帳號:guest(18.118.19.189)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):包達文
作者(外文):Darmawan, Armin
論文名稱(中文):設計與建構基於製程能力指標之階段獨立多重抽樣計畫
論文名稱(外文):Design and Development of Stage-Independent Multiple Sampling Plans for Variables Inspection using Process Capability Indices
指導教授(中文):吳建瑋
指導教授(外文):Wu, Chien-Wei
口試委員(中文):李欣怡
巫佳煌
王姿惠
劉時玟
口試委員(外文):Lee, Amy Hsin-I
Wu, Chia-Huang
Wang, Zih-Huei
Liu, Shih-Wen
學位類別:博士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:108034860
出版年(民國):112
畢業學年度:112
語文別:英文
論文頁數:85
中文關鍵詞:抽樣計畫製程能力指標品質保證非線性優化問題操作特性曲線使用者操作介面
外文關鍵詞:sampling planprocess capability indicesquality assurancenonlinear optimization problemoperating characteristic curvegraphical user interface
相關次數:
  • 推薦推薦:0
  • 點閱點閱:32
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
有鑑於客戶期望值、產品複雜性和全球競爭的提升,產品品質對企業營業績效有愈來愈顯著的影響。近年來企業積極投資於品質成本,以確保並維持高品質的生產過程,並以準確、精密的方式生產出具卓越品質的產品。鑑定及評估成本,包括對材料進行進料檢驗、實驗室內的產品測試、生產過程中的性能評估以及最終檢查(100%檢查/抽樣計畫),亦是品質成本的一環。因此,近年來已有許多創新的測試與驗收的程序被開發出來,尤其是在計量的驗收抽樣計畫方面,以提高檢效率、可靠性和適應性。其中,多重抽樣計畫(Multiple Sampling Plan, MSP)是單次抽樣計畫(Single Sampling Plan, SSP)和雙重抽樣計畫(Double Sampling Plan, DSP)的擴展,已被證明是有效的抽樣計畫策略。然而,由於判定貨批須同時考量當次抽樣樣本與前一次樣本的檢驗結果,使得MSP的作業操作特性(Operational Characteristics, OC)函數難以構建。因此,在此論文中,我們提出了一種改良方法,透過設計和開發可彈性調整的MSP模型,假設各階段的多重抽樣結果為獨立,稱為階段獨立多重抽樣計畫(Stage-Independent MSP, SIMSP)。論文中除推導出SIMSP的OC函數,並透過最小化平均抽樣樣本數(Average Sample Number, ASN)及設定一組可容忍風險和品量水準的限制式來設計優化的數學模型,來求解計畫的參數。此外,我們分析了SIMSP的行為,並將其性能與傳統抽樣計畫,在相同條件下進行性能的比較,以證明SIMSP能有效且具鑑別度的貨批判定優勢,能在同樣條件下透過相對較少的檢驗樣本數來做出貨批貨允收判定。再者,我們透過案例分析以展現SIMSP在實際應用中的可行性,並設計及開發一套圖形化的使用者操作介面供執行者參考應用。
Due to increasing customer expectations, product complexity, and global competition, the long-term success of an industry is now significantly influenced by quality strategies. Consequently, the industry invests in quality costs to ensure and maintain a high-quality production process that delivers precise and accurate products with a robust level of quality. The appraisal cost, which includes activities such as inspecting incoming materials, conducting product testing in laboratories, monitoring the production process, performing performance evaluations, and carrying out final inspections (including both 100% inspection and sampling inspection), constitutes a critical component of the overall quality expenses. Numerous innovations in testing and inspection procedures, particularly in the realm of sampling plans, have been developed recently to enhance efficiency (reducing mandatory sample sizes), reliability, and adaptability to various contexts. Multiple Sampling Plans (MSP) serve as an extension of Single Sampling Plans (SSP) and Double Sampling Plans (DSP), offering a successful approach for determining whether a lot meets acceptable risk levels for both consumers and producers. However, constructing the Operational Characteristics (OC) function for MSP is challenging due to its reliance on previous sample outcomes to evaluate the current sample. To address this issue, this dissertation presents a modified approach that designs and develops a variable inspection model within the MSP framework, promoting independence between stages and integrating process capability indices. This novel approach is termed the Stage-Independent Multiple Sampling Plan (SIMSP). The SIMSP is designed through an optimization mathematical formula that minimizes the Average Sample Number (ASN) while adhering to specified tolerable risk and quality level constraints to obtain efficient plan parameters. The reliability of SIMSP is assessed by deriving the OC curve. The behavior and performance of SIMSP are analyzed and compared to that of conventional sampling plans under identical conditions to demonstrate the superior effectiveness and reliability of SIMSP in lot assessment. Furthermore, illustrative cases are examined to showcase the practical feasibility of SIMSP through a user-friendly graphical interface. The results reveal that SIMSP provides comparable protection for both business partners while significantly reducing costs by inspecting fewer samples over the long term and requiring smaller sample sizes than existing lot disposition plans.
摘要 iii
Abstract iv
List of contents v
List of figures vii
List of tables ix
Chapter 1. Introduction 1
1.1 Background and Motivation 1
1.2 Research Objectives 3
1.3 Structure of Writing 4
Chapter 2. Literature Review 5
2.1 Acceptance Sampling Plan 5
2.2 Process Capability Indices (PCIs) 8
2.2.1 Process capability index with Cpk, the estimation, and distribution 10
2.2.2 Process capability index with Cpm, the estimation, and distribution 11
2.2.3 Process capability index with Cpmk, the estimation, and distribution 12
Chapter 3. The Development of Variables Stage-Independent Multiple Sampling Plan (SIMSP) using Process Capability Indices 15
3.1 Introduction 15
3.2 Variables Stage-Independent Multiple Sampling Plan Based on Cpk 16
3.2.1 The probability of acceptance and OC functions 16
3.2.2 The designed plan parameter 19
3.2.3 Analysis and discussion 20
3.3 Variables Stage-Independent Multiple Sampling Plan Based on Cpm 31
3.3.1 The probability of acceptance and OC functions 31
3.3.2 The designed plan parameter 34
3.3.3 Analysis and discussion 35
3.4 Variables Stage-Independent Multiple Sampling Plan Based on Cpmk 45
3.4.1 The probability of acceptance and OC functions 45
3.4.2 The designed plan parameter 48
3.4.3 Analysis and discussion 49
3.5 Concluding remarks 60
Chapter 4. Example Verification 62
4.1 Example using Cpk-SIMSP 62
4.2 Example using Cpm-SIMSP 66
4.3 Example using Cpmk-SIMSP 70
Chapter 5. Conclusions and Future Research 75
5.1 Conclusions 75
5.2 Future Research 77
References 78

Arizono, I., Yoshimoto, K., & Tomohiro, R. (2020). Variable stage-independent double sampling plan with screening for acceptance quality loss limit inspection scheme. International Journal of Production Research, 58(8), 2550–2559. https://doi.org/10.1080/00207543.2019.1598594

Aslam, M, Wu, C. W., Azam, M., & Jun, C. H. (2014). Mixed acceptance sampling plans for product inspection using process capability index. Quality Engineering, 26(4), 450–459. https://doi.org/10.1080/08982112.2014.903970

Aslam, M, & Jun, C. H. (2009). A group acceptance sampling plan for truncated life test having Weibull distribution. Journal of Applied Statistics, 36(9), 1021–1027. https://doi.org/10.1080/02664760802566788

Aslam, M, Wu, C. W., Jun, C. H., Azam, M., & Itay, N. (2013). Developing a variables repetitive group sampling plan based on process capability index Cpk with unknown mean and variance. Journal of Statistical Computation and Simulation, 83(8), 1507–1517. https://doi.org/10.1080/00949655.2012.663374

Aslam, M, Yen, C. H., Chang, C. H., & Jun, C. H. (2013). Multiple states repetitive group sampling plans with process loss consideration. Applied Mathematical Modelling, 37(20–21), 9063–9075. https://doi.org/10.1016/j.apm.2013.04.020

Baciarello, L., & Schiraldi, M. M. (2015). A proposal for a management-oriented process capability index. International Journal of Engineering Business Management, 7(26), 1–13. https://doi.org/10.5772/62185

Balamurali, S., & Jun, C. H. (2006). Repetitive group sampling procedure for variables inspection. Journal of Applied Statistics, 33(3), 327–338. https://doi.org/10.1080/02664760500446010

Balamurali, S., & Jun, C. H. (2009). Designing of a variables two-plan system by minimizing the average sample number. Journal of Applied Statistics, 36(10), 1159–1172. https://doi.org/10.1080/02664760802562514

Balamurali, S., Park, H., Jun, C. H., Kim, K. J., & Lee, J. (2005). Designing of variables repetitive group sampling plan involving minimum average sample number. Communications in Statistics: Simulation and Computation, 34(3), 799–809. https://doi.org/10.1081/SAC-200068424

Balamurali, S., & Usha, M. (2017). Developing and designing of an efficient variables sampling system based on the process capability index. Journal of Statistical Computation and Simulation, 87(7), 1401–1415. https://doi.org/10.1080/00949655.2016.1267735

Boggs, P. T., & Tolle, J. W. (1995). Sequential Quadratic Programming. Acta Numerica, 4, 1–51. https://doi.org/https://doi.org/10.1017/S0962492900002518

Bowker, A. H., & Goode, H. P. (1952). Sampling Inspection by Variables. In New York. McGraw-Hill.

Boyles, R. A. (1991). The Taguchi capability index. Journal of Quality Technology, 23(1), 17–26. https://doi.org/10.1080/00224065.1991.11979279

Chan, L. K., Cheng, S. W., & Spiring, F. A. (1988). A new measure of process capability: Cpm. Journal of Quality Technology, 20(3), 162–175. https://doi.org/10.1080/00224065.1988.11979102

Chapra, S. C. (2012). Applied Numerical Methods with MATLAB for Engineers and Scientists (3rd ed.). McGraw-Hill.

Dey, S., Saha, M., Zhang, S., & Wang, M. (2022). Classical and objective Bayesian estimation and confidence intervals of an asymmetric loss-based capability index Cpmk’. Quality and Reliability Engineering International, 38(4), 1659–1686. https://doi.org/10.1002/qre.3042

Feldmann, B., Krumbholz, W. (2002). ASN-minimax double sampling plans for variables. Statistical Papers 43, 361–377 (2002). https://doi.org/10.1007/s00362-002-0110-2

Fu, Z., Liu, G., & Guo, L. (2019). Sequential quadratic programming method for nonlinear least squares estimation and its application. Mathematical Problems in Engineering, 1-8. https://doi.org/10.1155/2019/3087949

Govindaraju, K., & Soundararajan, V. (1986). Selection of single sampling plans for variables matching the MIL-STD-105 scheme. Journal of Quality Technology, 18:4, 234-238. https://doi.org/10.1080/00224065.1986.11979017

Govindaraju, K., & Balamurali, S. (1998). Chain sampling plan for variables inspection. Journal of Applied Statistics, 25(1), 103–109. https://doi.org/10.1080/02664769823331

Hsu, B. M., Shu, M. H., & Pearn, W. L. (2007). Measuring process capability based on Cpmk with gauge measurement errors. Quality and Reliability Engineering International, 23(5), 597–614. https://doi.org/10.1002/qre.836

Hughes, H., Dickinson, P. C., & Chow, B. (1973). A computer program for the solution of multiple sampling plans. Journal of Quality Technology, 5(1), 39–42. https://www.tandfonline.com/doi/abs/10.1080/00224065.1973.11980568

Itay, N., Yisrael, P., & Edna, S. (2009). Developing a sampling plan based on Cpk. Quality Engineering, 21(3), 306–318. https://doi.org/10.1080/08982110902873597

Jennett, W. J., & Welch, B. L. (1939). The control of proportion defective as judged by a single quality characteristic varying on a continuous scale. Supplement to the Journal of the Royal Statistical Society, 6(1), 80–88. https://doi.org/10.2307/2983626

Juran, J. M. (1974). Quality Control Handbook (3rd (ed.)). McGraw-Hill.

Kane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18(1), 41–52.

Kotz, N. L., & Johnson, S. (2002). Process capability indices—a review, 1992–2000. Journal of Quality Technology, 34(1), 2–53.

Kotz, S., & Lovelace, C. R. (1998). Process Capability Indices in Theory and Practice. In Arnold. Arnold.

Kurniati, N., Yeh, R.-H., & Wu, C. W. (2015). A sampling scheme for resubmitted lots based on one-Sided capability indices. Quality Technology & Quantitative Management, 12(4), 501–515. https://doi.org/10.1080/16843703.2015.11673433

Lee, A. H. I., Wu, C. W., & Chen, Y. W. (2016). A modified variables repetitive group sampling plan with the consideration of preceding lots information. Annals of Operations Research, 238(1–2), 355–373. https://doi.org/10.1007/s10479-015-2064-5

Lepore, A., Palumbo, B., & Castagliola, P. (2018). A note on decision making method for product acceptance based on process capability indices Cpk and Cpmk. European Journal of Operational Research, 267(1), 393–398. https://doi.org/10.1016/j.ejor.2017.12.032

Lin, P. C., & Pearn, W. L. (2005). Testing manufacturing performance based on capability index Cpm. International Journal of Advanced Manufacturing Technology, 27(3–4), 351–358. https://doi.org/10.1007/s00170-004-2182-8

Liu, S. W., & Wu, C. W. (2014). Design and construction of a variables repetitive group sampling plan for unilateral specification limit. Communications in Statistics: Simulation and Computation, 43(8), 1866–1878. https://doi.org/10.1080/03610918.2013.810258

Littauer, S. B. 1950. The Development of Statistical Quality Control in the United States. The American Statistician, 4(5), 14-20.

Lorenzen, T. J. (1979). The computational aspects of multiple attribute sampling procedures. Communications in Statistics - Simulation and Computation, 8(4), 291–309. https://www.tandfonline.com/doi/abs/10.1080/03610917908812121

Mathew, T., Sebastian, G., & Kurian, K. (2006). Generalized confidence intervals for process capability indices. Quality and Reliability Engineering International, 23(25 September 2007), 471–481. https://doi.org/10.1002/qre

Montgomery, D. C. (2019). Introduction to Statistical Quality Control. In S.Dumas (Ed.), John Wiley & Sons, Inc (8th ed.). John Wiley & Sons, Inc.

Nocedal, J., & Wright, S. J. (2006). Numerical optimization. In Springer Series in Operations Research and Financial Engineering. https://doi.org/10.1201/b19115-11

Owen, D. B. (1967). Variables sampling plans based on the normal distribution. Technometrics, 9(3), 417–423.

Pearn, W. L., & Kotz, S. (2006). Encyclopedia and Handbook of Process Capability Indices (Vol. 12). World Scientific Publishing Co. Pte. Ltd.

Pearn, W. L., Kotz, S., & Johnson, N. L. (1992). Distributional and inferential properties of process capability indices. Journal of Quality Technology, 24(4), 216-231.

Pearn, W. L., & Lin, P. C. (2002). Computer program for calculating the p-value in testing process capability index Cpmk. Quality and Reliability Engineering International, 18(4), 333–342. https://doi.org/10.1002/qre.465

Pearn, W. L., & Lin, P. C. (2004a). Measuring process yield based on the capability index Cpm. International Journal of Advanced Manufacturing Technology, 24(7–8), 503–508. https://doi.org/10.1007/s00170-003-1586-1

Pearn, W. L., & Lin, P. C. (2004b). Testing process performance based on capability index Cpk with critical values. Computers and Industrial Engineering, 47(4), 351–369. https://doi.org/10.1016/j.cie.2003.03.001

Pearn, W. L., & Shu, M. H. (2003a). Lower confidence bounds with sample size information for Cpm applied to production yield assurance. International Journal of Production Research, 41(15), 3581–3599. https://doi.org/10.1080/0020754031000138349

Pearn, W. L., & Shu, M. H. (2003b). Manufacturing capability control for multiple power-distribution switch processes based on modified Cpk MPPAC. Microelectroniss Reliability, 43(6), 963–975. https://doi.org/10.1016/S0026-2714(03)00096-9

Pearn, W. L., & Shu, M. H. (2004). Measuring manufacturing capability based on lower confidence bounds of Cpmk applied to current transmitter process. International Journal of Advanced Manufacturing Technology, 23(1–2), 116–125. https://doi.org/10.1007/s00170-003-1693-z

Pearn, W. L., & Wu, C. W. (2006). Variables sampling plans with PPM fraction of defectives and process loss consideration. Journal of the Operational Research Society, 57(4), 450–459. https://doi.org/10.1057/palgrave.jors.2602013

Pearn, W. L., & Wu, C. W. (2007). An effective decision making method for product acceptance. Omega, 35(1), 12–21. https://doi.org/10.1016/j.omega.2005.01.018

Rezaie, K., Taghizadeh, M. R., & Ostadi, B. (2006). A Practical Implementation of the Process Capability Indices. Journal of Applied Sciences, 6(5), 1182–1185.

Rutemiller, H. C., & Schafer, R. E. (1985). A computer program for the ASN of curtailed attributes sampling plans. Journal of Quality Technology, 17(2), 108–113. https://doi.org/10.1080/00224065.1985.11978944

Sathakathulla, A. A., & Murthy, B. N. (2012). Single, double and multiple sampling plans: hypergeometric distribution. Journal of Interdisciplinary Mathematics, 15(4–5), 275–338. https://doi.org/10.1080/09720502.2012.10700800

Schilling, E. G. (1982). Acceptance Sampling in Quality Control. In D. B.Owen (Ed.), New York. Marcel Dekker, Inc.

Schmidt, M.C, Veile, J. W., Müller, Julian M., & Voigt, Kai-Ingo. (2022). Industry 4.0 implementation in the supply chain: a review on the evolution of buyer-supplier relationships. International Journal of Production Research. https://doi.org/10.1080/00207543.2022.2120923

Seidel, W. (1997). Is sampling by variables worse than sampling by attributes? A decision theoretic analysis and a new mixed strategy for inspecting individual lots. Sankhya: The Indian Journal of Statistics, 59(1), 96–107.

Singh, J., Ahuja, I.P.S., Singh, H., Singh, A. (2022) Development and implementation of Autonomous Quality Management System (AQMS) in an automotive manufacturing using quality 4.0 concept– a case study. Computers & Industrial Engineering, 168.

Sommer, D. J. (1981). Two-point double variables sampling plans. Journal of Quality Technology, 13(1), 25–30.

Soundararajan, V., & Kuralmani, V. (1989). Multiple sampling inspection plans for attributes. Communications in Statistics - Simulation and Computation, 18(4), 1251–1274. https://doi.org/10.1080/03610918908812820

Speevak, T., & Yu, A. K. (1987). Multiple attributes sampling acceptance plans involving destructive testing. Technometrics, 29(1), 103–107. https://www.tandfonline.com/doi/abs/10.1080/00401706.1987.10488188

Spiring, F., Cheng, S., Yeung, A., & Leung, B. (2002). Process capability indices - a review, 1992-2000 - discussion. Journal of Quality Technology, 34(1), 23–27.

Vännman, K. (1997). Distribution and moments in simplified form for a general class of capability indices. Communications in Statistics - Theory and Methods, 26(1), 159–179. https://doi.org/10.1080/03610929708831908

Vännman, K., & Kotz, S. (1995). A Superstructure of capability indices- distributional properties and implications. Scandinavian Journal of Statistics, 22(4), 477–491.

Wang, T. C., Hsu, B. M., & Shu, M. H. (2022). An integrated quick-switch sampling system based on a process capability index for constructing a solid supplier-buyer relationship. International Journal of Production Research, 60(21), 6413-6429. https://doi.org/10.1080/00207543.2021.1991598

Wang, T. C., Wu, C. W., Hsu, B. M., & Shu, M. H. (2021). Process-capability-qualified adjustable multiple-dependent-state sampling plan for a long-term supplier-buyer relationship. Quality and Reliability Engineering International, 37(2), 583–597. https://doi.org/10.1002/qre.2750

Wang, Z. H., & Wu, C. W. (2021). Design and construction of a variables quick switching sampling system based on Taguchi capability index. Computers & Industrial Engineering, 160, 1-11. https://doi.org/10.1016/j.cie.2021.107582

Wang, Z. H., & Wu, C. W. (2019a). An improved sampling plan by variables inspection with consideration of process yield and quality loss. Journal of Statistical Computation and Simulation, 89(13), 2395–2409. https://doi.org/10.1080/00949655.2019.1619739

Wang, Z. H., & Wu, C. W. (2019b). Improved inspection scheme with a loss-based capability index. International Journal of Advanced Manufacturing Technology, 104(1–4), 1321–1331. https://doi.org/10.1007/s00170-019-03980-z

Wang, Z. H., Wu, C. W., & Jhu, J. J. (2023). Design and construction of a quick-switching sampling system with a third-generation capability index. Communications in Statistics - Theory and Methods, 52(11), 1–19. https://doi.org/10.1080/03610926.2021.1977959

Wilson, E. B., & Burgess, A. R. (1971). Multiple sampling plans viewed as finite Markov chains. Technometrics, 13(2), 371–383.

Wiengarten, F., G. Onofrei, B. Fynes, and P. Humphreys. 2022. Exploring the quality performance implications of temporary workers: the importance of process capabilities. International Journal of Production Research. 60(18), 5539-5552. https://doi.org/10.1080/00207543.2021.1964705

Wilson, R. B. (1963). A Simplical Method for Convex Programming. Harvard Universiy, Cambridge, MA.

Wu, C. W., Lee, A. H. I., & Chen, Y. W. (2016). A novel lot sentencing method by variables inspection considering multiple dependent state. Quality and Reliability Engineering International, 32(3), 985–994. https://doi.org/10.1002/qre.1808

Wu, C. W., Lee, A. H. I., & Huang, Y. S. (2021). A variable-type skip-lot sampling plan for products with a unilateral specification limit. International Journal of Production Research., 59(14), 4140–4156. https://doi.org/10.1080/00207543.2020.1757778

Wu, C. W., Lee, A. H. I., Liu, S. W., & Shih, M. H. (2017). Capability-based quick switching sampling system for lot disposition. Applied Mathematical Modelling, 52, 131–144. https://doi.org/10.1016/j.apm.2017.07.050

Wu, C. W., Shu, M. H., Wang, P. A., & Hsu, B. M. (2021). Variables skip-lot sampling plans on the basis of process capability index for products with a low fraction of defectives. Computational Statistics, 36(2), 1391–1413. https://doi.org/10.1007/s00180-020-01049-0

Wu, C. W. (2012). An efficient inspection scheme for variables based on Taguchi capability index. European Journal of Operational Research, 223(1), 116–122. https://doi.org/10.1016/j.ejor.2012.06.023

Wu, C. W., Aslam, M., Chen, J. C., & Jun, C. H. (2015). A repetitive group sampling plan by variables inspection for product acceptance determination. European Journal of Industrial Engineering, 9(3), 308–326. https://doi.org/10.1504/EJIE.2015.069340

Wu, C. W., Aslam, M., & Jun, C. H. (2012). Variables sampling inspection scheme for resubmitted lots based on the process capability index Cpk. European Journal of Operational Research, 217(3), 560–566. https://doi.org/10.1016/j.ejor.2011.09.042

Wu, C. W., Chen, J. C., & Wu, T. H. (2015). A flexible sampling scheme for variables inspection with loss consideration. Journal of Statistical Computation and Simulation, 85(18), 3766–3777. https://doi.org/10.1080/00949655.2015.1022781

Wu, C. W., Darmawan, A. (2023). A modified sampling scheme for lot sentencing based on the third-generation capability index. Annals of Operations Research. https://doi.org/10.1007/s10479-023-05328-z

Wu, C. W. Darmawan, A., & Liu, S. W. (2023). Stage-independent multiple sampling plan by variables inspection for lot determination based on the process capability index Cpk. International Journal of Production Research, 61(10), 3171-3183. https://doi.org/10.1080/00207543.2022.2078745

Wu, C. W., Lin, C. W., & Chen, J. C. (2013). An improved approach for process performance evaluation with the consideration of process yield and quality loss. International Journal of Production Research, 51(21), 6397–6409. https://doi.org/10.1080/00207543.2013.804219

Wu, C. W., & Liu, S. W. (2018). A new lot sentencing approach by variables inspection based on process yield. International Journal of Production Research, 56(12), 4087–4099. https://doi.org/10.1080/00207543.2018.1424365

Wu, C. W., & Pearn, W. L. (2008). A variables sampling plan based on Cpmk for product acceptance determination. European Journal of Operational Research, 184(2), 549–560. https://doi.org/10.1016/j.ejor.2006.11.032

Wu, C. W., Pearn, W. L., & Kotz, S. (2009). An overview of theory and practice on process capability indices for quality assurance. International Journal of Production Economics, 117(2), 338–359. https://doi.org/10.1016/j.ijpe.2008.11.008

Wu, C. W., Shu, M. H., Nugroho, A. A., & Kurniati, N. (2015). A flexible process-capability-qualified resubmission-allowed acceptance sampling scheme. Computers and Industrial Engineering, 80, 62–71. https://doi.org/10.1016/j.cie.2014.11.015

Wu, C. W., Shu, M. H., & Wu, N. Y. (2020). Acceptance sampling schemes for two-parameter Lindley lifetime products under a truncated life test. Quality Technology and Quantitative Management, 18(3), 382–395. https://doi.org/10.1080/16843703.2020.1846269

Wu, C. W., & Wang, Z. H. (2017). Developing a variables multiple dependent state sampling plan with simultaneous consideration of process yield and quality loss. International Journal of Production Research, 55(8), 2351–2364. https://doi.org/10.1080/00207543.2016.1244360

Wu, C. W., Wang, Z. H., & Shu, M. H. (2015). A lots-dependent variables sampling plan considering suppliers process loss and buyers stipulated specifications requirement. International Journal of Production Research, 53(20), 6308–6319. https://doi.org/10.1080/00207543.2015.1053580

Wu, C. W. Wu, T. H., & Chen, T. (2015). Developing a variables repetitive group sampling scheme by considering process yield and quality loss. International Journal of Production Research, 53(7), 2239–2251. https://doi.org/10.1080/00207543.2014.986300

Zonnenshain, A., & Kenett, Ron S. (2020) Quality 4.0—the challenging future of quality engineering, Quality Engineering, 32(4), 614-626.
(此全文20241225後開放外部瀏覽)
Full-text
Abstract
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *