帳號:guest(3.140.188.185)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王銘瑋
作者(外文):Wang, Ming-Wei
論文名稱(中文):藉由扭轉軸設計提升壓電式單軸微掃描面鏡之光達性能
論文名稱(外文):Design of Torsional Spring for the LiDAR Performance Enhancement of Single Axis Piezoelectric MEMS Scanning Mirror
指導教授(中文):方維倫
賴梅鳳
指導教授(外文):Fang, Wei-Leun
Lai, Mei-Feng
口試委員(中文):吳名清
羅松成
口試委員(外文):Wu, Ming-Ching
Lo, Sung-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:108035506
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:146
中文關鍵詞:微機電單軸微掃描面鏡壓電式微掃描面鏡壓電致動器鋯鈦酸鉛光學雷達優值
外文關鍵詞:MEMSSingle AxisMicro Scanning MirrorPiezoelectric Micro Scanning MirrorPiezoelectric ActuatorsLead Zirconate TitanatePZTLiDARFigure of MeritFoM
相關次數:
  • 推薦推薦:0
  • 點閱點閱:581
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著智慧車輛的發展,各式車用感測器的需求大增,而其中光學雷達(Light Detection and Ranging, LiDAR)比起傳統車用雷達可更快速感測周遭的人、物,讓駕駛做更即時的反應。微掃描面鏡在光學雷達系統中可作為入射光之掃描工具,而優值(Figure of Merit, FoM)為評鑑微掃描面鏡的重要指標,於光學雷達的應用上較高的優值可有較好的性能。
本研究主要利用PZT壓電薄膜搭配SOI晶圓之製程平台進行壓電式單軸微掃描面鏡的製作與實現,並藉由扭轉軸的設計提升微掃描面鏡的光學雷達性能。完成後首先萃取各項PZT參數,而後進行元件之光學量測。結果顯示具有扭轉軸結構之微面鏡於5 VPP電壓之共振頻(4.57 kHz)狀態下,可有7.33°之掃描角,相比於無扭轉軸之純致動彈簧結構微面鏡,能在相同操作電壓下,提升12%的FoM,亦即可有較好之光達性能;與此同時,可有將扭轉模態與出平面模態之共振頻差距拉開之效果,以此可減低模態耦合發生之可能性。
With the development of smart cars, the demand for various automotive sensors has increased. Among them, Light Detection and Ranging (LiDAR) which is also known as the eyes of the car can sense faster than traditional automotive radars. This ability can let drivers react to the surrounding people and objects more instantly. The micro scanning mirror made by MEMS process is used as a scanning tool for incident light. Figure of Merit (FoM) is an important index for evaluating micro scanning mirrors, and higher FoM can have better performance in the application of LiDAR.
This study utilizes PZT platform to implement a novel piezoelectric single-axis micro scanning mirror. By designing a pair of torsional springs at the central of the mirror, FoM can be boosted. By measurement, it can perform 7.33° scanning angle under 5 VPP voltage and 4.57 kHz resonant frequency, which enhances 12% LiDAR performance in contrast with the reference type without torsional springs. Also, material properties of PZT have been well measured in this study to estimate possible operation range. At the same time, the resonant frequency difference between torsional mode and piston has increased by the additional effect of the torsional spring. It could reduce the possibility of mode coupling.
摘要 I
Abstract II
誌謝 III
目錄 VII
圖目錄 X
表目錄 XVII
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 4
1-2-1 靜電式致動微掃描面鏡 4
1-2-2 電磁式之勞侖茲力致動微掃描面鏡 7
1-2-3 電磁式之靜磁力致動微掃描面鏡 10
1-2-4 壓電式致動微掃描面鏡 11
1-3 研究動機 14
1-4 全文架構 15
第二章 元件致動原理與設計考量 32
2-1 壓電致動機制 33
2-2 設計概念 34
2-2-1 壓電材料選擇 34
2-2-2 元件設計概念與模擬分析 35
2-2-3 鏡面反射層材料之選用 39
第三章 製程結果與討論 54
3-1 製程流程 54
3-1-1 壓電層濕蝕刻 56
3-1-2 鉻金薄膜蒸鍍及上電極掀舉製程 57
3-1-3 正面第一道乾蝕刻製程 60
3-1-4 正面第二道乾蝕刻製程 63
3-1-5 背面熱氧化層蝕刻製程 63
3-1-6 背面深矽蝕刻製程 64
3-2 製程結果 67
第四章 量測結果與討論 83
4-1 PZT材料特性量測 83
4-1-1 d31壓電係數 83
4-1-2 PZT極化率 86
4-1-3 位移-電壓之關係曲線 87
4-2 機械特性量測 89
4-2-1 元件共振頻量測 89
4-2-2 元件表面形貌量測 90
4-2-3 元件模態量測 91
4-3 光學特性量測 92
第五章 結論與未來工作 108
5-1 結論 108
5-2 未來工作 109
5-2-1 膜層厚度之選擇 109
5-2-2 壓電微掃描面鏡之可靠度測試 110
參考文獻 116
附錄A-元件背面製程之改良 124
附錄B-量測鏡面動態變形之方法 132
附錄C-後續製程規劃與調整 136
C-1 硬遮罩之選擇 136
C-2 PZT蝕刻之新方法 137

[1] Yole Développement, http://www.yole.fr/index.aspx
[2] S. T. S. Holmström, U. Baran and H. Urey, “MEMS Laser Scanners: A Review,” Journal of Microelectromechanical Systems, vol. 23, no. 2, pp. 259-275, 2014.
[3] T. Naono, T. Fujii, M. Esashi and S. Tanaka, “A large-scan-angle piezoelectric MEMS optical scanner actuated by a Nb-doped PZT thin film,” J. Micromech. Microeng., vol. 24, 2014.
[4] BorgWarner, https://www.borgwarner.com/technologies
[5] Infineon Technologies, https://www.infineon.com/
[6] Maxim Integrated, https://www.maximintegrated.com/en.html
[7] Transparency Market Research, https://reurl.cc/odkv4D
[8] K. E. Petersen, “Silicon torsional scanning mirror,” IBM Journal of Research and Development, vol. 24, no. 5, pp. 631-637, 1980.
[9] K. S. J. Pister, “Hinged polysilicon structures with integrated CMOS TFTs,” Technical Digest of the 1992 Solid State Sensor and Actuator Workshop, Hilton Head Island, SC, pp. 136-139, 1992.
[10] L. Y. Lin, S. S. Lee, K. S. J. Pister, and M. C. Wu, “Micro-machined three dimensional micro-optics for integrated free-space optical system,” IEEE Photonics Technology Letters, vol. 6, no.12, December, pp. 1445-1447, 1994.
[11] L. Y. Lin, J. L. Shen, S. S. Lee, and M. C. Wu, “Realization of novel monlithic free-space optical disk pickup heads by surface micromachining,” Optical Letters, vol. 21, pp. 155-157, 1996.
[12] L. Y. Lin, J. L. Shen, S. S. Lee, and M. C. Wu, “Surface-micromachined micro-XYZ stages for free-space micro-optical bench,” IEEE Photonics Technology Letters, vol. 9, pp. 345-347, 1997.
[13] L. Fan and M. C. Wu, “Self-assembled micro-XYZ stages for optical scanning and alignment,” 10th Annual Meeting of the IEEE Lasers and Electro-Optics Society, San Francisco, CA, 1997, pp. 266-267.
[14] L. Fan and M. C. Wu, “Two-dimensional optical scanner with large angular rotation realized by self-assembled micro-elevator,” IEEE/LEOS Summer Topical Meeting, Monterey, CA, July 1998, pp. II/107-108.
[15] W. C. Tang, T.-C. H. Nguyen, and R. T. Howe, and “Laterally driven polysilicon resonant microstructures,” Sensors and Actuators A (Physical), vol. 20, pp. 25-32, 1989.
[16] M.-H. Kiang, O. Solgaard, and K.-Y. Lau, “Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning,” Journal of Microelectromechanical Systems, 7, no. 1, pp. 27-37, 1998.
[17] M.-H. Kiang, O. Solgaard, R.S. Muller, and K.-Y. Lau, “Micromachined polysilicon microscanners for barcode readers,” IEEE Photonics Technology Letters, vol. 8, pp. 95-97, 1998.
[18] V. A. Aksyuk, F. Pardo, C. A. Bolle, C. R. Giles, and D. J. Bishop, “Lucent MicrostarTM micromirror array technology for large optical crossconnects,” Proceedings of SPIE, 2000.
[19] V. A. Aksyuk, F. Pardo, and D. J. Bishop, “Stress-induced curvature engineering in surface-micromachined devices,” Proceedings of the SPIE, 1999.
[20] V. A. Aksyuk, F. Pardo, D. Carr, D. Greywall, H. B. Chan, M. E. Simon, A. Gasparyan, H. Shea, V. Lifton, C. Bolle, S. Arney, R. Frahm, M. Paczkowski, M. Haueis, R. Ryf, D. T. Neilson, J. Kim, C. R. Giles, and D. Bishop, “Beam-Steering Micromirrors for Large Optical Cross-Connects,” Journal of Lightwave Technology, vol. 21, pp. 634-642, 2003.
[21] L. Y. Lin, E. L. Goldstein, and R. W. Tkach, “On the Expandability of Free-Space Micromachined Optical Cross Connects,” Journal of Lightwave Technology, vol. 18, pp. 482-489, 2000.
[22] R. Conant, J. Nee, K. Lau, and R. Muller, “Dynamic Deformation of Scanning Micromirrors,” 2000 IEEE/LEOS Inernational Conference on Optical MEMS, Kauai, Hawaii, August, 2000, pp. 49-50.
[23] M. Hart, R. A. Conant, K.-Y. Lau, and R. S. Muller, “Stroboscopic Interferometer System for Dynamic MEMS Characterization,” Journal of Microelectromechanical Systems, vol. 9, pp. 409-418, 2000.
[24] P. B. Chu, S.-S. Lee, S. Park, M. J. Tsai, I. Brener, D. Peale, R. A. Doran, and C. Pu, “MOEMS-enabling technologies for large optical cross-connects,” Proceedings of the SPIE, vol. 4561, pp. 55-65, 2001.
[25] M. Wu and W. Fang, “Design and fabrication of MEMS devices using the integration of MUMPs, trench-refilled molding, DRIE and bulk silicon etching processes,” Journal of Micromechanics and Microengineering, vol. 15, no. 3, pp. 535-542, 2005.
[26] M. Wu and W. Fang, “A molded surface-micromachining and bulk etching release (MOSBE) fabrication platform on (1 1 1) Si for MOEMS,” Journal of Micromechanics and Microengineering, vol. 16, no. 2, pp. 260-265, 2006.
[27] M. Wu, H. Y. Lin, and W. Fang, “A Poly-Si-Based Vertical Comb-Drive Two-Axis Gimbaled Scanner for Optical Applications,” IEEE Photonics Technology Letters, vol. 18, no. 20, pp. 2111-2113, October 2006.
[28] Y.-C. Ko, J.-W. Cho, Y.-K. Mun, H.-G. Jeong, W.-K. Choi, J.-W. Kim, Y.-H. Park, J.-B. Yoo, and J.-H. Lee, “Eye-type scanning mirror with dual vertical combs for laser display,” Sensors and Actuators A, vol. 26, pp218-216, 2006.
[29] N. Asada, H. Matsuki, K. Minami, and M. Essashi, “Silicon micromachined two-dimensional alvano optical scanner,” IEEE Transactions on Magnetics, vol. 30, pp. 4647-4649, 1994.
[30] L.O.S. Ferreira and S. Moehlecke, “A silicon micromechanical galvanometric scanner,” Sensors and Actuators A, vol. 73, pp. 252-260, 1999.
[31] S. H. Ahn and Y. K. Kim, “Silicon scanning mirror of two DOF with compensation current routing,” Journal of Micromechanics and Microengineering, vol. 14, pp. 1455-1461, 2004.
[32] H. A. Yang and W. Fang, “A novel coil-less Lorentz Force 2D scanning mirror using Eddy current,” IEEE MEMS International Conference, Istanbul, Turkey, January, 2006, pp.774-777.
[33] C.-H. Ji, S.-H. Ahn, K.-C. Song, H.-K. Yoon, M.-C. S.-C. Kim, and J.-U. Bu, “Dual-axis electromagnetic scanning micromirror using radial magnetic field,” IEEE MEMS International Conference, Istanbul, Turkey, January, 2006, pp. 32-35.
[34] A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” Journal of Microelectromechanical Systems, vol. 15, no. 4, 2006.
[35] J. W. Judy and R. S. Muller, “Magnetically Actuated, Addressable Microstructures,” Journal of Microelectromechanical Systems, vol. 6, no. 3, 1997.
[36] 湯宗霖, “利用靜磁力與勞侖茲力驅動雙軸循序掃描面鏡,” 國立清華大學碩士論文, 2006.
[37] H.-A. Yang, T.-L. Tang, S.T. Lee, and W. Fang, “A novel coil-less scanning mirror using Eddy current Lorentz force and magnetostatic Force,” Journal of Microelectromechanical Systems, vol. 16, no. 3, 2007.
[38] A. D. Yalcinkaya, H. Urey, and S.Holmstrom, “NiFe plated biaxial MEMS scanner for 2-D imaging,” IEEE Photonics technology leters, vol. 19, no. 5, March, 2007.
[39] A. Schroth, C. Lee, S. Matsumoto, M. Tanaka, and R. Maeda, “Application of sol-gel deposited thin PZT film for actuation of 1D and 2D scanners,” Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems, Heidelberg, Germany, 1998, pp. 402-407.
[40] M. Tani, M. Akamatsu, Y. Yasuda, H. Fujita, and H. Toshiyoshi, “A Combination of Fast Resonant Mode and Slow Static Deflection of SOI-PZT Actuators for MEMS Image Projection Display,” IEEE/LEOS International Conference on Optical MEMS and Their Applications Conference, 2006., Big Sky, MT, 2006, pp. 25-26.
[41] M. Tani, M. Akamatsu, Y. Yasuda, and H. Toshiyoshi, “A two-axis piezoelectric tilting micromirror with a newly developed PZT-meandering actuator,” 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS), Hyogo, 2007, pp. 699-702.
[42] W. Liao, W. Liu, Y. Zhu, Y. Tang, B. Wang, and H. Xie, “A Tip-Tilt-Piston Micromirror With Symmetrical Lateral-Shift-Free Piezoelectric Actuators,” IEEE Sensors Journal, vol. 13, no. 8, pp. 2873-2881, Aug. 2013.
[43] W. Liu, Y. Zhu, K. Jia, W. Liao, Y. Tang, B. Wang, and H. Xie, “A tip–tilt–piston micromirror with a double S-shaped unimorph piezoelectric actuator,” Sensors and Actuators A: Physical, vol. 193, pp. 121-128, 2013.
[44] I. Kanno, “Piezoelectric MEMS: Ferroelectric thin films for MEMS applications,” Japanese Journal of Applied Physics, vol. 57, no. 4, 2018.
[45] R. J. Littrell, “High performance piezoelectric MEMS microphones,” Dissertation, The University of Michigan, 2010.
[46] J.-L. Huang, S.-C. Lo, J.-J. Wang, C.-E. Lu, S.-H. Tseng, M. Wu, and W. Fang, “High sensitivity and high S/N microphone achieved by PZT film with central-circle electrode design,” IEEE MEMS, Las Vegas, NV, USA, Jan., 2017, pp. 1188-1191.
[47] 鄭旭翔, “藉由彈簧、振膜與電極設計提升壓電式微機電揚聲器之表現,” 國立清華大學碩士論文, 2019.
[48] Q.-M. Wang, Q. Zhang, B. Xu, R. Liu, and L. E. Cross, “Nonlinear piezoelectric behavior of ceramic bending mode actuators under srtong electric fields,” Journal of Applied Physics, vol. 86, pp. 3352-3360, 1999.
[49] U. Nabholz, W. Heinzelmann, J. E. Mehner, and P. Degenfeld-Schonburg, “Amplitude- and Gas Pressure-Dependent Nonlinear Damping of High-Q Oscillatory MEMS Micro Mirrors,” Journal of Microelectromechanical Systems, vol. 27, no. 3, 2018.
[50] Refractive index database, https://refractiveindex.info/
[51] D. Wang, C. Watkins, and H. Xie, “MEMS Mirrors for LiDAR: A Review,” Micromachines, vol. 11, no. 5, 2020.
[52] 黃子榮, “提升PZT壓電麥克風SNR值之結構與電極設計,” 國立清華大學碩士論文, 2018.
[53] 王逸加, “藉由多音路及反相驅動之懸臂樑振膜陣列達到壓電式微型揚聲器聲學性能之提升,” 國立清華大學碩士論文, 2020.
[54] 陳昱辰, “提升PZT壓電麥克風性能之懸臂樑複合結構設計,” 國立清華大學碩士論文, 2020.
[55] J. M. Dekkers, H. Boschker, M. Zalk, M. Nguyen, H. Nazeer, E. Houwman, and G. Rijnders, “The significance of the piezoelectric coefficient d31, eff determined from cantilever structures,” Journal of Micromechanics and Microengineering, vol. 23, 025008, 2013.
[56] Y. Tsujiura, S. Kawabe, F. Kurokawa, H. Hida, and I. Kanno, “Comparison of effective transverse piezoelectric coefficients e31,f of Pb(Zr,Ti)O3 thin films between direct and converse piezoelectric effects, ” Japanese Journal of Applied Physics, vol. 54, 2015.
[57] X. Qiu, L. Holländer, W. Wirges, R. Gerhard, and H. Cury Basso, “Direct hysteresis measurements on ferroelectret films by means of a modified Sawyer-Tower circuit,” J. Appl. Phys., vol. 113, no. 22, 2013.
[58] TANMS, https://reurl.cc/L7nVjy
[59] U. Nabholz, W. Heinzelmann, J. E. Mehner, and P. Degenfeld-Schonburg, “Amplitude- and Gas Pressure-Dependent Nonlinear Damping of High-Q Oscillatory MEMS Micro Mirrors,” Journal of Microelectromechanical Systems, vol. 27, no. 3, 2018.
[60] 湯宗霖, “具高運動穩定性與大驅動力之電磁式微掃描面鏡設計與實現,” 國立清華大學博士論文, 2011.
[61] R. Farrugia, I. Grech, O. Casha, J. Micallef, and E. Gatt, “Analysis of dynamic deformation in 1-D resonating micromirrors,” 2016 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 2016, pp. 1-6.
[62] S. H. Chang and C. C. Chou, “Electromechanical Analysis of an Asymmetric Piezoelectric/Elastic Laminate Structure: Theory and Experiment,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 46, no. 2, pp. 441-451, 1999.
[63] Integrated Service Technology Inc., https://www.istgroup.com/tw/
[64] Automotive Electronics Council, http://www.aecouncil.com/
[65] C. M. Silvestre, V. Nguyen, H. Jansen, and O. Hansen, “Deep reactive ion etching of ‘grass-free’ widely-spaced periodic 2D arrays, using sacrificial structures,” Microelectronic Engineering, vol. 223, 2020.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *