帳號:guest(3.142.166.206)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):施柏翊
作者(外文):Shih, Po-I
論文名稱(中文):利用0.18μm CMOS電容之CTM層開發新型金屬-絕緣體-金屬電容式換能器製程平台
論文名稱(外文):Development of a Novel Metal-Insulator-Metal (MIM) Capacitive Transducer Process Platform Based on Capacitor-Top-Metal Layer (CTM) in 0.18μm CMOS
指導教授(中文):李昇憲
指導教授(外文):Li, Sheng-Shian
口試委員(中文):邱一
盧向成
口試委員(外文):Chiu, Yi
Lu, Siang-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:108035503
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:125
中文關鍵詞:金氧半導體微機電系統電容式傳感器微機械共振器CMOS-MEMS氮化鈦平台CMOS-MEMS金屬蝕刻平台
外文關鍵詞:CMOS-MEMSCapacitive TransducerMicromechanical ResonatorCMOS-MEMS MIM PlatformCMOS-MEMS TiN-C PlatformCMOS-MEMS Metal Release Platform
相關次數:
  • 推薦推薦:0
  • 點閱點閱:220
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究為利用TSMC標準0.18μm 1P6M CMOS 製程平台中的電容上金屬層(CTM)開發一款創新且具備優異機電轉換性能的電容式換能器設計與製程平台,以因應近年來高速發展的智慧物聯網技術對晶片在無線通訊、訊號處理和續航的要求;此平台能大幅降低元件共振時的運動阻抗,並且讓元件能運作於更低的直流偏壓,因此預期能更有利於與後端電路整合,實現SOC架構的設計方式,以提升晶片的能源使用效率和降低雜散電容,本研究將此新型平台命名為金屬-絕緣體-金屬(MIM)平台。
由於CMOS製程平台中各層金屬與氧化層之間具備優良的蝕刻停止與選擇比特性,可以透過不同蝕刻方式方便地釋放懸浮結構,MIM平台的開發是奠基於本團隊先前在TSMC標準0.35μm和0.18μm CMOS 製程平台中利用內層鋁銅金屬層所研發的TiN-C電容式換能器設計平台,透過改良和設計獨特的後製程、蝕刻孔以實現等效電容間隙僅有125~140nm的電容式共振器;相比於先前等效電容間隙為400nm的TiN-C平台以及其他團隊所設計的電容式換能器製造工藝,本研究開發的MIM平台共振器在相同的振動頻率和結構下,運動阻抗(R_m)和直流偏壓上有顯著地降低;量測結果顯示當10µm*60µm大小的共振器約操作於約4MHz左右時,MIM平台元件在16V的偏壓下擁有3.3kΩ的優異運動阻抗表現;而TiN-C平台的共振器則為則需要接近60V的偏壓且運動阻抗仍有24.72kΩ,由此可見本研究所開發之MIM平台具備的優異性能以及與電路整合的優勢。
In this research work, a novel capacitive transducer design and fabrication platform, which is named metal-insulator-metal (MIM) platform, with excellent electromechanical coefficient will be developed by using the Capacitor-Top-Metal layer (CTM) in the TSMC standard 0.18μm 1P6M CMOS process platform. Devices on MIM platform will have lower motional impedance during resonance and will be able to operate under a lower bias voltage; thus, it is expected to be more suitable for integration with on-chip transistor circuits, and have a better opportunity to make SOC design into practice. With the integration of mechanical devices and circuits, it will make chips with higher energy efficiency and can reduce the parasitic capacitance, which makes it suitable to deal with the rising requirements for accurate wireless communication, signal processing, and long battery life in the rapid development of Artificial Intelligence of Things (AIoT).
Due to the excellent etching stop characteristics between the metal and oxide layers in CMOS process platform, we can easily release the suspended structure through different etching methods. The development of MIM platform is based on our previous experience of developing TiN-C capacitive resonator platform by using the internal aluminum copper metal layer in the TSMC standard 0.35μm and 0.18μm CMOS. By improving previous back-end process and designing unique etching holes, we have successfully achieved capacitive resonators with effective capacitive gap of only 125nm to 140nm on the proposed MIM platform. Compared with previous devices with capacitive gap of 400nm on TiN-C platform or other capacitive resonator fabrication processes designed by other research teams, the newly developed MIM platform enables devices with similar beam structures to have much lower motional impedance under the same resonant frequency, and significantly reducing the bias voltage. The measurement results show that when a resonator with a beam size of 10µm*60µm is operated near 4MHz, the one designed on MIM platform performs excellent motional impedance around 3.3kΩ under a bias voltage of 16V, while the one on the TiN-C platform has to be driven under a bias voltage of 60V and with motional impedance still near 24.72kΩ respectively. This shows the excellent performance improvement and circuit integration abilities of the proposed MIM platform.
摘要 i
Abstract iii
致謝 vi
目錄 ix
圖目錄 xii
表目錄 xviii
第一章 前言 1
1-1研究背景與動機 1
1-2文獻回顧 8
1-2-1 CMOS-MEMS 8
1-2-2 蝕刻氧化層的富金屬結構 12
1-2-3 蝕刻金屬層的富氧化層結構 15
1-2-4 TiN-C平台 19
1-2-5 MIM平台 22
1-3全文架構 25
第二章 電容式共振器模擬和分析 28
2-1 等效機械模型分析 29
2-2等效電路模型分析 31
2-2-1 單埠(One-Port) 等效電路 32
2-2-2 雙埠(Two-Port) 等效電路 36
2-3電壓軟化效應 41
2-4性能參數設計 43
2-4-1 運動阻抗 44
2-4-1 吸附電壓 45
第三章 結構與後製程設計 48
3-1共振器設計以及模擬結果 48
3-2 Metal Release平台後製程流程 56
3-3 TiN-C平台後製程流程 60
3-4 MIM平台後製程流程 64
3-5 CTM層大小設計與測試元件 68
3-6 結論 74
第四章 量測結果與討論 77
4-1 儀器架設 77
4-2 量測結果與三平台元件對比 81
4-2-1 MIM平台共振器量測結果與模擬對比 81
4-2-2 TiN-C平台共振器量測結果與模擬對比 84
4-2-3 Metal Release平台共振器量測結果與模擬對比 87
4-2-4 三平台比較 90
4-3 等效電容傳感間隙 95
4-4 非線性表現 100
4-5 實驗總結 106
第五章 結論與未來工作 107
5-1 結論 107
5-2 未來工作 108
參考文獻 109
附錄A 119
[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A vision, architectural elements, and future directions,” Future Generation Computer Systems, vol. 29, no. 7, pp. 1645-1660, Sep. 2013.
[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things: A survey on enabling technologies, protocols, and applications,” IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2347-2376, Fourthquarter 2015.
[3] B. Dong, Q. Shi, Y. Yang, F. Wen, Z. Zhang, and C. Lee, “Technology evolution from self-powered sensors to AIoT enabled smart homes,” Nano Energy, vol. 79, Jan. 2021.
[4] S. Balachandar, and R. Chinnaiyan, “Secure solutions for smart city command control centre using AIoT,” eprint arXiv:2108.00003, July 2021.
[5] M. Bagheri, and S. H. Movahed, “The effect of the Internet of Things (IoT) on education business model,” 2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), pp. 435-441, 2016.
[6] S. Tyagi, A. Agarwal, and P. Maheshwari, “A conceptual framework for IoT-based healthcare system using cloud computing,” 2016 6th International Conference - Cloud System and Big Data Engineering (Confluence), pp. 503-507, 2016.
[7] E. Husni, G. B. Hertantyo, D. W. Wicaksono, F. C. Hasibuan, A. U. Rahayu, and M. A. Triawan, “Applied Internet of Things (IoT): Car monitoring system using IBM BlueMix,” 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA), pp. 417-422, 2016.
[8] J. Iannacci, “Internet of things (IoT); internet of everything (IoE); tactile internet; 5G – A (not so evanescent) unifying vision empowered by EH-MEMS (energy harvesting MEMS) and RF-MEMS (radio frequency MEMS),” Sensors and Actuators A: Physical, vol. 272, pp. 187-198, Apr. 2018.
[9] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-646, Oct. 2016.
[10] H. Lee, R. Mahajan, F. Sheikh, R. Nagisetty, and M. Deo, “Multi-die integration using advanced packaging technologies,” 2020 IEEE Custom Integrated Circuits Conference (CICC), pp. 1-7, 2020.
[11] H. Baltes, O. Brand, A. Hierlemann, D. Lange, and C. Hagleitner, “CMOS MEMS - present and future,” IEEE International Conference on Micro Electro Mechanical Systems, Proceedings, 15th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 459-466, Jan. 2002.
[12] G. K. Fedder, R. T. Howe, T.-J. K. Liu, and E. P. Quevy, “Technologies for cofabricating MEMS and electronics,” Proceedings of the IEEE, vol. 96, no. 2, pp. 306-322, Feb. 2008.
[13] W.-C. Chen, W. Fang, and S.-S. Li, “A generalized CMOS-MEMS platform for micromechanical resonators monolithically integrated with circuits,” Journal of Micromechanics and Microengineering (JMM), vol. 21, no. 6, May 2011.
[14] M.-H. Li, C.-Y. Chen, and S.-S. Li, “A reliable CMOS-MEMS platform for titanium nitride composite (TiN-C) resonant transducers with enhanced electrostatic transduction and frequency stability,” 2015 IEEE International Electron Devices Meeting (IEDM), pp. 18.4.1-18.4.4, 2015.
[15] M.-H. Li, C.-Y. Chen, C.-S. Li, C.-H. Chin, and S.-S. Li, “A monolithic CMOS- MEMS oscillator based on an ultra-low-power ovenized micromechanical resonator,” Journal of Microelectromechanical Systems (JMEMS), vol. 24, no. 2 pp. 360-372, Apr. 2015.
[16] T.-H. Hsu, C.-Y. Chen, C.-Y. Liu, M.-H. Li, and S.-S. Li, “A 200-nm-gap titanium nitride composite CMOS-MEMS CMUT for biomedical ultrasounds,” 2018 IEEE International Frequency Control Symposium (IFCS), pp. 1-3, 2018.
[17] S. Trivedi, and S. -S. Li, “CMOS-MEMS resonant transducers for frequency control and sensing,” 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS), pp. 176-181, 2020.
[18] H. Qu “CMOS-MEMS fabrication technologies and devices,” Micromachines (Basel), vol. 7, no. 14, Jan. 2016.
[19] L. J. Hornbeck, “Digital light processing and MEMS: an overview,” Digest IEEE/Leos 1996 Summer Topical Meeting. Advanced Applications of Lasers in Materials and Processing, pp. 7-8, Aug. 1996.
[20] W.-C. Chen, W. Fang, and S.-S. Li, “A generalized CMOS-MEMS platform for micromechanical resonators monolithically integrated with circuits,” Journal of Micromechanics and Microengineering (JMM), vol. 21, no. 6, pp. 065012, May 2011.
[21] J. Verd, A. Uranga, J. Teva, J.L. Lopez, F. Torres, J. Esteve, G. Abadal, F. Perez-Murano, and N. Barniol, “Integrated CMOS–MEMS with on-chip readout electronics for high-frequency applications,” IEEE Electron Device Letters (EDL), vol. 27, no. 6, pp. 495-497, Jun. 2006.
[22] S. Katz, I. Brouk, S. Stolyarova, S. Shapira, and Y. Nemirovsky, “High performance MEMS 0.18μm RF-CMOS transformers,” 2009 IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, pp. 1-5, 2009.
[23] A. Witvrouw, B. Du Bois, P. De Moor, A. Verbist, C. Van Hoof, H. Bender, and Kris Baert, “Comparison between wet HF etching and vapor HF etching for sacrificial oxide removal,” Proc. SPIE 4174, Micromachining and Microfabrication Process Technology VI, vol. 4174, pp. 130-141, Aug. 2000.
[24] A. Jain, H. Qu, S. Todd, and H. Xie, “A thermal bimorph micromirror with large bi-directional and vertical actuation,” Sensors and Actuators A: Physical, vol. 122, no 1, pp. 9-15, 2005.
[25] M.-H. Tsai, C.-M. Sun, Y.-C. Liu, C. Wang, and W. Fang, “Design and application of a metal wet-etching post process for the improvement of CMOS- MEMS capacitive sensors,” Journal of Micromechanics and Microengineering (JMM), vol. 19, no. 10, pp. 208-210, 2009.
[26] Y.-C. Liu, M.-H. Tsai, W.-C. Chen, M.-H. Li, S.-S. Li, and W. Fang, “Temperature-compensated CMOS-MEMS oxide resonators,” Journal of microelectromechanical systems (JMEMS), vol. 22, no. 5, pp. 1054-1065, Oct. 2013.
[27] W.-C. Chen, M.-H. Li, Y.-C. Liu, W. Fang, and S.-S. Li, “A fully-differential CMOS-MEMS DETF oxide resonator with Q > 4,800 and Positive TCF,” IEEE Electron Device Letters (EDL), vol. 33, no. 5, pp. 721-723, May 2012.
[28] C.-S. Li, M.-H. Li, C.-H. Chin, C.-Y. Chen, P. X.-L. Feng, and S.-S. Li, “A piezoresistive CMOS-MEMS resonator with high Q and low TCf,” 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), pp. 425-428, Jul. 2013.
[29] J. Wiebbeler, G. Pfeifer, and M. Hietschold, “Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems,” Sensors and Acutators A: Physical, vol. 71, no. 1-2, pp. 74-80, Nov. 1998.
[30] R.W. Herft, P.G. Steeneken, H.G.A. Huizing, and J. Schmitz, “Center-shift method for the characterization of dielectric charging in RF MEMS capacitive switches,” IEEE Transactions on Semiconductor Manufacturing, vol. 21, no. 2, pp. 148-153, May 2008.
[31] W. Zhou, J. He, X. He, H. Yu, B. Peng, “Dielectric charging induced drift in micro device reliability-a review,” Microelectronics Reliability, vol. 66, pp. 1-9, Nov. 2016.
[32] K. L. Dorsey and G. Fedder, “Dielectric charging effects in electrostatically actuated CMOS-MEMS resonators,” SENSORS, 2010 IEEE, pp. 197-200, Nov. 2010.
[33] F.-Y. Lin, W.-C. Tian, and P.-C. Li, “CMOS-based Capacitive Micromachined ultrasonic transducers operating without external DC bias,” Proceedings, 2013 IEEE International Ultrasonics Symposium (IUS), pp. 1420-1423, Jul. 2013.
[34] C.-H. Chin, M.-H. Li, C.-Y. Chen, Y.-L. Wang, and S.-S. Li, “A CMOS– MEMS arrayed resonant-gate field effect transistor (RGFET) oscillator,” Journal of Micromechanics and Microengineering (JMM), vol. 25, pp. 115025, Oct. 2015.
[35] C.-Y. Chen, M.-H. Li, C.-H. Chin, and S.-S. Li, “Implementation of a CMOS- MEMS filter through a mixed electrical and mechanical coupling scheme,” Journal of Microelectromechanical Systems (JMEMS), vol. 25, no. 2, pp. 262- 274, Apr. 2016.
[36] T. -H. Hsu, A. A. Zope, M. -H. Li and S. -S. Li, “A compact monolithic CMUT receiver front-end in a TiN-C CMOS-MEMS platform,” 2020 IEEE International Ultrasonics Symposium (IUS), pp. 1-4, 2020.
[37] C. Chen, A. A. Zope, M. Li and S. Li, “A generic TiN-C process for CMOS FEOL/BEOL-embedded vertically-coupled capacitive and piezoresistive resonators,” 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), pp. 531-534, 2019.
[38] C.-Y. Chen, M.-H. Li, C.-H. Chin, and S.-S. Li, “Implementation of a CMOS-MEMS filter through a mixed electrical and mechanical coupling scheme,” Journal of Microelectromechanical Systems., vol. 25, no. 2, pp. 262-274, Apr. 2016.
[39] W.-C. Chen, W. Fang, and S.-S. Li, “A generalized CMOS-MEMS platform for micromechanical resonators monolithically integrated with circuits,” Journal of Micromechanics and Microengineering (JMM), vol. 21, no. 6, pp. 065012, May 2011.
[40] C. Chen, M. Li, C. Li and S.-S. Li, “A CMOS-integrated MEMS platform for frequency stable resonators—Part II: Design and Analysis,” Journal of Microelectromechanical Systems, vol. 28, no. 5, pp. 744-754, Oct. 2019.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *