帳號:guest(13.59.197.237)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):巴洛薇
作者(外文):Dawi Karomati Baroroh
論文名稱(中文):混合現實中以人為本之生產模擬與設施規劃
論文名稱(外文):Human-Centric Facility Planning and Production Simulation in Mixed Reality (MR)
指導教授(中文):瞿志行
指導教授(外文):Chu, Chih-Hsing
口試委員(中文):孫天龍
黃瀅瑛
陳姿汝
李昀儒
口試委員(外文):Sun, Tien-Lung
Huang, Ying-Yin
Chen, Zi-Ru
Lee, Yun-Ju
學位類別:博士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:108034891
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:134
中文關鍵詞:以人為本混合現實設施規劃生產模擬
外文關鍵詞:Human-centricMixed realityFacility planningProduction simulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:52
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
於工業4.0 的發展趨勢下,智慧製造的高度適應力和自主性滿足不斷增長
的大量客製化需求,而工廠數位化已有數十年,但部分製造程序仍需要人為操作,且人類比機器更適合執行這些操作。本研究介紹混合實境 (MR) 實現以人為中心的設施規劃和生產模擬的新概念,目的在於通過混合實境的輔助功能處理人類行為的不確定性,進而探索混合實境在生產系統中的潛力。在測試情境中,管理者和佩戴 HoloLens 的操作員在具有虛擬設備的真實環境中協同合作,透過實
驗驗證了混合實境輔助功能在規劃的品質與靈活性優於傳統模擬軟體。 此外,
本研究提出了一種基於 MR 和 FlexSim 的集成方法,實施 3 步模擬程序,以
處理人類行為引起的不確定性。並以物流工廠中的輸送問題作為例,展示該系統
得以輔助輸送問題達成供需之間的平衡。相較於過往研究,本研究建議之方法可
以減少超過 半數以上 的需求遺失率。本研究展示基於擴增實境實現以人為中心
的生產系統設計之可行性,並強調此系統於訓練時能夠提高操作員在不確定條件
下的適應能力。
Smart manufacturing offers a high level of adaptability and autonomy to meet the ever-increasing demands of mass product customization. Despite the decades-long adoption of digitalization in industry 4.0 on the shop floor, certain manufacturing operations remain manual, and humans are still better suited for performing them than machines. This study introduces a novel concept of human-centric facility planning and production simulation in Mixed Reality (MR). The aim is to explore the potential of MR in production systems by addressing uncertainties arising from human behavior through MR-based assisted functions. In test scenarios, a manager and an operator wearing HoloLens collaborate in a facility where virtual equipment is overlaid onto the existing real environment. An experimental study is conducted to validate that MR-based functions outperform traditional simulation software in terms of planning quality and flexibility. Additionally, this study proposes an integrated approach implementing a 3-step simulation procedure based on MR and FlexSim to handle uncertainty induced by human behavior. The transportation problem in a logistics facility is selected as a simulation case to demonstrate the balancing act between supply and demand. By adopting the suggested approach, the missed demand can be reduced more than half compared to previous methods. Overall, this research showcases the feasibility of MR as a new approach to realizing human-centric production system design and highlights its potential for training operators to enhance their adaptive skills in uncertain conditions.
摘要.............................................................i
Abstract ........................................................ii
Acknowledgements................................................ iii
Table of Contents................................................iv
List of Figures .................................................vii
List of Tables ..................................................x
List of Appendices ..............................................xi
List of Abbreviations ...........................................xii
CHAPTER 1 INTRODUCTION...........................................1
1.1 Background and Motivation ...................................1
1.2 Research Objectives..........................................4
1.3 Dissertation Structure.......................................5
CHAPTER 2 LITERATURE REVIEW......................................7
2.1 Mixed Reality (M.............................................7
2.2 MR in Smart Manufacturing....................................8
2.3 MR in Facility Planning and Production Simulation............16
CHAPTER 3 MR APPLICATION DEVELOPMENT FOR FACILITY PLANNING
AND SIMULATION...................................................21
3.1 System Framework ............................................22
3.2 Major Assisted Functions ....................................23
3.3 Scene Construction ..........................................25
3.4 Material Flow................................................27
3.5 Demonstration of Major Functions.............................29
CHAPTER 4 DECISION-MAKING MECHANISM FOR FACILITY PLANNING
AND SIMULATION...................................................36
4.1 System Parameters ...........................................37
4.2 Taguchi Experimental Design..................................38
4.3 Mathematical Modeling and Rules Generation ..................40
CHAPTER 5 REDESIGNING LOGISTICS FACILITY.........................42
5.1 Scenario Description.........................................42
5.2 Facility Planning and Simulation in MR ......................44
5.3 Facility Modeling and Simulation in FlexSim..................46
5.4 Comparison of MR Tool and FlexSim............................48
CHAPTER 6 INTEGRATED SIMULATION BASED ON MR AND FLEXSIM..........55
6.1 Manual Material Transportation Problem.......................55
6.2 Systematic Procedure FlexSim-Assisted MR Simulation..........57
6.3 Task Content and Experimental Hypotheses ....................61
6.4 Within-Subject Design and Procedure..........................66
CHAPTER 7 HANDLING UNCERTAINTY IN MANUAL OPERATIONS .............70
7.1 Step-1: MR Simulation .......................................70
7.2 Step-2: Fixed MR Simulation (via FlexSim) ...................79
7.3 Step-3: Flexible MR Simulation (via Real-Time Suggestion)......................................................85
CHAPTER 8 LIMITATION AND DISCUSSION..............................89
8.1 Cybersickness ...............................................89
8.2 Battery and Overheating Condition ...........................90
8.3 Human Posture Issue..........................................91
CHAPTER 9 CONCLUSION.............................................95
9.1 Conclusion ..................................................95
9.2 Future Work .................................................97
REFERENCES ......................................................98
[1]. Alaybek, B., Dalal, R. S., & Dade, B. (2022). Individual Differences in Judgment and Decision-Making: Novel Predictors of Counterproductive Work Behavior. Journal of Business and Psychology(Nov), 1-17.
[2]. Arbeláez, J. C., Viganò, R., & Osorio-Gómez, G. (2019). Haptic Augmented Reality (HapticAR) for assembly guidance. International Journal on Interactive Design and Manufacturing (IJIDeM), 13(2), 673-687.
[3]. Attajer, A., Darmoul, S., Chaabane, S., Riane, F., & Sallez, Y. (2020). Benchmarking Simulation Software Capabilities Agains Distributed Control Requirements: FlexSim vs AnyLogic. Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future, France.
[4]. Baroroh, D. K., & Chu, C.-H. (2022). Human-centric production system simulation in mixed reality: An exemplary case of logistic facility design. Journal of Manufacturing Systems, 65, 146-157.
[5]. Baroroh, D. K., Chu, C.-H., & Wang, L. (2021). Systematic literature review on augmented reality in smart manufacturing: Collaboration between human and computational intelligence. Journal of Manufacturing Systems, 61, 696-711.
[6]. Bottani, E., & Vignali, G. (2019). Augmented reality technology in the manufacturing industry: A review of the last decade. Iise Transactions, 51(3), 284-310.
[7]. Buttner, S., Sand, O., & Rocker, C. (2017). Exploring Design Opportunities for Intelligent Worker Assistance: A New Approach Using Projetion-Based AR and a Novel Hand-Tracking AlgorithmAmbient Intelligence. Lecture Notes in Computer Science,
[8]. Cao, Y., Qian, X., Wang, T., Lee, R., Huo, K., & Ramani, K. (2020). An Exploratory Study of Augmented Reality Presence for Tutoring Machine Tasks Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems,
[9]. Çelik, M., Archetti, C., & Süral, H. (2022). Inventory routing in a warehouse: The storage replenishment routing problem. European Journal of Operational Research, 301(3), 1117-1132.
[10]. Charness, G., Gneezy, U., & Kuhn, M. A. (2012). Experimental methods: Between-subject and within-subject design. Journal of Economic Behavior & Organization, 81(1), 1-8.
[11]. Chen, T.-J., Lee, Y.-C., & Chiang, C.-H. (2020). Optimizing Production Layout and Capacity via FlexSim - A Case Study of Y Factory. Materials Science and Engineering, 847, 1-8.
[12]. Chen, T.-L., Chen, J. C., Huang, C.-F., & Chang, P.-C. (2021). Solving the layout design problem by simulation-optimization approach–A case study on a sortation conveyor system. Simulation Modelling Practice and Theory, 106, 1-16.
[13]. Chu, C.-H., Liu, Y.-W., Li, P.-C., Huang, L.-C., & Luh, Y.-P. (2020). Programming by Demonstration in Augmented Reality for the Motion Planning of a Three-Axis CNC Dispenser. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(5), 987-995.
[14]. Chui, M., Manyika, J., & Miremadi, M. (2016). Where machines could replace humans—and where they can’t (yet) (McKinsey Quarterly, Issue.
[15]. Covaci, S., Repetto, M., & Risso, F. (2018). A New Paradigm to Address Threats for Virtualized Services 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC),
[16]. Efe, B., Kremer, G. E. O., & Kurt, M. (2018). Age and gender-based workload constraint for assembly line worker assignment and balancing problem in a textile firm. international journal of industrial engineering computations, 25(1), 1-17.
[17]. Egger, J., & Masood, T. (2020). Augmented reality in support of intelligent manufacturing – A systematic literature review. Computers & Industrial Engineering, 140.
[18]. Elbaz, A., Artaud, F., Dugravot, A., Tzourio, C., & Singh-Manoux, A. (2018). The gait speed advantage of taller stature is lost with age. Scientific Reports, 8(1), 1485-1493.
[19]. Elia, V., Gnoni, M. G., & Lanzilotto, A. (2016). Evaluating the application of augmented reality devices in manufacturing from a process point of view: An AHP based model. Expert Systems with Applications, 63, 187-197.
[20]. Emmanouilidis, C., Pistofidis, P., Bertoncelj, L., Katsouros, V., Fournaris, A., Koulamas, C., & Ruiz-Carcel, C. (2019). Enabling the human in the loop: Linked data and knowledge in industrial cyber-physical systems. Annual Reviews in Control, 47, 249-265.
[21]. Ens, B., Lanir, J., Tang, A., Bateman, S., Lee, G., Piumsomboon, T., & Billinghurst, M. (2019). Revisiting collaboration through mixed reality: The evolution of groupware. International Journal of Human-Computer Studies, 131, 81-98.
[22]. Fang, H. C., Ong, S. K., & Nee, A. Y. C. (2012). Interactive robot trajectory planning and simulation using Augmented Reality. Robotics and Computer-Integrated Manufacturing, 28(2), 227-237.
[23]. Fraga-Lamas, P., Fernandez-Carames, T. M., Blanco-Novoa, O., & Vilar-Montesinos, M. A. (2018). A Review on Industrial Augmented Reality Systems for the Industry 4.0 Shipyard. IEEE Access, 6, 13358-13375.
[24]. Garbie, I. H. (2014). An experimental investigation on ergonomically designed assembly workstation. International Journal of Industrial and Systems Engineering, 16(3).
[25]. Gurevich, P., Lanir, J., & Cohen, B. (2015). Design and Implementation of TeleAdvisor: a Projection-Based Augmented Reality System for Remote Collaboration. Computer Supported Cooperative Work (CSCW), 24(6), 527-562.
[26]. Havard, V., Trigunayat, A., Richard, K., & Baudry, D. (2019). Collaborative Virtual Reality Decision Tool for Planning Industrial Shop Floor Layouts. Procedia CIRP, 81, 1295-1300.
[27]. Hellmuth, R., Frohnmayer, J., & Sulzmann, F. (2020). Design and Application of a Digital Factory Model for Factory Restructuring. Procedia CIRP, 91, 158-163.
[28]. Herr, D., Reinhardt, J., Reina, G., Krüger, R., Ferrari, R. V., & Ertl, T. (2018). Immersive Modular Factory Layout Planning using Augmented Reality. Procedia CIRP, 72, 1112-1117.
[29]. Honig, W., Christina, M., Scaria, L., Phan, T., Bolas, M., & Ayanian, N. (2015). Mixed Reality for Robotics. International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany.
[30]. Igelmo, V., Syberfeldt, A., Hansson, J., & Aslam, T. (2022). Enabling Industrial Mixed Reality Using Digital Continuity: An Experiment Within Remanufacturing. In Sps2022.
[31]. Jiang, S., Ong, S. K., & Nee, A. Y. C. (2014). An AR-based hybrid approach for facility layout planning and evaluation for existing shop floors. The International Journal of Advanced Manufacturing Technology, 72(1-4), 457-473.
[32]. Karlsson, I., Bernedixen, J., Ng, A. H., & Pehrsson, L. (2017). Combining Augmented Reality and Simulation based Optimization for Decision Support in Manufacturing. Winter Simulation Conference,
[33]. Kirollos, R., & Merchant, W. (2023). Comparing cybersickness in virtual reality and mixed reality head-mounted displays. Frontiers in Virtual Reality, 4, 1-11.
[34]. Kokkas, A., & Vosniakos, G.-C. (2019). An Augmented Reality approach to factory layout design embedding operation simulation. International Journal on Interactive Design and Manufacturing (IJIDeM), 13(3), 1061-1071.
[35]. Kollmuss, A., & Agyeman, J. (2002). Mind the Gap: Why do people act environmentally and what are the barriers to pro-environmental behavior? Environmental Education Research, 8(3), 239-260.
[36]. Kostoláni, M., Murín, J., & Kozák, Š. (2019). Intelligent predictive maintenance control using augmented reality 22nd International Conference on Process Control, Štrbské Pleso, Slovakia.
[37]. Kovacevic, S., Papic, L., Janackovic, G., & Savic, S. (2016). The Analysis of Human Error as Causes in the Maintenance of Machines: A Case Study in Mining Companies. South African Journal of Industrial Engineering, 27(4), 193-202.
[38]. Krugh, M., & Mears, L. (2018). A complementary Cyber-Human Systemsframework for Industry 4.0 Cyber-Physical Systems. Manufacturing Letters, 15, 1-7.
[39]. Kunz, A., Zank, M., Nescher, T., & Wegener, K. (2016). Virtual Reality Based Time and Motion Study with Support for Real Walking. Procedia CIRP, 57, 303-308.
[40]. Lee, H., Liau, Y., Kim, S., & Ryu, K. (2018). A Framework for Process Model Based Human-Robot Collaboration System Using Augmented Reality. In Advances in Production Management Systems. Smart Manufacturing for Industry 4.0 (pp. 482-489).
[41]. Lee, J. W., Han, S. H., & Yang, J. S. (2011). Construction of a computer-simulated mixed reality environment for virtual factory layout planning. Computers in Industry, 62(1), 86-98.
[42]. Liang, G.-F., Lin, J.-T., Hwang, S.-L., Wang, E. M.-y., & Patterson, P. (2010). Preventing human errors in aviation maintenance using an on-line maintenance assistance platform. International Journal of Industrial Ergonomics, 40(3), 356-367.
[43]. Liu, H., Hussain, F., Tan, C. L., & Dash, M. (2002). Discretization: An enabling technique. Data mining and knowledge discovery. Data mining and knowledge discovery, 6(4), 393-423.
[44]. Lu, Y., Adrados, J. S., Chand, S. S., & Wang, L. (2021). Humans Are Not Machines—Anthropocentric Human–Machine Symbiosis for Ultra-Flexible Smart Manufacturing. Engineering, 7(6), 734-737.
[45]. Mendoza, M., Mendoza, M., Mendoza, E., & González, E. (2015). Augmented Reality as a Tool of Training for Data Collection on Torque Auditing. Procedia Computer Science, 75, 5-11.
[46]. Michalos, G., Karagiannis, P., Makris, S., Tokçalar, Ö., & Chryssolouris, G. (2016). Augmented Reality (AR) Applications for Supporting Human-robot Interactive Cooperation. Procedia CIRP, 41, 370-375.
[47]. Milgram, P., & Kishino, F. (1994). A Taxonomy of Mixed Reality Visual Displays. IEICE Transactions on Information Systems, E77-D(12), 1-15.
[48]. Moencks, M., Roth, E., Bohné, T., & Kristensson, P. O. (2022). Augmented Workforce: contextual, cross-hierarchical enquiries on human-technology integration in industry. Computers & Industrial Engineering, 165, 1-16.
[49]. Montoya, T. S. (2021). Role-Dependent Information Displaying Design and Implementation using Augmented Reality University of Skövde]. Sweden.
[50]. Morag, I., Chemweno, P., Pintelon, L., & Sheikhalishahi, M. (2018). Identifying the causes of human error in maintenance work in developing countries. International Journal of Industrial Ergonomics, 68, 222-230.
[51]. Mourtzis, D., Samothrakis, V., Zogopoulos, V., & Vlachou, E. (2019). Warehouse Design and Operation using Augmented Reality technology: A Papermaking Industry Case Study. Procedia CIRP 2019;79:574–9, 79, 574-579.
[52]. Muñoz, A., Mahiques, X., Solanes, J. E., Martí, A., Gracia, L., & Tornero, J. (2019). Mixed reality-based user interface for quality control inspection of car body surfaces. Journal of Manufacturing Systems, 53, 75-92.
[53]. Neves, J., Serrario, D., & Pires, J. N. (2018). Application of mixed reality in robot manipulator programming. Industrial Robot: the international journal of robotics research and application, 45(6), 784-793.
[54]. Ngoc, H. N., Lasa, G., & Iriarte, I. (2022). Human-centred design in industry 4.0: case study review and opportunities for future research. J Intell Manuf, 33(1), 35-76.
[55]. Ong, S. K., Yuan, M. L., & Nee, A. Y. C. (2008). Augmented reality applications in manufacturing: a survey. International Journal of Production Research, 46(10), 2707-2742.
[56]. Piumsomboon, T., Lee, G. A., Hart, J. D., Ens, B., Lindeman, R. W., Thomas, B. H., & Billinghurst, M. (2018). Mini-Me: An Adaptive Avatar for Mixed Reality Remote Collaboration Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems,
[57]. Plakas, G., Ponis, S. T., Agalianos, K., Aretoulaki, E., & Gayalis, S. P. (2020). Augmented Reality in Manufacturing and Logistics: Lesson Learnt from a Real-Life Industrial Application. Procedia Manufacturing, 51, 1629-1635.
[58]. Plamondon, A., Lariviere, C., Denis, D., Mecheri, H., Nastasia, I., & group, I. M. r. (2017). Difference between male and female workers lifting the same relative load when palletizing boxes. Applied Ergonomics, 60, 93-102.
[59]. Poon, T. C., Choy, K. L., Chan, F. T. S., Ho, G. T. S., Gunasekaran, A., Lau, H. C. W., & Chow, H. K. H. (2011). A real-time warehouse operations planning system for small batch replenishment problems in production environment. Expert Systems with Applications, 38(7), 8524-8537.
[60]. Riexinger, G., Kluth, A., Olbrich, M., Braun, J.-D., & Bauernhansl, T. (2018). Mixed Reality for On-site Self-intruction and Self-Inspection with Building Information Models. Procedia CIRP, 72, 1124-1129.
[61]. Rokhsaritalemi, S., Sadeghi-Niaraki, A., & Choi, S.-M. (2020). A Review on Mixed Reality: Current Trends, Challenges and Prospects. Applied Sciences, 10(2), 636.
[62]. Santoso, H. B., Baroroh, D. K., & Darmawan, A. (2021). Future Application of Multisensory Mixed Reality in the Human Cyber—Physical System. South African J. Ind. Eng., 32(4), 44-56.
[63]. Scurati, G. W., Bertoni, M., Graziosi, S., & Ferrise, F. (2021). Exploring the Use of Virtual Reality to Support Environmentally Sustainable Behavior: A Framework to Design Experiences. Sustainability, 13(943), 1-20.
[64]. Segovia, D., Mendoza, M., Mendoza, E., & González, E. (2015). Augmented Reality as a Tool for Production and Quality Monitoring. Procedia Computer Science, 75, 291-300.
[65]. Sgarbossa, F., Grosse, E. H., Neumann, W. P., Battini, D., & Glock, C. H. (2020). Human factors in production and logistics systems of the future. Annual Reviews in Control, 49, 295-305.
