帳號:guest(18.118.200.149)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張 翔
作者(外文):Chang, Hsiang
論文名稱(中文):雙光子微影之多樣結構加工路徑最適化研究及電腦輔助設計製造軟體開發
論文名稱(外文):Research on Optimized Writing Path of Various Structures and Development of Computer-Aided Design/Manufacturing in Two-photon Lithography
指導教授(中文):傅建中
指導教授(外文):Fu, Chien-Chung
口試委員(中文):李三良
項維巍
張德宜
口試委員(外文):Lee, San-Liang
Hsiang, Wei-Wei
Chang, Te-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:108035513
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:86
中文關鍵詞:雙光子微影技術雙光子聚合路徑規劃輪廓掃描法等向內偏法電腦輔助設計製造軟體
外文關鍵詞:two-photon lithography technologytwo-photon polymerizationpath planningcontour scanning methodisotropic offset algorithmcomputer-aided design and manufacturing software
相關次數:
  • 推薦推薦:0
  • 點閱點閱:227
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
雙光子微影技術是結合雷射直寫技術與雙光子聚合原理的一種積層製造技術,可實現低至100nm的空間解析度,搭配上高精度的移動平台,可製造任意的複雜三維微結構。本論文使用雙光子微影技術,研究多種結構之最適化加工路徑規劃,在達到高製造效率的同時,維持結構之優良機械性質及低表面粗糙度,並開發一電腦輔助設計製造軟體,用於結構的設計並提供最適化加工路徑,以及加工檔案的規劃和生成。此軟體的圖形生成方式包含基本幾何圖形庫、數學方程式和讀取檔案,提供經參數測試後得到最佳性質的多樣幾何圖形,以及輸入任意方程式即可生成路徑最適化之結構,另外,還有DAT檔案的讀取及組合功能,並可將以上圖形隨意位移、旋轉、對位及合成,以符合結構設計的各種需求。在加工路徑最適化的部份,本研究提出一等向內偏法,改善了方向內偏製造造成輪廓厚度不一,而有機械性質不均勻之現象,且提升了輪廓掃描法的製程穩定性,並有效縮短了製造時間,而數學方程式法則跳脫傳統的z切層製造,而是採用沿連續表面加工,成功獲得具備優良表面平滑度的結構,並達到三軸方向機械應力相近,避免各向異性影響結構機械性質。
本研究最終利用此電腦輔助設計製造軟體中的多種幾何圖形和路徑優化方法相互組合,成功製造出9種應用於不同領域的結構,證實了此研究確實有助於最適化加工路徑的規劃,期望能讓雙光子微影技術的應用領域更加廣泛,並可穩定地製造品質優異的各式結構。
Two-photon lithography is an additive manufacturing technology which combines the laser direct writing technology and the principle of two-photon polymerization. Its characteristics make it possible to achieve a spatial resolution down to 100 nm. In addition, when the technology is implemented in high-precision stages, it is ideal for the manufacturing of arbitrary complex three-dimensional microstructures. On the basis of two-photon lithography, this study explored the writing path of various structures and developed several optimized path planning methods for increasing the manufacturing efficiency, thereby fabricating microstructures with high resolution, high dimensional accuracy, excellent mechanical properties, and low surface roughness. Subsequently, this study integrated these optimized path planning methods into a computer-aided design and manufacturing software to provide the most suitable writing path for particular structural designs and the planning and generation of processing files for users.
The generated types of shapes in the software include the geometric shape library, math equation and load files. The geometric shape library provides various geometric shapes with the optimized writing path, which has the best performance after parameter testing; the math equation method allows to enter any equations to generate structures with smooth surfaces; load files method is used to load and combine DAT files. Moreover, shapes of different generated types can be freely shifted, rotated, aligned and combined to fit into a variety of structural designs. In order to optimize the writing path, this study proposed an isotropic offset algorithm and a math equation method. The isotropic offset algorithm improves the unevenness of the contour thickness and the anisotropic mechanical properties caused by the direction-parallel offset manufacturing, as well as enhances the process stability of the contour scanning method. For the math equation method, instead of the traditional z-slicing manufacturing, the writing path is planned along a continuous surface to create excellent smoothness for the surface of a structure, thus achieving similar three-axis mechanical stress and avoiding anisotropic mechanical properties of a structure.
In the outcomes, nine microstructures to be applied in different fields were fabricated successfully using various geometric shapes and optimized path planning methods of the computer-aided design and manufacturing software. These results show that the research on optimizing the writing path is helpful for process stability and product quality of two-photon lithography.
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 xi
第一章 緒論 12
1.1 前言 12
1.2 文獻回顧 14
1.2.1 雙光子聚合 14
1.2.2 雙光子微影系統發展歷史 19
1.2.3 雙光子微影系統結構加工路徑優化方法 27
1.3 研究動機 33
1.4 論文架構 36
第二章 研究方法 37
2.1 雙光子微影系統架構 37
2.2 壓電式加工與位移平台 38
2.3 人機介面 40
2.4 加工流程 42
2.5 臨界點乾燥機(Critical Point Dryer,CPD) 44
第三章 實驗規劃 45
3.1 電腦輔助設計製造軟體開發 45
3.1.1 基本幾何圖形庫建立 45
3.1.2 等向內偏法 46
3.1.3 數學方程式法 46
3.1.4 各項功能整合 46
3.2 參數資料庫建立 47
3.2.1 基本幾何圖形庫建立 47
3.2.2 等向內偏法 48
3.2.3 數學方程式法 49
3.3 實際應用結構製造 50
第四章 結果與討論 51
4.1 電腦輔助設計製造軟體開發 51
4.1.1 基本幾何圖形庫建立 51
4.1.2 等向內偏法 53
4.1.3 數學方程式法 55
4.1.4 各項功能整合 56
4.2 參數資料庫建立 61
4.2.1 基本幾何圖形庫建立 61
4.2.2 等向內偏法 69
4.2.3 數學方程式法 73
4.3 實際應用結構製造 76
4.3.1 2D結構 76
4.3.2 2.5D結構 78
4.3.3 3D結構 80
第五章 結論與建議 82
參考文獻 84
[1] Yole Development. MEMS industry: the headwinds from COVID-19 and the way forward. 2020; Available from: http://www.yole.fr/iso_upload/News/2020/PR_STATUS_MEMS_INDUSTRY_MarketUpdate_YOLEGROUP_July2020.pdf.
[2] Maruo, S., O. Nakamura, and S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Optics letters, 1997. 22(2): p. 132-134.
[3] Fischer, J. and M. Wegener, Three‐dimensional optical laser lithography beyond the diffraction limit. Laser & Photonics Reviews, 2013. 7(1): p. 22-44.
[4] Kawata, S., et al., Finer features for functional microdevices. Nature, 2001. 412(6848): p. 697-698.
[5] Sun, H.-B. and S. Kawata, Two-photon laser precision microfabrication and its applications to micro-nano devices and systems. Journal of lightwave technology, 2003. 21(3): p. 624.
[6] Park, S.H., et al., Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization. Applied Physics Letters, 2005. 87(15): p. 154108.
[7] Yang, D.-Y., et al., Corrected Article:“Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization”[Appl. Phys. Lett 90, 013113 (2007)]. Applied Physics Letters, 2007. 90(7): p. 079903.
[8] Designboom. Nanoscribe: nanoscale 3D printed microstructures. 2013.
[9] Farsari, M. and B.N. Chichkov, Two-photon fabrication. Nature photonics, 2009. 3(8): p. 450-452.
[10] Marino, A., et al., A 3D Real‐Scale, Biomimetic, and Biohybrid Model of the Blood‐Brain Barrier Fabricated through Two‐Photon Lithography. Small, 2018. 14(6): p. 1702959.
[11] Patel, P. Micro 3-D Printer Creates Tiny Structures in Seconds. MIT Technology Review, 2013.
[12] Marine Le Bouar. 3D Photonics. Nanotechnology World Association, 2013.
[13] Dietrich, P.-I., et al., Printed freeform lens arrays on multi-core fibers for highly efficient coupling in astrophotonic systems. Optics express, 2017. 25(15): p. 18288-18295.
[14] Göppert‐Mayer, M., Über elementarakte mit zwei quantensprüngen. Annalen der Physik, 1931. 401(3): p. 273-294.
[15] Kaiser, W. and C. Garrett, Two-photon excitation in Ca F 2: Eu 2+. Physical review letters, 1961. 7(6): p. 229.
[16] Varadan, V.K., X. Jiang, and V.V. Varadan, Microstereolithography and other fabrication techniques for 3D MEMS. 2001: John Wiley & Sons Inc.
[17] The Robey Lab, U.B. 2-photon imaging. UC Berkeley; Available from: http://mcb.berkeley.edu/labs2/robey/content/2-photon-imaging.
[18] Dong, X.-Z., Z.-S. Zhao, and X.-M. Duan, Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication. Applied Physics Letters, 2008. 92(9): p. 091113.
[19] 林志郎, 以雷射直寫製造技術為基礎的 3D 微列印. 科儀新知, 2013(197): p. 5-13.
[20] Stampfl, J., R. Liska, and A. Ovsianikov, Multiphoton Lithography: Techniques, Materials and Applications. 2017: Wiley-VCH Verlag GmbH & Co. KGaA.
[21] Zhao, Y. and N.V. Iftimia, Overview of supercontinuum sources for multiphoton microscopy and optical biopsy, in Neurophotonics and Biomedical Spectroscopy. 2019, Elsevier. p. 329-351.
[22] Laser Optics Resource Guide. Section 2.1: Gaussian Beam Propagation. Edmund Optics. USA.
[23] Chen, C.H., Research and Development of Two-Photon Polymerization 3D Nano/Micro-Machining System. NTHU, Master Thesis, 2015.
[24] Liao, W.C., Micro-cone Structure Fabrication by Nano 3D Lithography. NTHU, Master Thesis, 2016.
[25] Yu, C.W., Optimization of Processing Parameters for Nano 3D Lithography. NTHU, Master Thesis, 2017.
[26] Wu, C.S., Micro Optical Element Fabrication by Nano 3D Lithography System. NTHU, Master Thesis, 2018.
[27] Wu, J.R., Research on Planning Optimized Subreginal Scanning Path in 3D Lithography: Speeding up the Fabrication of High-precision Micro Compound Lens. NTHU, Master Thesis, 2020.
[28] Takada, K., H.-B. Sun, and S. Kawata, Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting. Applied Physics Letters, 2005. 86(7): p. 071122.
[29] Wu, D., et al., High numerical aperture microlens arrays of close packing. Applied physics letters, 2010. 97(3): p. 031109.
[30] Lim, T.W., S.H. Park, and D.-Y. Yang, Contour offset algorithm for precise patterning in two-photon polymerization. Microelectronic engineering, 2005. 77(3-4): p. 382-388.
[31] Park, S.H., et al., Direct nano-patterning methods using nonlinear absorption in photopolymerization induced by a femtosecond laser. Journal of Nonlinear Optical Physics & Materials, 2005. 14(03): p. 331-340.
[32] Mori, S., et al., Pattern collapse in the top surface imaging process after dry development. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1998. 16(6): p. 3744-3747.
[33] Lee, K.-S., et al., Advances in 3D nano/microfabrication using two-photon initiated polymerization. Progress in Polymer Science, 2008. 33(6): p. 631-681.
[34] Zhou, X., Y. Hou, and J. Lin, A review on the processing accuracy of two-photon polymerization. AIP Advances, 2015. 5(3): p. 030701.
[35] Ni, H.Y., Fabrication of Micro Optical Elements Array by Nano 3D Lithography System. NTHU, Master Thesis, 2019.
[36] PI – Piezo Technology and Piezo Systems for Nanopositioning. Available from: http://www.physikinstrumente.com/.
[37] Maruo, S., T. Hasegawa, and N. Yoshimura, Single-anchor support and supercritical CO 2 drying enable high-precision microfabrication of three-dimensional structures. Optics express, 2009. 17(23): p. 20945-20951.
[38] Witkowski, A., M. Majkut, and S. Rulik, Analysis of pipeline transportation systems for carbon dioxide sequestration. Archives of Thermodynamics, 2014. 35(1): p. 117--140.
[39] Dai, D., Y. Tang, and J.E. Bowers, Mode conversion in tapered submicron silicon ridge optical waveguides. Optics express, 2012. 20(12): p. 13425-13439.
[40] Chen, Q.-D., et al., Dammann gratings as integratable micro-optical elements created by laser micronanofabrication via two-photon photopolymerization. Optics letters, 2008. 33(21): p. 2559-2561.
[41] Zandrini, T., S. Taniguchi, and S. Maruo, Magnetically driven micromachines created by two-photon microfabrication and selective electroless magnetite plating for lab-on-a-chip applications. Micromachines, 2017. 8(2): p. 35.
[42] Friese, M., et al., Optically driven micromachine elements. Applied Physics Letters, 2001. 78(4): p. 547-549.
[43] van der Maaden, K., W. Jiskoot, and J. Bouwstra, Microneedle technologies for (trans) dermal drug and vaccine delivery. Journal of controlled release, 2012. 161(2): p. 645-655.
[44] Fan, S., et al., Design of three‐dimensional photonic crystals at submicron lengthscales. Applied physics letters, 1994. 65(11): p. 1466-1468.
[45] Dolan, J.A., et al., Optical properties of gyroid structured materials: from photonic crystals to metamaterials. Advanced Optical Materials, 2015. 3(1): p. 12-32.
[46] Dietrich, P.-I., et al., In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nature Photonics, 2018. 12(4): p. 241-247.
(此全文20260713後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *