|
Arizono, I., Yoshimoto, K., & Tomohiro, R. (2020). Variable stage-independent double sampling plan with screening for acceptance quality loss limit inspection scheme. International Journal of Production Research, 58(8), 2550–2559. https://doi.org/10.1080/00207543.2019.1598594
Aslam, M, Wu, C. W., Azam, M., & Jun, C. H. (2014). Mixed acceptance sampling plans for product inspection using process capability index. Quality Engineering, 26(4), 450–459. https://doi.org/10.1080/08982112.2014.903970
Aslam, M, & Jun, C. H. (2009). A group acceptance sampling plan for truncated life test having Weibull distribution. Journal of Applied Statistics, 36(9), 1021–1027. https://doi.org/10.1080/02664760802566788
Aslam, M, Wu, C. W., Jun, C. H., Azam, M., & Itay, N. (2013). Developing a variables repetitive group sampling plan based on process capability index Cpk with unknown mean and variance. Journal of Statistical Computation and Simulation, 83(8), 1507–1517. https://doi.org/10.1080/00949655.2012.663374
Aslam, M, Yen, C. H., Chang, C. H., & Jun, C. H. (2013). Multiple states repetitive group sampling plans with process loss consideration. Applied Mathematical Modelling, 37(20–21), 9063–9075. https://doi.org/10.1016/j.apm.2013.04.020
Baciarello, L., & Schiraldi, M. M. (2015). A proposal for a management-oriented process capability index. International Journal of Engineering Business Management, 7(26), 1–13. https://doi.org/10.5772/62185
Balamurali, S., & Jun, C. H. (2006). Repetitive group sampling procedure for variables inspection. Journal of Applied Statistics, 33(3), 327–338. https://doi.org/10.1080/02664760500446010
Balamurali, S., & Jun, C. H. (2009). Designing of a variables two-plan system by minimizing the average sample number. Journal of Applied Statistics, 36(10), 1159–1172. https://doi.org/10.1080/02664760802562514
Balamurali, S., Park, H., Jun, C. H., Kim, K. J., & Lee, J. (2005). Designing of variables repetitive group sampling plan involving minimum average sample number. Communications in Statistics: Simulation and Computation, 34(3), 799–809. https://doi.org/10.1081/SAC-200068424
Balamurali, S., & Usha, M. (2017). Developing and designing of an efficient variables sampling system based on the process capability index. Journal of Statistical Computation and Simulation, 87(7), 1401–1415. https://doi.org/10.1080/00949655.2016.1267735
Boggs, P. T., & Tolle, J. W. (1995). Sequential Quadratic Programming. Acta Numerica, 4, 1–51. https://doi.org/https://doi.org/10.1017/S0962492900002518
Bowker, A. H., & Goode, H. P. (1952). Sampling Inspection by Variables. In New York. McGraw-Hill.
Boyles, R. A. (1991). The Taguchi capability index. Journal of Quality Technology, 23(1), 17–26. https://doi.org/10.1080/00224065.1991.11979279
Chan, L. K., Cheng, S. W., & Spiring, F. A. (1988). A new measure of process capability: Cpm. Journal of Quality Technology, 20(3), 162–175. https://doi.org/10.1080/00224065.1988.11979102
Chapra, S. C. (2012). Applied Numerical Methods with MATLAB for Engineers and Scientists (3rd ed.). McGraw-Hill.
Dey, S., Saha, M., Zhang, S., & Wang, M. (2022). Classical and objective Bayesian estimation and confidence intervals of an asymmetric loss-based capability index Cpmk’. Quality and Reliability Engineering International, 38(4), 1659–1686. https://doi.org/10.1002/qre.3042
Feldmann, B., Krumbholz, W. (2002). ASN-minimax double sampling plans for variables. Statistical Papers 43, 361–377 (2002). https://doi.org/10.1007/s00362-002-0110-2
Fu, Z., Liu, G., & Guo, L. (2019). Sequential quadratic programming method for nonlinear least squares estimation and its application. Mathematical Problems in Engineering, 1-8. https://doi.org/10.1155/2019/3087949
Govindaraju, K., & Soundararajan, V. (1986). Selection of single sampling plans for variables matching the MIL-STD-105 scheme. Journal of Quality Technology, 18:4, 234-238. https://doi.org/10.1080/00224065.1986.11979017
Govindaraju, K., & Balamurali, S. (1998). Chain sampling plan for variables inspection. Journal of Applied Statistics, 25(1), 103–109. https://doi.org/10.1080/02664769823331
Hsu, B. M., Shu, M. H., & Pearn, W. L. (2007). Measuring process capability based on Cpmk with gauge measurement errors. Quality and Reliability Engineering International, 23(5), 597–614. https://doi.org/10.1002/qre.836
Hughes, H., Dickinson, P. C., & Chow, B. (1973). A computer program for the solution of multiple sampling plans. Journal of Quality Technology, 5(1), 39–42. https://www.tandfonline.com/doi/abs/10.1080/00224065.1973.11980568
Itay, N., Yisrael, P., & Edna, S. (2009). Developing a sampling plan based on Cpk. Quality Engineering, 21(3), 306–318. https://doi.org/10.1080/08982110902873597
Jennett, W. J., & Welch, B. L. (1939). The control of proportion defective as judged by a single quality characteristic varying on a continuous scale. Supplement to the Journal of the Royal Statistical Society, 6(1), 80–88. https://doi.org/10.2307/2983626
Juran, J. M. (1974). Quality Control Handbook (3rd (ed.)). McGraw-Hill.
Kane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18(1), 41–52.
Kotz, N. L., & Johnson, S. (2002). Process capability indices—a review, 1992–2000. Journal of Quality Technology, 34(1), 2–53.
Kotz, S., & Lovelace, C. R. (1998). Process Capability Indices in Theory and Practice. In Arnold. Arnold.
Kurniati, N., Yeh, R.-H., & Wu, C. W. (2015). A sampling scheme for resubmitted lots based on one-Sided capability indices. Quality Technology & Quantitative Management, 12(4), 501–515. https://doi.org/10.1080/16843703.2015.11673433
Lee, A. H. I., Wu, C. W., & Chen, Y. W. (2016). A modified variables repetitive group sampling plan with the consideration of preceding lots information. Annals of Operations Research, 238(1–2), 355–373. https://doi.org/10.1007/s10479-015-2064-5
Lepore, A., Palumbo, B., & Castagliola, P. (2018). A note on decision making method for product acceptance based on process capability indices Cpk and Cpmk. European Journal of Operational Research, 267(1), 393–398. https://doi.org/10.1016/j.ejor.2017.12.032
Lin, P. C., & Pearn, W. L. (2005). Testing manufacturing performance based on capability index Cpm. International Journal of Advanced Manufacturing Technology, 27(3–4), 351–358. https://doi.org/10.1007/s00170-004-2182-8
Liu, S. W., & Wu, C. W. (2014). Design and construction of a variables repetitive group sampling plan for unilateral specification limit. Communications in Statistics: Simulation and Computation, 43(8), 1866–1878. https://doi.org/10.1080/03610918.2013.810258
Littauer, S. B. 1950. The Development of Statistical Quality Control in the United States. The American Statistician, 4(5), 14-20.
Lorenzen, T. J. (1979). The computational aspects of multiple attribute sampling procedures. Communications in Statistics - Simulation and Computation, 8(4), 291–309. https://www.tandfonline.com/doi/abs/10.1080/03610917908812121
Mathew, T., Sebastian, G., & Kurian, K. (2006). Generalized confidence intervals for process capability indices. Quality and Reliability Engineering International, 23(25 September 2007), 471–481. https://doi.org/10.1002/qre
Montgomery, D. C. (2019). Introduction to Statistical Quality Control. In S.Dumas (Ed.), John Wiley & Sons, Inc (8th ed.). John Wiley & Sons, Inc.
Nocedal, J., & Wright, S. J. (2006). Numerical optimization. In Springer Series in Operations Research and Financial Engineering. https://doi.org/10.1201/b19115-11
Owen, D. B. (1967). Variables sampling plans based on the normal distribution. Technometrics, 9(3), 417–423.
Pearn, W. L., & Kotz, S. (2006). Encyclopedia and Handbook of Process Capability Indices (Vol. 12). World Scientific Publishing Co. Pte. Ltd.
Pearn, W. L., Kotz, S., & Johnson, N. L. (1992). Distributional and inferential properties of process capability indices. Journal of Quality Technology, 24(4), 216-231.
Pearn, W. L., & Lin, P. C. (2002). Computer program for calculating the p-value in testing process capability index Cpmk. Quality and Reliability Engineering International, 18(4), 333–342. https://doi.org/10.1002/qre.465
Pearn, W. L., & Lin, P. C. (2004a). Measuring process yield based on the capability index Cpm. International Journal of Advanced Manufacturing Technology, 24(7–8), 503–508. https://doi.org/10.1007/s00170-003-1586-1
Pearn, W. L., & Lin, P. C. (2004b). Testing process performance based on capability index Cpk with critical values. Computers and Industrial Engineering, 47(4), 351–369. https://doi.org/10.1016/j.cie.2003.03.001
Pearn, W. L., & Shu, M. H. (2003a). Lower confidence bounds with sample size information for Cpm applied to production yield assurance. International Journal of Production Research, 41(15), 3581–3599. https://doi.org/10.1080/0020754031000138349
Pearn, W. L., & Shu, M. H. (2003b). Manufacturing capability control for multiple power-distribution switch processes based on modified Cpk MPPAC. Microelectroniss Reliability, 43(6), 963–975. https://doi.org/10.1016/S0026-2714(03)00096-9
Pearn, W. L., & Shu, M. H. (2004). Measuring manufacturing capability based on lower confidence bounds of Cpmk applied to current transmitter process. International Journal of Advanced Manufacturing Technology, 23(1–2), 116–125. https://doi.org/10.1007/s00170-003-1693-z
Pearn, W. L., & Wu, C. W. (2006). Variables sampling plans with PPM fraction of defectives and process loss consideration. Journal of the Operational Research Society, 57(4), 450–459. https://doi.org/10.1057/palgrave.jors.2602013
Pearn, W. L., & Wu, C. W. (2007). An effective decision making method for product acceptance. Omega, 35(1), 12–21. https://doi.org/10.1016/j.omega.2005.01.018
Rezaie, K., Taghizadeh, M. R., & Ostadi, B. (2006). A Practical Implementation of the Process Capability Indices. Journal of Applied Sciences, 6(5), 1182–1185.
Rutemiller, H. C., & Schafer, R. E. (1985). A computer program for the ASN of curtailed attributes sampling plans. Journal of Quality Technology, 17(2), 108–113. https://doi.org/10.1080/00224065.1985.11978944
Sathakathulla, A. A., & Murthy, B. N. (2012). Single, double and multiple sampling plans: hypergeometric distribution. Journal of Interdisciplinary Mathematics, 15(4–5), 275–338. https://doi.org/10.1080/09720502.2012.10700800
Schilling, E. G. (1982). Acceptance Sampling in Quality Control. In D. B.Owen (Ed.), New York. Marcel Dekker, Inc.
Schmidt, M.C, Veile, J. W., Müller, Julian M., & Voigt, Kai-Ingo. (2022). Industry 4.0 implementation in the supply chain: a review on the evolution of buyer-supplier relationships. International Journal of Production Research. https://doi.org/10.1080/00207543.2022.2120923
Seidel, W. (1997). Is sampling by variables worse than sampling by attributes? A decision theoretic analysis and a new mixed strategy for inspecting individual lots. Sankhya: The Indian Journal of Statistics, 59(1), 96–107.
Singh, J., Ahuja, I.P.S., Singh, H., Singh, A. (2022) Development and implementation of Autonomous Quality Management System (AQMS) in an automotive manufacturing using quality 4.0 concept– a case study. Computers & Industrial Engineering, 168.
Sommer, D. J. (1981). Two-point double variables sampling plans. Journal of Quality Technology, 13(1), 25–30.
Soundararajan, V., & Kuralmani, V. (1989). Multiple sampling inspection plans for attributes. Communications in Statistics - Simulation and Computation, 18(4), 1251–1274. https://doi.org/10.1080/03610918908812820
Speevak, T., & Yu, A. K. (1987). Multiple attributes sampling acceptance plans involving destructive testing. Technometrics, 29(1), 103–107. https://www.tandfonline.com/doi/abs/10.1080/00401706.1987.10488188
Spiring, F., Cheng, S., Yeung, A., & Leung, B. (2002). Process capability indices - a review, 1992-2000 - discussion. Journal of Quality Technology, 34(1), 23–27.
Vännman, K. (1997). Distribution and moments in simplified form for a general class of capability indices. Communications in Statistics - Theory and Methods, 26(1), 159–179. https://doi.org/10.1080/03610929708831908
Vännman, K., & Kotz, S. (1995). A Superstructure of capability indices- distributional properties and implications. Scandinavian Journal of Statistics, 22(4), 477–491.
Wang, T. C., Hsu, B. M., & Shu, M. H. (2022). An integrated quick-switch sampling system based on a process capability index for constructing a solid supplier-buyer relationship. International Journal of Production Research, 60(21), 6413-6429. https://doi.org/10.1080/00207543.2021.1991598
Wang, T. C., Wu, C. W., Hsu, B. M., & Shu, M. H. (2021). Process-capability-qualified adjustable multiple-dependent-state sampling plan for a long-term supplier-buyer relationship. Quality and Reliability Engineering International, 37(2), 583–597. https://doi.org/10.1002/qre.2750
Wang, Z. H., & Wu, C. W. (2021). Design and construction of a variables quick switching sampling system based on Taguchi capability index. Computers & Industrial Engineering, 160, 1-11. https://doi.org/10.1016/j.cie.2021.107582
Wang, Z. H., & Wu, C. W. (2019a). An improved sampling plan by variables inspection with consideration of process yield and quality loss. Journal of Statistical Computation and Simulation, 89(13), 2395–2409. https://doi.org/10.1080/00949655.2019.1619739
Wang, Z. H., & Wu, C. W. (2019b). Improved inspection scheme with a loss-based capability index. International Journal of Advanced Manufacturing Technology, 104(1–4), 1321–1331. https://doi.org/10.1007/s00170-019-03980-z
Wang, Z. H., Wu, C. W., & Jhu, J. J. (2023). Design and construction of a quick-switching sampling system with a third-generation capability index. Communications in Statistics - Theory and Methods, 52(11), 1–19. https://doi.org/10.1080/03610926.2021.1977959
Wilson, E. B., & Burgess, A. R. (1971). Multiple sampling plans viewed as finite Markov chains. Technometrics, 13(2), 371–383.
Wiengarten, F., G. Onofrei, B. Fynes, and P. Humphreys. 2022. Exploring the quality performance implications of temporary workers: the importance of process capabilities. International Journal of Production Research. 60(18), 5539-5552. https://doi.org/10.1080/00207543.2021.1964705
Wilson, R. B. (1963). A Simplical Method for Convex Programming. Harvard Universiy, Cambridge, MA.
Wu, C. W., Lee, A. H. I., & Chen, Y. W. (2016). A novel lot sentencing method by variables inspection considering multiple dependent state. Quality and Reliability Engineering International, 32(3), 985–994. https://doi.org/10.1002/qre.1808
Wu, C. W., Lee, A. H. I., & Huang, Y. S. (2021). A variable-type skip-lot sampling plan for products with a unilateral specification limit. International Journal of Production Research., 59(14), 4140–4156. https://doi.org/10.1080/00207543.2020.1757778
Wu, C. W., Lee, A. H. I., Liu, S. W., & Shih, M. H. (2017). Capability-based quick switching sampling system for lot disposition. Applied Mathematical Modelling, 52, 131–144. https://doi.org/10.1016/j.apm.2017.07.050
Wu, C. W., Shu, M. H., Wang, P. A., & Hsu, B. M. (2021). Variables skip-lot sampling plans on the basis of process capability index for products with a low fraction of defectives. Computational Statistics, 36(2), 1391–1413. https://doi.org/10.1007/s00180-020-01049-0
Wu, C. W. (2012). An efficient inspection scheme for variables based on Taguchi capability index. European Journal of Operational Research, 223(1), 116–122. https://doi.org/10.1016/j.ejor.2012.06.023
Wu, C. W., Aslam, M., Chen, J. C., & Jun, C. H. (2015). A repetitive group sampling plan by variables inspection for product acceptance determination. European Journal of Industrial Engineering, 9(3), 308–326. https://doi.org/10.1504/EJIE.2015.069340
Wu, C. W., Aslam, M., & Jun, C. H. (2012). Variables sampling inspection scheme for resubmitted lots based on the process capability index Cpk. European Journal of Operational Research, 217(3), 560–566. https://doi.org/10.1016/j.ejor.2011.09.042
Wu, C. W., Chen, J. C., & Wu, T. H. (2015). A flexible sampling scheme for variables inspection with loss consideration. Journal of Statistical Computation and Simulation, 85(18), 3766–3777. https://doi.org/10.1080/00949655.2015.1022781
Wu, C. W., Darmawan, A. (2023). A modified sampling scheme for lot sentencing based on the third-generation capability index. Annals of Operations Research. https://doi.org/10.1007/s10479-023-05328-z
Wu, C. W. Darmawan, A., & Liu, S. W. (2023). Stage-independent multiple sampling plan by variables inspection for lot determination based on the process capability index Cpk. International Journal of Production Research, 61(10), 3171-3183. https://doi.org/10.1080/00207543.2022.2078745
Wu, C. W., Lin, C. W., & Chen, J. C. (2013). An improved approach for process performance evaluation with the consideration of process yield and quality loss. International Journal of Production Research, 51(21), 6397–6409. https://doi.org/10.1080/00207543.2013.804219
Wu, C. W., & Liu, S. W. (2018). A new lot sentencing approach by variables inspection based on process yield. International Journal of Production Research, 56(12), 4087–4099. https://doi.org/10.1080/00207543.2018.1424365
Wu, C. W., & Pearn, W. L. (2008). A variables sampling plan based on Cpmk for product acceptance determination. European Journal of Operational Research, 184(2), 549–560. https://doi.org/10.1016/j.ejor.2006.11.032
Wu, C. W., Pearn, W. L., & Kotz, S. (2009). An overview of theory and practice on process capability indices for quality assurance. International Journal of Production Economics, 117(2), 338–359. https://doi.org/10.1016/j.ijpe.2008.11.008
Wu, C. W., Shu, M. H., Nugroho, A. A., & Kurniati, N. (2015). A flexible process-capability-qualified resubmission-allowed acceptance sampling scheme. Computers and Industrial Engineering, 80, 62–71. https://doi.org/10.1016/j.cie.2014.11.015
Wu, C. W., Shu, M. H., & Wu, N. Y. (2020). Acceptance sampling schemes for two-parameter Lindley lifetime products under a truncated life test. Quality Technology and Quantitative Management, 18(3), 382–395. https://doi.org/10.1080/16843703.2020.1846269
Wu, C. W., & Wang, Z. H. (2017). Developing a variables multiple dependent state sampling plan with simultaneous consideration of process yield and quality loss. International Journal of Production Research, 55(8), 2351–2364. https://doi.org/10.1080/00207543.2016.1244360
Wu, C. W., Wang, Z. H., & Shu, M. H. (2015). A lots-dependent variables sampling plan considering suppliers process loss and buyers stipulated specifications requirement. International Journal of Production Research, 53(20), 6308–6319. https://doi.org/10.1080/00207543.2015.1053580
Wu, C. W. Wu, T. H., & Chen, T. (2015). Developing a variables repetitive group sampling scheme by considering process yield and quality loss. International Journal of Production Research, 53(7), 2239–2251. https://doi.org/10.1080/00207543.2014.986300
Zonnenshain, A., & Kenett, Ron S. (2020) Quality 4.0—the challenging future of quality engineering, Quality Engineering, 32(4), 614-626.
|