[66]. Siew, C. Y., Ong, S. K., & Nee, A. Y. C. (2019). A practical augmented reality-assisted maintenance system framework for adaptive user support. Robotics and Computer-Integrated Manufacturing, 59, 115-129.
[67]. Speicher, M., Hall, B. D., & Nebeling, M. (2019). What is Mixed Reality? CHI Conference on Human Factors in Computing Systems, Glasgow, UK.
[68]. Sugiati, T., Thoyib, A., Hadiwidjoyo, D., & Setiawan, M. (2013). The role of customer value on satisfaction and loyalty (study on Hypermart's customers). International Journal of Business and Management Invention, 2(6), 66-70.
[69]. Sural, H., Archetti, C., & Celik, M. (2016). The Storage Replenishment Problem in Rectangular Warehouses. 14th IMHRC Proceedings, Karlsruhe, Germany.
[70]. Tatić, D., & Tešić, B. (2017). The application of augmented reality technologies for the improvement of occupational safety in an industrial environment. Computers in Industry, 85, 1-10.
[71]. Turner, C. J., Hutabarat, W., Oyekan, J., & Tiwari, A. (2016). Discrete Event Simulation and Virtual Reality Use in Industry: New Opportunities and Future Trends. IEEE Transactions on Human-Machine Systems, 46(6), 882-894.
[72]. Vijayananda, V., Jayachitraa, R., & Guhapranava, P. (2021). Development of IIoT based parts replenishment system for MSME. International Journal Nonlinear Anal. Application, 12, 1761-1774.
[73]. Wan, P. K., & Leirmo, T. L. (2023). Human-centric zero-defect manufacturing: State-of-the-art review, perspectives, and challenges. Computers in Industry, 144, 1-11.
[74]. Wang, B., Zheng, P., Yin, Y., Shih, A., & Wang, L. (2022). Toward human-centric smart manufacturing: A human-cyber-physical systems (HCPS) perspective. Journal of Manufacturing Systems, 63, 471-490.
[75]. Wang, S., Guo, R., Wang, H., Ma, Y., & Zong, Z. (2018). Manufacture Assembly Fault Detection Method based on Deep Learning and Mixed Reality. International Conference on Information and Automation, Wuyi Mountain, China.
[76]. Wang, X., Yew, A. W. W., Ong, S. K., & Nee, A. Y. C. (2019). Enhancing smart shop floor management with ubiquitous augmented reality. International Journal of Production Research, 58(8), 2352-2367.
[77]. Williams, B., Myerson, J., & Hale, S. (2008). Individual differences, intelligence, and behavior analysis. Journal of the Experimental Analysis of Behavior, 90(2), 219-231.
[78]. WorldData. (2022). Average height and weight by country. WorldData.info. Retrieved 4 July 2022 from https://www.worlddata.info/
[79]. Zhang, H., Zhang, Z., Xia, L., Wang, S., Zhao, R., Chen, X., & Liu, S. (2020). Augmented Reality-based Auxiliary Device for Workshop Logistics Delivery Proceedings of the 2020 International Conference on Computing, Networks and Internet of Things,
[80]. Zhang, Z., Wang, X., Wang, X., Cui, F., & Cheng, H. (2018). A simulation-based approach for plant layout design and production planning. Journal of Ambient Intelligence and Humanized Computing, 10(3), 1217-1230.
[81]. Zhou, J., Zhou, Y., Wang, B., & Zang, J. (2019). Human–Cyber–Physical Systems (HCPSs) in the Context of New-Generation Intelligent Manufacturing. Engineering, 5(4), 624-636.
[82]. Zhu, Z., Liu, C., & Xu, X. (2019). Visualisation of the Digital Twin data in manufacturing by using Augmented Reality. Procedia CIRP, 81, 898-903.
[83]. Zubizarreta, J., Aguinaga, I., & Amundarain, A. (2019). A framework for augmented reality guidance in industry. The International Journal of Advanced Manufacturing Technology, 102(9-12), 4095-4108.
(此全文20280812後開放外部瀏覽)
Full-text
Abstract
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *