|
Amraei, S., Mehdizadeh, S. A., & Sallary, S. (2017). Application of computer vision and support vector regression for weight prediction of live broiler chicken. Engineering in agriculture, environment and food, 10(4), 266-271. Astill, J., Dara, R. A., Fraser, E. D. G., Roberts, B., & Sharif, S. (2020). Smart poultry management: Smart sensors, big data, and the internet of things. Computers and Electronics in Agriculture, 170. doi:10.1016/j.compag.2020.105291 Cândido, M., Tinôco, I., Albino, L., Freitas, L., Santos, T., Cecon, P., & Gates, R. S. (2020). Effects of heat stress on pullet cloacal and body temperature. Poultry Science, 99(5), 2469-2477. Chen, Y.-J., & Chien, C.-F. (2018). An empirical study of demand forecasting of non-volatile memory for smart production of semiconductor manufacturing. International Journal of Production Research, 56(13), 4629-4643. Chien, C.-F., Chen, Y.-J., & Peng, J.-T. (2010). Manufacturing intelligence for semiconductor demand forecast based on technology diffusion and product life cycle. International Journal of Production Economics, 128(2), 496-509. Chien, C.-F., & Hsu, C.-Y. (2011). UNISON analysis to model and reduce step-and-scan overlay errors for semiconductor manufacturing. Journal of Intelligent Manufacturing, 22(3), 399-412. Chien, C.-F., Lin, Y.-S., & Lin, S.-K. (2020). Deep reinforcement learning for selecting demand forecast models to empower Industry 3.5 and an empirical study for a semiconductor component distributor. International Journal of Production Research, 58(9), 2784-2804. Chien, C.-F., Wang, H.-J., & Wang, M. (2007). A UNISON framework for analyzing alternative strategies of IC final testing for enhancing overall operational effectiveness. International Journal of Production Economics, 107(1), 20-30. De Clercq, M., Vats, A., & Biel, A. (2018). Agriculture 4.0: The future of farming technology. Proceedings of the World Government Summit, Dubai, UAE, 11-13. Demmers, T. G., Cao, Y., Gauss, S., Lowe, J. C., Parsons, D. J., & Wathes, C. M. (2010). Neural predictive control of broiler chicken growth. IFAC Proceedings Volumes, 43(6), 311-316. Diez-Olivan, A., Averós, X., Sanz, R., Sierra, B., & Estevez, I. (2019). Quantile regression forests-based modeling and environmental indicators for decision support in broiler farming. Computers and Electronics in Agriculture, 161, 141-150. doi:10.1016/j.compag.2018.03.025 El, C., & Akram, M. (2016). Sequence to Sequence Weather Forecasting with Long Short-Term Memory Recurrent Neural Networks. International Journal of Computer Applications, 143(11), 7-11. doi:10.5120/ijca2016910497 Fu, W., & Chien, C.-F. (2019). UNISON data-driven intermittent demand forecast framework to empower supply chain resilience and an empirical study in electronics distribution. Computers & Industrial Engineering, 135, 940-949. Ghazanfari, S. (2014). Application of linear regression and artificial neural network for broiler chicken growth performance prediction. Iranian Journal of Applied Animal Science, 4, 411-416. Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., & Schmidhuber, J. (2009). A Novel Connectionist System for Unconstrained Handwriting Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5), 855-868. doi:10.1109/TPAMI.2008.137 Halachmi, I., Guarino, M., Bewley, J., & Pastell, M. (2019). Smart animal agriculture: application of real-time sensors to improve animal well-being and production. Annual review of animal biosciences, 7, 403-425. Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735 Hu, Y.-F., Hou, J.-L., & Chien, C.-F. (2019). A UNISON framework for knowledge management of university–industry collaboration and an illustration. Computers & Industrial Engineering, 129, 31-43. Johansen, S. V., Bendtsen, J. D., Martin, R., & Mogensen, J. (2019). Broiler weight forecasting using dynamic neural network models with input variable selection. Computers and Electronics in Agriculture, 159, 97-109. Kaewtapee, C., Khetchaturat, C., & Bunchasak, C. (2011). Comparison of growth models between artificial neural networks and nonlinear regression analysis in Cherry Valley ducks. Journal of Applied Poultry Research, 20(4), 421-428. doi:10.3382/japr.2010-00223 Kim, K., Kim, D. K., Noh, J., & Kim, M. (2018). Stable Forecasting of Environmental Time Series via Long Short Term Memory Recurrent Neural Network. IEEE Access, 6, 75216-75228. doi:10.1109/ACCESS.2018.2884827 Kuhi, H. D., Porter, T., López, S., Kebreab, E., Strathe, A., Dumas, A., . . . France, J. (2010). A review of mathematical functions for the analysis of growth in poultry. World's Poultry Science Journal, 66(2), 227-240. Kuo, C.-J., Chien, C.-F., & Chen, J.-D. (2011). Manufacturing Intelligence to Exploit the Value of Production and Tool Data to Reduce Cycle Time. IEEE Transactions on Automation Science and Engineering, 8(1), 103-111. doi:10.1109/tase.2010.2040999 Lin, K.-Y., Chien, C.-F., & Kerh, R. (2016). UNISON framework of data-driven innovation for extracting user experience of product design of wearable devices. Computers & Industrial Engineering, 99, 487-502. Lin, Y.-H., Chien, C.-F., & Yu, C.-M. (2015). UNISON DECISION ANALYSIS FRAMEWORK FOR WORKFORCE PLANNING FOR SEMICONDUCTOR FABS AND AN EMPIRICAL STUDY. International Journal of Industrial Engineering, 22(5). Liu, Y., Ma, X., Shu, L., Hancke, G. P., & Abu-Mahfouz, A. M. (2021). From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges. IEEE Transactions on Industrial Informatics, 17(6), 4322-4334. doi:10.1109/tii.2020.3003910 Lopes, A. Z., Ferreira, L., Junior, T. Y., & Lacerda, W. S. (2009). Modeling productive performance of broiler chickens with artificial neural network. Paper presented at the Livestock Environment VIII, 31 August–4 September 2008, Iguassu Falls, Brazil. Mahale, R. B., & Sonavane, S. (2016). Smart Poultry Farm Monitoring Using IOT and Wireless Sensor Networks. International Journal of Advanced Research in Computer Science, 7(3), 187-190. Mollah, M. B. R., Hasan, M. A., Salam, M. A., & Ali, M. A. (2010). Digital image analysis to estimate the live weight of broiler. Computers and Electronics in Agriculture, 72(1), 48-52. doi:10.1016/j.compag.2010.02.002 Mortensen, A. K., Lisouski, P., & Ahrendt, P. (2016). Weight prediction of broiler chickens using 3D computer vision. Computers and Electronics in Agriculture, 123, 319-326. OECD, Food, & Nations, A. O. o. t. U. (2019). OECD-FAO Agricultural Outlook 2019-2028. OECD, Food, & Nations, A. O. o. t. U. (2020). OECD-FAO Agricultural Outlook 2020-2029. Park, Kim, Lee, Kim, Song, & Kim. (2019). Temperature Prediction Using the Missing Data Refinement Model Based on a Long Short-Term Memory Neural Network. Atmosphere, 10(11). doi:10.3390/atmos10110718 Raj, A. A. G., & Jayanthi, J. G. (2018). IoT-based real-time poultry monitoring and health status identification. Paper presented at the 2018 11th International Symposium on Mechatronics and its Applications (ISMA). Rapela, M. A. (2019). Fostering Innovation for Agriculture 4.0: Springer. Ribeiro, R., Casanova, D., Teixeira, M., Wirth, A., Gomes, H. M., Borges, A. P., & Enembreck, F. (2019). Generating action plans for poultry management using artificial neural networks. Computers and Electronics in Agriculture, 161, 131-140. doi:10.1016/j.compag.2018.02.017 Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T., & Woznicki, S. A. (2017). Climate change and livestock: Impacts, adaptation, and mitigation. Climate Risk Management, 16, 145-163. doi:10.1016/j.crm.2017.02.001 Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536. doi:10.1038/323533a0 Sakomura, N., Longo, F., Oviedo-Rondon, E., Boa-Viagem, C., & Ferraudo, A. (2005). Modeling energy utilization and growth parameter description for broiler chickens. Poultry Science, 84(9), 1363-1369. Van der Vorst, J. G., Dijk, S. J. v., & Beulens, A. J. (2001). Supply chain design in the food industry. The International Journal of Logistics Management, 12(2), 73-86. Wang, C.-Y., Chen, Y.-J., & Chien, C.-F. (2021). Industry 3.5 to empower smart production for poultry farming and an empirical study for broiler live weight prediction. Computers & Industrial Engineering, 151. doi:10.1016/j.cie.2020.106931 Wathes, C. M., Kristensen, H. H., Aerts, J. M., & Berckmans, D. (2008). Is precision livestock farming an engineer's daydream or nightmare, an animal's friend or foe, and a farmer's panacea or pitfall? Computers and Electronics in Agriculture, 64(1), 2-10. doi:10.1016/j.compag.2008.05.005 Wilson, W. O. (1948). Some effects of increasing environmental temperatures on pullets. Poultry Science, 27(6), 813-817. Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big Data in Smart Farming – A review. Agricultural Systems, 153, 69-80. doi:10.1016/j.agsy.2017.01.023 Yandun Narvaez, F., Reina, G., Torres-Torriti, M., Kantor, G., & Cheein, F. A. (2017). A Survey of Ranging and Imaging Techniques for Precision Agriculture Phenotyping. IEEE/ASME Transactions on Mechatronics, 22(6), 2428-2439. doi:10.1109/tmech.2017.2760866 Yu, C.-M., Chien, C.-F., & Kuo, C.-J. (2017). Exploit the Value of Production Data to Discover Opportunities for Saving Power Consumption of Production Tools. IEEE Transactions on Semiconductor Manufacturing, 30(4), 345-350. doi:10.1109/tsm.2017.2750712
|