphor nanofibers J. Mater. Chem. 21 12629 [48] Tong R and Kohane D S 2016 New Strategies in Cancer Nanomedicine Annu. Rev. Pharmacol. Toxicol. 56 41–57 [49] Mignani S, Bryszewska M, Klajnert-Maculewicz B, Zablocka M and Majoral J-P 2015 Advances in Combination Therapies Based on Nanoparticles for Efficacious Cancer Treatment: An Analytical Report Biomacromolecules 16 1–27 [50] Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L and Bernardino L 2016 Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases J. Controlled Release 235 34–47 [51] Torchilin V P 2014 Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery Nat. Rev. Drug Discov. 13 813–27 [52] Otsuka H, Nagasaki Y and Kataoka K 2003 PEGylated nanoparticles for biological and pharmaceutical applications Adv. Drug Deliv. Rev. 55 403–19 [53] Owensiii D and Peppas N 2006 Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles Int. J. Pharm. 307 93–102 [54] Zalipsky S, Brandeis E, Newman M S and Woodle M C 1994 Long circulating, cationic liposomes containing amino-PEG-phosphatidylethanolamine FEBS Lett. 353 71–4 [55] Brannon-Peppas L and Blanchette J O 2004 Nanoparticle and targeted systems for cancer therapy Adv. Drug Deliv. Rev. 56 1649–59 [56] Leroueil P R, Hong S, Mecke A, Baker J R, Orr B G and Banaszak Holl M M 2007 Nanoparticle Interaction with Biological Membranes: Does Nanotechnology Present a Janus Face? Acc. Chem. Res. 40 335–42 [57] Leroueil P R, Berry S A, Duthie K, Han G, Rotello V M, McNerny D Q, Baker J R, Orr B G and Banaszak Holl M M 2008 Wide Varieties of Cationic Nanoparticles Induce Defects in Supported Lipid Bilayers Nano Lett. 8 420–4 [58] Verma A and Stellacci F 2010 Effect of Surface Properties on Nanoparticle–Cell Interactions Small 6 12–21 [59] Guan X, Guo Z, Wang T, Lin L, Chen J, Tian H and Chen X 2017 A pH-Responsive Detachable PEG Shielding Strategy for Gene Delivery System in Cancer Therapy Biomacromolecules 18 1342–9 [60] Pang X, Jiang Y, Xiao Q, Leung A W, Hua H and Xu C 2016 pH-responsive polymer–drug conjugates: Design and progress J. Controlled Release 222 116–29 [61] Xin Y and Yuan J 2012 Schiff’s base as a stimuli-responsive linker in polymer chemistry Polym. Chem. 3 3045 [62] Zhang Y, Tao L, Li S and Wei Y 2011 Synthesis of Multiresponsive and Dynamic Chitosan-Based Hydrogels for Controlled Release of Bioactive Molecules Biomacromolecules 12 2894–901 [63] Ratemi E 2018 pH-responsive polymers for drug delivery applications Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, Volume 1 (Elsevier) pp 121–41 [64] Chen J, Zhao Y, Mao Z, Wang D and Bie L 2017 Microwave synthesis of non-crystalline BCNO phosphors using thiourea as nitrogen source and their tunable luminescence Chem. Phys. Lett. 669 171–5 [65] Faryuni I D, Ramdhani F, Sampurno J, Nuryadin B W, Noor F A and Iskandar F 2017 Microwave Synthesis of BCNO/SiO 2 Nanocomposite Material IOP Conf. Ser. Mater. Sci. Eng. 214 012016 [66] Iwasaki H, Ogi T, Iskandar F, Aishima K and Okuyama K 2015 Microwave synthesis of homogeneous and highly luminescent BCNO nanoparticles for the light emitting polymer materials J. Lumin. 166 148–55 [67] Nuryadin B W, Septia E C, Iskandar F, Ogi T, Okuyama K, Mikrajuddin A, and Khairurrijal 2014 Microwave-Assisted Solid State Synthesis of Red-Emitting BCNO Phosphor and its Characteristics Adv. Mater. Res. 896 464–7 [68] Wei Y-Z, Chu Y-F, Uliyanchenko E, Schoenmakers P J, Zhuo R-X and Jiang X-L 2016 Separation and characterization of benzaldehyde-functional polyethylene glycols by liquid chromatography under critical conditions Polym. Chem. 7 7506–13 [69] Hu K, Yang Z, Zhang L, Xie L, Wang L, Xu H, Josephson L, Liang S H and Zhang M-R 2020 Boron agents for neutron capture therapy Coord. Chem. Rev. 405 213139 [70] Zuo X, Chang K, Zhao J, Xie Z, Tang H, Li B and Chang Z 2016 Bubble-template-assisted synthesis of hollow fullerene-like MoS 2 nanocages as a lithium ion battery anode material J. Mater. Chem. A 4 51–8 [71] Ashbrook S E and Duer M J 2006 Structural information from quadrupolar nuclei in solid state NMR Concepts Magn. Reson. Part A 28A 183–248 [72] Dorn R W, Ryan M J, Kim T-H, Goh T W, Venkatesh A, Heintz P M, Zhou L, Huang W and Rossini A J 2020 Identifying the Molecular Edge Termination of Exfoliated Hexagonal Boron Nitride Nanosheets with Solid-State NMR Spectroscopy and Plane-Wave DFT Calculations Chem. Mater. 32 3109–21 [73] Gervais C, Framery E, Duriez C, Maquet J, Vaultier M and Babonneau F 2005 11B and 15N solid state NMR investigation of a boron nitride preceramic polymer prepared by ammonolysis of borazine J. Eur. Ceram. Soc. 25 129–35 [74] Kroeker S and Stebbins J F 2001 Three-Coordinated Boron-11 Chemical Shifts in Borates Inorg. Chem. 40 6239–46 [75] Love A M, Thomas B, Specht S E, Hanrahan M P, Venegas J M, Burt S P, Grant J T, Cendejas M C, McDermott W P, Rossini A J and Hermans I 2019 Probing the Transformation of Boron Nitride Catalysts under Oxidative Dehydrogenation Conditions J. Am. Chem. Soc. 141 182–90 [76] Neumair S C, Vanicek S, Kaindl R, Többens D M, Martineau C, Taulelle F, Senker J and Huppertz H 2011 HP-KB3O5 Highlights the Structural Diversity of Borates: Corner-Sharing BO3/BO4 Groups in Combination with Edge-Sharing BO4 Tetrahedra Eur. J. Inorg. Chem. 2011 4147–52 [77] Matsoso B J, Ranganathan K, Mutuma B K, Lerotholi T, Jones G and Coville N J 2017 Synthesis and characterization of boron carbon oxynitride films with tunable composition using methane, boric acid and ammonia New J. Chem. 41 9497–504 [78] Beniwal S, Hooper J, Miller D P, Costa P S, Chen G, Liu S-Y, Dowben P A, Sykes E C H, Zurek E and Enders A 2017 Graphene-like Boron–Carbon–Nitrogen Monolayers ACS Nano 11 2486–93 [79] Dontsova D, Fettkenhauer C, Papaefthimiou V, Schmidt J and Antonietti M 2016 1,2,4-Triazole-Based Approach to Noble-Metal-Free Visible-Light Driven Water Splitting over Carbon Nitrides Chem. Mater. 28 772–8 [80] Stadie N P, Billeter E, Piveteau L, Kravchyk K V, Döbeli M and Kovalenko M V 2017 Direct Synthesis of Bulk Boron-Doped Graphitic Carbon Chem. Mater. 29 3211–8 [81] Li L and Dong T 2018 Photoluminescence tuning in carbon dots: surface passivation or/and functionalization, heteroatom doping J. Mater. Chem. C 6 7944–70 [82] Srivastava I, Khamo J S, Pandit S, Fathi P, Huang X, Cao A, Haasch R T, Nie S, Zhang K and Pan D 2019 Influence of Electron Acceptor and Electron Donor on the Photophysical Properties of Carbon Dots: A Comparative Investigation at the Bulk‐State and Single‐Particle Level Adv. Funct. Mater. 29 1902466 [83] Yang S, Sun J, Li X, Zhou W, Wang Z, He P, Ding G, Xie X, Kang Z and Jiang M 2014 Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection J. Mater. Chem. A 2 8660 [84] Huang K, Liang L, Chai S, Tumuluri U, Li M, Wu Z, Sumpter B G and Dai S 2017 Aminopolymer functionalization of boron nitride nanosheets for highly efficient capture of carbon dioxide J. Mater. Chem. A 5 16241–8 [85] Wang Y, Tong L, You Y, Tu L, Zhou M and Liu X 2019 Polyethylenimine Assisted Bio-Inspired Surface Functionalization of Hexagonal Boron Nitride for Enhancing the Crystallization and the Properties of Poly(Arylene Ether Nitrile) Nanomaterials 9 760 [86] Chen T, Zheng, Li, Zhang, Zheng, and Wong 2012 PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction Int. J. Nanomedicine 3939 [87] Wu Y, He Y, Zhou T, Chen C, Zhong F, Xia Y, Xie P and Zhang C 2020 Synergistic functionalization of h-BN by mechanical exfoliation and PEI chemical modification for enhancing the corrosion resistance of waterborne epoxy coating Prog. Org. Coat. 142 105541 [88] Mateti S, Wong C S, Liu Z, Yang W, Li Y, Li L H and Chen Y 2018 Biocompatibility of boron nitride nanosheets Nano Res. 11 334–42 [89] Taskin I C 2020 Hexagonal boron nitrides reduce the oxidative stress on cells 11 [90] Wang N, Wang H, Tang C, Lei S, Shen W, Wang C, Wang G, Wang Z and Wang L 2017 Toxicity evaluation of boron nitride nanospheres and water-soluble boron nitride in Caenorhabditis elegans Int. J. Nanomedicine Volume 12 5941–57 [91] Kafil V and Omidi Y 2011 Cytotoxic Impacts of Linear and Branched Polyethylenimine Nanostructures in A431 Cells 8 [92] Moghimi S M, Symonds P, Murray J C, Hunter A C, Debska G and Szewczyk A 2005 A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy Mol. Ther. 11 990–5 [93] Fukuo Y, Hattori Y, Kawabata S, Kashiwagi H, Kanemitsu T, Takeuchi K, Futamura G, Hiramatsu R, Watanabe T, Hu N, Takata T, Tanaka H, Suzuki M, Miyatake S-I, Kirihata M and Wanibuchi M 2020 The Therapeutic Effects of Dodecaborate Containing Boronophenylalanine for Boron Neutron Capture Therapy in a Rat Brain Tumor Model Biology 9 437 [94] Wada Y, Hirose K, Harada T, Sato M, Watanabe T, Anbai A, Hashimoto M and Takai Y 2018 Impact of oxygen status on 10B-BPA uptake into human glioblastoma cells, referring to significance in boron neutron capture therapy J. Radiat. Res. (Tokyo) 59 122–8 [95] Akin M, Bongartz R, Walter J G, Demirkol D O, Stahl F, Timur S and Scheper T 2012 PAMAM-functionalized water soluble quantum dots for cancer cell targeting J. Mater. Chem. 22 11529 [96] Cotoruelo L M, Marqués M D, Díaz F J, Rodríguez-Mirasol J, Rodríguez J J and Cordero T 2010 Equilibrium and Kinetic Study of Congo Red Adsorption onto Lignin-Based Activated Carbons Transp. Porous Media 83 573–90 [97] Kashyout A-H, Soliman H, Nabil M and Bishara A 2015 Impact of Congo red dye in nano-porous silicon as pH-sensor Sens. Actuators B Chem. 216 279–85 [98] Sun J, Ling P and Gao F 2017 A Mitochondria-Targeted Ratiometric Biosensor for pH Monitoring and Imaging in Living Cells with Congo-Red-Functionalized Dual-Emission Semiconducting Polymer Dots Anal. Chem. 89 11703–10 [99] Espargaró A, Llabrés S, Saupe S J, Curutchet C, Luque F J and Sabaté R 2020 On the Binding of Congo Red to Amyloid Fibrils Angew. Chem. Int. Ed. 59 8104–7 [100] Jagusiak A, Konieczny L, Krol M, Marszalek P, Piekarska B, Piwowar P, Roterman I, Rybarska J, Stopa B and Zemanek G 2015 Intramolecular Immunological Signal Hypothesis Revived - Structural Background of Signalling Revealed by Using Congo Red as a Specific Tool Mini-Rev. Med. Chem. 14 1104–13 [101] Klunk W 1995 Chrysamine-G binding to Alzheimer and control brain: Autopsy study of a new amyloid probe Neurobiol. Aging 16 541–8 [102] Yakupova E I, Bobyleva L G, Vikhlyantsev I M and Bobylev A G 2019 Congo Red and amyloids: history and relationship Biosci. Rep. 39 BSR20181415 [103] Zemanek G, Jagusiak A, Chłopaś K, Piekarska B and Stopa B 2017 Congo red fluorescence upon binding to macromolecules – a possible explanation for the enhanced intensity Bio-Algorithms Med-Syst. 13 [104] AL-Thabaiti S A, Aazam E S, Khan Z and Bashir O 2016 Aggregation of Congo red with surfactants and Ag-nanoparticles in an aqueous solution Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 156 28–35 [105] Litefti K, Freire M S, Stitou M and González-Álvarez J 2019 Adsorption of an anionic dye (Congo red) from aqueous solutions by pine bark Sci. Rep. 9 16530 [106] Costa A L, Gomes A C, Lopes A D, Da Silva J P, Pillinger M, Gonçalves I S and Seixas de Melo J S 2020 Evaluation of the supramolecular interaction of Congo red with cucurbiturils using mass spectrometry and spectroscopic methods New J. Chem. 44 2587–96 [107] Deirram N, Zhang C, Kermaniyan S S, Johnston A P R and Such G K 2019 pH‐Responsive Polymer Nanoparticles for Drug Delivery Macromol. Rapid Commun. 40 1800917 [108] Smith S A, Selby L I, Johnston A P R and Such G K 2019 The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery Bioconjug. Chem. 30 263–72 [109] Vaidyanathan S, Chen J, Orr B G and Banaszak Holl M M 2016 Cationic Polymer Intercalation into the Lipid Membrane Enables Intact Polyplex DNA Escape from Endosomes for Gene Delivery Mol. Pharm. 13 1967–78 [110] Qi L, Cölfen H and Antonietti M 2001 Synthesis and Characterization of CdS Nanoparticles Stabilized by Double-Hydrophilic Block Copolymers Nano Lett. 1 61–5 [111] Petersen H, Fechner P M, Fischer D and Kissel T 2002 Synthesis, Characterization, and Biocompatibility of Polyethylenimine- g raft -poly(ethylene glycol) Block Copolymers Macromolecules 35 6867–74 [112] Rueda-Gensini L, Cifuentes J, Castellanos M C, Puentes P R, Serna J A, Muñoz-Camargo C and Cruz J C 2020 Tailoring Iron Oxide Nanoparticles for Efficient Cellular Internalization and Endosomal Escape Nanomaterials 10 1816
|