帳號:guest(18.117.232.38)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):廖宏穎
作者(外文):Liao, Hong-Ying
論文名稱(中文):雷利式表面聲波應用於微流控晶片分離微奈米粒子與模擬分析
論文名稱(外文):Nano-particle Separation and Sorting by using Rayleigh Surface Acoustic Wave based on Microfluidic Chip and Simulation Analysis
指導教授(中文):饒達仁
指導教授(外文):Yao, Da-Jeng
口試委員(中文):馮國華
莊漢聲
口試委員(外文):Feng, Guo-Hua
Chuang, Han-Sheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:108035501
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:88
中文關鍵詞:分離技術表面聲波微流控晶片有限元素分析半導體製程
外文關鍵詞:Separation technologySurface Acoustic WaveSemiconductor process
相關次數:
  • 推薦推薦:0
  • 點閱點閱:273
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究藉由壓電材料鈮酸鋰產生雷利式表面聲波(Rayleigh Surface Acoustic Wave, R-SAW)結合微流體控制技術進行微奈米粒子的分離,並且提出具反射閘極的指叉電極結構之表面聲波分離晶片及其有限元素數值模型分析。將模擬的結果與量測、實驗操作的結果進行討論與比較,建立出表面聲波分離晶片其頻率響應與微奈米粒子之聲波力運動響應。
有限元素分析法針對特徵頻率響應、頻域分析與時間相依的分析,設計不同的指叉電極結構,模擬表面聲波模型之散射參數與阻抗分析,將模擬結果與網路分析儀實際測量晶片參數進行比較,其量測之共振頻率與模擬結果的中心頻率吻合,且在時間相依分析下晶片表面透過指叉電極的時變訊號而激發出表面聲波。除此之外,使用Matlab數值分析建立微奈米粒子在微流道間的粒子運動軌跡亦與實驗結果相近。
研究中採用4吋128°YX-LiNbO3鈮酸鋰晶圓使用半導體製程的技術在基板上製作指叉電極與微機電技術翻模製造微流道完成表面聲波分離晶片。在操作頻率為12.8MHz施加峰值為12.5伏特雙埠時變電場的訊號分離10μm與3μm的奈米粒子,其分離率達95%。提出在高頻的操作下具反射閘極的結構有更低的插入損失,在操作頻率為40MHz施加峰值為21伏特的訊號分離200nm與500nm的奈米粒子,以粒徑分析儀(Dynamic Light Scattering, DLS)做樣品分析其分離率高達93%。
在模擬晶片頻域分析下尋找最佳的幾何設計並且在時域分析具駐波效應,而駐波形成的壓力節點在微流道的模擬下成功模擬出粒子移動之現象,與實驗中有高度的吻合。透過網路分析儀分析晶片的散射參數進而提升晶片的分離效率與最佳化設計。
表面聲波作為分離的技術,單純利用粒子的物理特性不同達成分離,具有結構簡單、成本低、高通量的特性。其優點在於分離速率快、純度高且為非接觸式分離,在生物醫學領域可以保護細胞免於結構或是分子的改變,其技術應用甚廣於各種領域中。
In this study, using the piezoelectric materials to generate Rayleigh Surface Acoustic Wave (R-SAW) combined with microfluidic technology to separate nanoparticles, and the separation system and finite element method (FEM) analysis were proposed. The simulation results are compared with the results of measurement and experimental operation, and the frequency response of the SAW separation chip and the particle trajectory of acoustic radiation force are established.
The FEM simulates the scattering parameters and impedances of the surface acoustic wave model with different Interdigital Transducers (IDT) structures and compare with the actual chip parameters by the network analyzer (NA). By comparison, the measured resonance frequency is consistent with the simulation result. In addition, the particle trajectory was shown in MATLAB and is similar with the experimental results.
In the research, the IDTs were fabricated on a 4-inch 128°YX-LiNbO3 using semiconductor process technology, and microchannels were fabricated using soft-lithography technology to complete the SAW separation chip. A dual-port AC signal with a peak of 12.5 volts at 12.8MHz is applied to separate the 10μm and 3μm particles, and has the separation efficiency of 95%. We demostrate the IDTs with the reflection grating structure has lower insertion loss and a signal with a peak of 21 volts at 40MHz is applied to separate the 200nm and 500nm nanoparticles. The Dynamic Light Scattering (DLS) was used for analysis, the separation efficiency is as high as 93%.
Surface acoustic wave, as a separation technology, has the characteristics of simple structure, low cost, and high flux. Its advantages are fast separation rate, high purity and non-contact separation. The SAW technology is widely used in various fields.
摘要
ABSTRACT
致 謝
表目錄
圖目錄
第一章 緒論-------------------------------1
第二章 文獻回顧---------------------------5
第三章 表面聲波之基本理論-----------------18
第四章 有限元素模擬分析-------------------31
第五章 表面聲波分離晶片設計與實驗架設------45
第六章 實驗結果與討論--------------------62
第七章 結論與未來展望--------------------84
參考文獻--------------------------------86
[1] L. L. Campbell and K. Polyak, "Breast tumor heterogeneity: cancer stem cells or clonal evolution?," Cell cycle, vol. 6, no. 19, pp. 2332-2338, 2007.
[2] I. Dagogo-Jack and A. T. Shaw, "Tumour heterogeneity and resistance to cancer therapies," Nature reviews Clinical oncology, vol. 15, no. 2, p. 81, 2018.
[3] M. S. Lawrence et al., "Mutational heterogeneity in cancer and the search for new cancer-associated genes," Nature, vol. 499, no. 7457, pp. 214-218, 2013.
[4] D. Figeys and D. Pinto, "Lab-on-a-chip: A revolution in biological and medical sciences," ed: ACS Publications, 2000.
[5] A. A. S. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, "Microfluidics for cell separation," Medical & biological engineering & computing, vol. 48, no. 10, pp. 999-1014, 2010.
[6] R. Burger et al., "Centrifugal microfluidics for cell analysis," Current opinion in chemical biology, vol. 16, no. 3-4, pp. 409-414, 2012.
[7] R. F. Milsom, N. Reilly, and M. Redwood, "Analysis of generation and detection of surface and bulk acoustic waves by interdigital transducers," ITSU, vol. 24, pp. 147-166, 1977.
[8] H. Nakahata et al., "Study on surface acoustic wave characteristics of SiO2/interdigital-transducer/ZnO/diamond structure and fabrication of 2.5 GHz narrow band filter," Japanese journal of applied physics, vol. 37, no. 5S, p. 2918, 1998.
[9] L. Rayleigh, "On waves propagated along the plane surface of an elastic solid," Proceedings of the London mathematical Society, vol. 1, no. 1, pp. 4-11, 1885.
[10] P. K. Das, A. D. Snider, and V. R. Bhethanabotla, "Acoustothermal heating in surface acoustic wave driven microchannel flow," Physics of Fluids, vol. 31, no. 10, p. 106106, 2019.
[11] B.-Y. Chen et al., "Advances in exosomes technology," Clinica Chimica Acta, vol. 493, pp. 14-19, 2019.
[12] H. W. King, M. Z. Michael, and J. M. Gleadle, "Hypoxic enhancement of exosome release by breast cancer cells," BMC cancer, vol. 12, no. 1, pp. 1-10, 2012.
[13] C. Sheridan, "Exosome cancer diagnostic reaches market," ed: Nature Publishing Group, 2016.
[14] A. R. Wheeler et al., "Microfluidic device for single-cell analysis," Analytical chemistry, vol. 75, no. 14, pp. 3581-3586, 2003.
[15] H.-W. Hsu, "Separations by centrifugal phenomena," 1981.
[16] L. F. Jaffe, "Electrophoresis along cell membranes," Nature, vol. 265, no. 5595, pp. 600-602, 1977.
[17] P. K. Goon, C. J. Boos, P. S. Stonelake, A. D. Blann, and G. Y. Lip, "Detection and quantification of mature circulating endothelial cells using flow cytometry and immunomagnetic beads: a methodological comparison," Thrombosis and haemostasis, vol. 96, no. 07, pp. 45-52, 2006.
[18] L. Y. Yeo and J. R. Friend, "Surface acoustic wave microfluidics," Annual review of fluid mechanics, vol. 46, pp. 379-406, 2014.
[19] J. Shi, H. Huang, Z. Stratton, Y. Huang, and T. J. Huang, "Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW)," Lab on a Chip, vol. 9, no. 23, pp. 3354-3359, 2009.
[20] X. Ding et al., "Cell separation using tilted-angle standing surface acoustic waves," Proceedings of the National Academy of Sciences, vol. 111, no. 36, pp. 12992-12997, 2014.
[21] R. Guldiken, M. C. Jo, N. D. Gallant, U. Demirci, and J. Zhe, "Sheathless size-based acoustic particle separation," Sensors, vol. 12, no. 1, pp. 905-922, 2012.
[22] G. Destgeer, K. H. Lee, J. H. Jung, A. Alazzam, and H. J. Sung, "Continuous separation of particles in a PDMS microfluidic channel via travelling surface acoustic waves (TSAW)," Lab on a Chip, vol. 13, no. 21, pp. 4210-4216, 2013.
[23] M. Wu et al., "Acoustic separation of nanoparticles in continuous flow," Advanced functional materials, vol. 27, no. 14, p. 1606039, 2017.
[24] J. Nam, H. Lim, D. Kim, and S. Shin, "Separation of platelets from whole blood using standing surface acoustic waves in a microchannel," Lab on a Chip, vol. 11, no. 19, pp. 3361-3364, 2011.
[25] X. Ding et al., "Standing surface acoustic wave (SSAW) based multichannel cell sorting," Lab on a Chip, vol. 12, no. 21, pp. 4228-4231, 2012.
[26] M. Wu et al., "Isolation of exosomes from whole blood by integrating acoustics and microfluidics," Proceedings of the National Academy of Sciences, vol. 114, no. 40, pp. 10584-10589, 2017.
[27] R. White and F. Voltmer, "Direct piezoelectric coupling to surface elastic waves," Applied physics letters, vol. 7, no. 12, pp. 314-316, 1965.
[28] D. Morgan, Surface acoustic wave filters: With applications to electronic communications and signal processing. Academic Press, 2010.
[29] T. Frommelt, M. Kostur, M. Wenzel-Schäfer, P. Talkner, P. Hänggi, and A. Wixforth, "Microfluidic mixing via acoustically driven chaotic advection," Physical review letters, vol. 100, no. 3, p. 034502, 2008.
[30] T. Frommelt, D. Gogel, M. Kostur, P. Talkner, P. Hanggi, and A. Wixforth, "Flow patterns and transport in Rayleigh surface acoustic wave streaming: Combined finite element method and raytracing numerics versus experiments," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 55, no. 10, pp. 2298-2305, 2008.
[31] C. O’sullivan and G. Guilbault, "Commercial quartz crystal microbalances–theory and applications," Biosensors and bioelectronics, vol. 14, no. 8-9, pp. 663-670, 1999.
[32] W. P. Mason, "Piezoelectricity, its history and applications," The journal of the Acoustical Society of America, vol. 70, no. 6, pp. 1561-1566, 1981.
[33] Y. Ai, C. K. Sanders, and B. L. Marrone, "Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves," Analytical chemistry, vol. 85, no. 19, pp. 9126-9134, 2013.
[34] T. Yamada, N. Niizeki, and H. Toyoda, "Piezoelectric and elastic properties of lithium niobate single crystals," Japanese Journal of Applied Physics, vol. 6, no. 2, p. 151, 1967.
[35] P. Lazaridis, G. Debarge, and P. Gallion, "Time–bandwidth product of chirped sech 2 pulses: application to phase–amplitude-coupling factor measurement," Optics letters, vol. 20, no. 10, pp. 1160-1162, 1995.
[36] T. Kodama, H. Kawabata, H. Sato, and Y. Yasuhara, "Design of low–loss saw filters employing distributed acoustic reflection transducers," Electronics and Communications in Japan (Part II: Electronics), vol. 70, no. 9, pp. 32-44, 1987.
[37] M. Kadota, "Surface acoustic wave filter with angled reflection by piezoelectric substrate reflection edges, duplexer, and communication device," ed: Google Patents, 2003.
[38] J. Nam, H. Lim, C. Kim, J. Yoon Kang, and S. Shin, "Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave," Biomicrofluidics, vol. 6, no. 2, p. 024120, 2012.
[39] M. Hofer, N. Finger, G. Kovacs, J. Schoberl, U. Langer, and R. Lerch, "Finite element simulation of bulk-and surface acoustic wave (SAW) interaction in SAW devices," in 2002 IEEE Ultrasonics Symposium, 2002. Proceedings., 2002, vol. 1, pp. 53-56: IEEE.
[40] F. Kiebert et al., "3D measurement and simulation of surface acoustic wave driven fluid motion: A comparison," Lab on a Chip, vol. 17, no. 12, pp. 2104-2114, 2017.
[41] Z. Ni et al., "Modelling of SAW-PDMS acoustofluidics: physical fields and particle motions influenced by different descriptions of the PDMS domain," Lab on a Chip, vol. 19, no. 16, pp. 2728-2740, 2019.
[42] 呂冠東, "具圓弧式指叉轉換器設計之低插入損耗彎曲平板波感測元件開發," 中山大學電機工程學系研究所學位論文, pp. 1-79, 2015.
[43] S. Fukui and R. Kaneko, "A database for interpolation of Poiseuille flow rates for high Knudsen number lubrication problems," 1990.
[44] A. J. Smits, B. J. McKeon, and I. Marusic, "High–Reynolds number wall turbulence," Annual Review of Fluid Mechanics, vol. 43, 2011.
[45] T. Niitsuma, T. Okamoto, and S. Minagawa, "Surface acoustic wave device with impedance matching network formed thereon," ed: Google Patents, 1986.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *