|
[1] M. Brucherseifer, M. Nagel, P. Haring Bolivar, H. Kurz, A. Bosserhoff, and R. J. A. P. L. Büttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," vol. 77, no. 24, pp. 4049-4051, 2000. [2] S. P. Mickan et al., "Label-free bioaffinity detection using terahertz technology," vol. 47, no. 21, p. 3789, 2002. [3] J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. I. t. o. m. t. Stewart, and techniques, "Magnetism from conductors and enhanced nonlinear phenomena," vol. 47, no. 11, pp. 2075-2084, 1999. [4] Q. Tang et al., "Microfluidic devices for terahertz spectroscopy of live cells toward lab-on-a-chip applications," vol. 16, no. 4, p. 476, 2016. [5] B. B. Hu and M. C. J. O. l. Nuss, "Imaging with terahertz waves," vol. 20, no. 16, pp. 1716-1718, 1995. [6] A. J. Fitzgerald et al., "Terahertz pulsed imaging of human breast tumors," vol. 239, no. 2, pp. 533-540, 2006. [7] A. Hirata et al., "120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission," vol. 54, no. 5, pp. 1937-1944, 2006. [8] M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. J. A. P. L. Büttner, "Integrated THz technology for label-free genetic diagnostics," vol. 80, no. 1, pp. 154-156, 2002. [9] 孙博 and 姚建铨, "基于光学方法的太赫兹辐射源," 2006. [10] 张兴宁, 陈稷, and 周. J. 激光与光电子学进展, "太赫兹时域光谱技术," vol. 42, no. 7, pp. 35-38, 2005. [11] X. C. Zhang, Y. Jin, and X. J. A. p. l. Ma, "Coherent measurement of THz optical rectification from electro‐optic crystals," vol. 61, no. 23, pp. 2764-2766, 1992. [12] Q. Chen and X.-C. J. A. P. L. Zhang, "Polarization modulation in optoelectronic generation and detection of terahertz beams," vol. 74, no. 23, pp. 3435-3437, 1999. [13] 张. J. 物理, "太赫兹科学与技术研究回顾," vol. 32, no. 05, pp. 0-0, 2003. [14] J. Pedersen and S. J. I. J. o. Q. E. Keiding, "THz time-domain spectroscopy of nonpolar liquids," vol. 28, no. 10, pp. 2518-2522, 1992. [15] 王少宏, 许景周, 汪力, and 张. J. 物理, "THz 技术的应用及展望," vol. 30, no. 10, pp. 0-0, 2001. [16] X.-C. Zhang, "Generation and detection of pulsed microwave signals by THz optoelectronics," in 1997 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference.'Linking to the Next Century'. Proceedings, 1997, vol. 1, pp. 215-220: IEEE. [17] C. M. Ciesla et al., "Biomedical applications of terahertz pulse imaging," in Commercial and Biomedical Applications of Ultrafast Lasers II, 2000, vol. 3934, pp. 73-81: International Society for Optics and Photonics. [18] R. M. Woodward et al., "Terahertz pulse imaging of ex vivo basal cell carcinoma," vol. 120, no. 1, pp. 72-78, 2003. [19] K. Kawase, Y. Ogawa, Y. Watanabe, and H. J. O. e. Inoue, "Non-destructive terahertz imaging of illicit drugs using spectral fingerprints," vol. 11, no. 20, pp. 2549-2554, 2003. [20] H. Hoshina, Y. Sasaki, A. Hayashi, C. Otani, and K. J. A. s. Kawase, "Noninvasive mail inspection system with terahertz radiation," vol. 63, no. 1, pp. 81-86, 2009. [21] S. Wietzke et al., "Industrial applications of THz systems," in International Symposium on Photoelectronic Detection and Imaging 2009: Terahertz and High Energy Radiation Detection Technologies and Applications, 2009, vol. 7385, p. 738506: International Society for Optics and Photonics. [22] S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. J. J. o. t. E. O. S.-R. P. Koch, "Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints," vol. 2, 2007. [23] 吳佩樺 and 滕. J. 科. 三卷第五期, "生物晶片與農業應用," pp. 37-42, 2002. [24] D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. J. P. r. l. Schultz, "Composite medium with simultaneously negative permeability and permittivity," vol. 84, no. 18, p. 4184, 2000. [25] D. R. Smith, J. B. Pendry, and M. C. J. S. Wiltshire, "Metamaterials and negative refractive index," vol. 305, no. 5685, pp. 788-792, 2004. [26] X. Zhao et al., "Voltage-tunable dual-layer terahertz metamaterials," vol. 2, no. 1, pp. 1-8, 2016. [27] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. J. P. r. l. Padilla, "Perfect metamaterial absorber," vol. 100, no. 20, p. 207402, 2008. [28] J. Barber, D. E. Hooks, D. J. Funk, R. D. Averitt, A. J. Taylor, and D. J. T. J. o. P. C. A. Babikov, "Temperature-dependent far-infrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy," vol. 109, no. 15, pp. 3501-3505, 2005. [29] J. A. Zeitler et al., "Drug hydrate systems and dehydration processes studied by terahertz pulsed spectroscopy," vol. 334, no. 1-2, pp. 78-84, 2007. [30] G. Duan, J. Schalch, X. Zhao, J. Zhang, R. Averitt, and X. Zhang, "An air-spacer terahertz metamaterial perfect absorber for sensing and detection applications," in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2017, pp. 1999-2002: IEEE. [31] X. Hu et al., "Metamaterial absorber integrated microfluidic terahertz sensors," vol. 10, no. 6, pp. 962-969, 2016. [32] Y. Ren et al., "A simple and reliable PDMS and SU-8 irreversible bonding method and its application on a microfluidic-MEA device for neuroscience research," vol. 6, no. 12, pp. 1923-1934, 2015. [33] S. Park et al., "Detection of microorganisms using terahertz metamaterials," vol. 4, no. 1, pp. 1-7, 2014. [34] H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. J. N. Averitt, "Active terahertz metamaterial devices," vol. 444, no. 7119, pp. 597-600, 2006. [35] J. Balakrishnan, B. M. Fischer, and D. J. I. P. J. Abbott, "Fixed dual-thickness terahertz liquid spectroscopy using a spinning sample technique," vol. 1, no. 2, pp. 88-98, 2009. [36] K. Makimura, S. Y. Murayama, and H. J. J. o. M. M. Yamaguchi, "Detection of a wide range of medically important fungi by the polymerase chain reaction," vol. 40, no. 5, pp. 358-364, 1994. [37] L. M. Vanhee, E. D’Haese, I. Cools, H. J. Nelis, and T. Coenye, "Detection and quantification of bacteria and fungi using solid-phase cytometry," in Detection of bacteria, viruses, parasites and fungi: Springer, 2010, pp. 25-41. [38] H.-T. Chen et al., "Electromagnetic metamaterials for terahertz applications," vol. 1, no. 1, pp. 42-50, 2008. [39] S. Park, B. Son, S. Choi, H. Kim, and Y. J. O. E. Ahn, "Sensitive detection of yeast using terahertz slot antennas," vol. 22, no. 25, pp. 30467-30472, 2014. [40] R. Singh, I. A. Al-Naib, M. Koch, and W. J. O. e. Zhang, "Sharp Fano resonances in THz metamaterials," vol. 19, no. 7, pp. 6312-6319, 2011. [41] L. Cong, M. Manjappa, N. Xu, I. Al‐Naib, W. Zhang, and R. J. A. O. M. Singh, "Fano resonances in terahertz metasurfaces: a figure of merit optimization," vol. 3, no. 11, pp. 1537-1543, 2015. [42] P. U. Jepsen, U. Møller, and H. J. O. E. Merbold, "Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy," vol. 15, no. 22, pp. 14717-14737, 2007. [43] A. K. Azad, J. Dai, and W. J. O. l. Zhang, "Transmission properties of terahertz pulses through subwavelength double split-ring resonators," vol. 31, no. 5, pp. 634-636, 2006. [44] R. Singh, C. Rockstuhl, and W. J. A. P. L. Zhang, "Strong influence of packing density in terahertz metamaterials," vol. 97, no. 24, p. 241108, 2010. [45] S. J. Park, S. A. N. Yoon, and Y. H. J. J. o. t. O. S. o. K. Ahn, "Effective sensing volume of terahertz metamaterial with various gap widths," vol. 20, no. 5, pp. 628-632, 2016. [46] D. J. Park, S. Park, I. Park, and Y. J. C. A. P. Ahn, "Dielectric substrate effect on the metamaterial resonances in terahertz frequency range," vol. 14, no. 4, pp. 570-574, 2014. [47] L. Huang et al., "Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers," vol. 101, no. 10, p. 101102, 2012. [48] Y. Wen et al., "High sensitivity and FOM refractive index sensing based on Fano resonance in all-grating racetrack resonators," vol. 446, pp. 141-146, 2019. [49] A. Karabchevsky, L. Tsapovsky, R. S. Marks, and I. J. B. Abdulhalim, "Study of immobilization procedure on silver nanolayers and detection of estrone with diverged beam surface plasmon resonance (SPR) imaging," vol. 3, no. 1, pp. 157-170, 2013. [50] D. Bhatnagar, I. Kaur, and A. J. I. j. o. b. m. Kumar, "Ultrasensitive cardiac troponin I antibody based nanohybrid sensor for rapid detection of human heart attack," vol. 95, pp. 505-510, 2017. [51] B. Rezaei, A. M. Shoushtari, M. Rabiee, L. Uzun, W. C. Mak, and A. P. J. T. Turner, "An electrochemical immunosensor for cardiac Troponin I using electrospun carboxylated multi-walled carbon nanotube-whiskered nanofibres," vol. 182, pp. 178-186, 2018. [52] R. F. Dutra and L. T. J. C. C. A. Kubota, "An SPR immunosensor for human cardiac troponin T using specific binding avidin to biotin at carboxymethyldextran-modified gold chip," vol. 376, no. 1-2, pp. 114-120, 2007. [53] N. Cui et al., "Design and application of terahertz metamaterial sensor based on DSRRs in clinical quantitative detection of carcinoembryonic antigen," vol. 28, no. 11, pp. 16834-16844, 2020. [54] X. Zhao et al., "Label-free self-referenced sensing of living cells by terahertz metamaterial-based reflection spectroscopy," vol. 10, no. 3, pp. 1196-1206, 2019.
|