|
一、 中文文獻 1. 林孟慈 (2020)。以品質良率指標為基礎探討供應商評選方法之研究,國立清華大學工業工程與工程管理學系碩士論文,未出版,新竹市。 2. 廖律瑋 (2009)。考慮韋伯製程變異數發生變動下之製程能力調整,國立交通大學工業工程與管理學系碩士論文,未出版,新竹市。 3. 鄭惇勻 (2019)。壽命績效指標於伽瑪與韋伯分配下區間估計方法比較研究,國立清華大學工業工程與工程管理學系碩士論文,未出版,新竹市。 二、 英文文獻 1. Anderson, T. W., & Darling, D. A. (1952). Asymptotic theory of certain" goodness of fit" criteria based on stochastic processes. The annals of mathematical statistics, 193-212. 2. Balamurali, S., & Kalyanasundaram, M. (2002). Bootstrap lower confidence limits for the process capability indices Cp, Cpk and Cpm. International Journal of Quality & Reliability Management, 19, 1088-1097. 3. Bernardo, J. M., & Smith, A. F. M. (1993). Bayesian theory: John Wiley & Sons. 4. Box, G. E., & Tiao, G. C. (2011). Bayesian inference in statistical analysis (Vol. 40): John Wiley & Sons. 5. Boyles, R. A. (1991). The Taguchi Capability Index. Journal of Quality Technology, 23(1), 17-26. 6. Chan, L. K., Cheng, S. W., & Spiring, F. A. (1988). A new measure of process capability: Cpm. Journal of Quality Technology, 20(3), 162-175. 7. Cheng, S. W., & Spiring, F. A. (1989). Assessing Process Capability: A Bayesian Approach. IIE Transactions, 21(1), 97-98. 8. Cowles, M. K., & Carlin, B. P. (1996). Markov chain Monte Carlo convergence diagnostics: a comparative review. Journal of the American Statistical Association, 91(434), 883-904. 9. Efron, B. (1979). Bootstrap methods: another look at the jackknife. The Annals of Statistics, 7(1), 1-26. 10. Efron, B. (1981). Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods. Biometrika, 68(3), 589-599. 11. Efron, B. (1982). The jackknife, the bootstrap and other resampling plans: SIAM. 12. Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American Statistical Association, 82(397), 171-185. 13. Efron, B., & Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and cross-validation. The American Statistician, 37(1), 36-48. 14. Efron, B., & Tibshirani, R. (1986). Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy. Statist. Sci., 1(1). 15. Franklin, L. A., & Wasserman, G. S. (1992). Bootstrap lower confidence limits for capability indices. Journal of Quality Technology, 24(4), 196-210. 16. Gelfand, A. E., & Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85(410), 398-409. 17. Geman, S., & Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6(6), 721-741. 18. Geyer, C. J. (1992). Practical Markov chain Monte Carlo. Statistical science, 473-483. 19. Gilks, W. R. (1992). Derivative-free adaptive rejection sampling for Gibbs sampling. Bayesian statistics, 4(2), 641-649. 20. Gilks, W. R., Best, N. G., & Tan, K. (1995). Adaptive rejection Metropolis sampling within Gibbs sampling. Journal of the Royal Statistical Society: Series C (Applied Statistics), 44(4), 455-472. 21. Gilks, W. R., & Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Journal of the Royal Statistical Society: Series C (Applied Statistics), 41(2), 337-348. 22. Gunter, B. H. (1989). The use and abuse of Cpk. Quality Progress, 22(1), 72-73. 23. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97-109. 24. Hsiang, T. C., & Taguchi, G. (1985). A tutorial on quality control and assurance-the Taguchi methods. ASA Annual Meeting, Las Vegas, Nevada, U.S.A. 25. Hsu, Y.-C., Pearn, W. L., & Wu, P.-C. (2008). Capability adjustment for gamma processes with mean shift consideration in implementing Six Sigma program. European Journal of Operational Research, 191(2), 517-529. 26. Jeffreys, H. (1998). The theory of probability: OUP Oxford. 27. Johnson, T. (1992). The relationship of Cpm to squared error Loss. Journal of Quality Technology, 24(4), 211-215. 28. Juran, J. (1974). Juran’s Quality Control Handbook: McGraw-Hill. 29. Kane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18(1), 41-52. 30. Kolmogorov, A. (1933). Sulla determinazione empirica di una lgge di distribuzione. Inst. Ital. Attuari, Giorn., 4, 83-91. 31. Liao, M. Y. (2016). Markov chain Monte Carlo in Bayesian models for testing gamma and lognormal S-type process qualities. International Journal of Production Research, 54(24), 7491-7503. 32. Liao, M. Y. (2017). Efficient technique for assessing actual non‐normal quality loss: Markov chain Monte Carlo. Quality and Reliability Engineering International, 33(5), 945-957. 33. Liao, M. Y., & Wu, C. W. (2018). Supplier selection based on normal process yield: the Bayesian inference. Neural Computing and Applications, 32(8), 4121-4133. 34. Mathew, T., Sebastian, G., & Kurian, K. (2007). Generalized confidence intervals for process capability indices. Quality and Reliability Engineering International, 23(4), 471-481. 35. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087-1092. 36. Ng, K. K., & Tsui, K. L. (1992). Expressing variability and yield with a focus on the customer. Quality Engineering, 5(2), 255-267. 37. Pearn, W. L., Chang, Y. C., & Wu, C. W. (2004). Quality-yield measure for production processes with very low fraction defective. International Journal of Production Research, 42(23), 4909-4925. 38. Pearn, W. L., Chang, Y. C., & Wu, C. W. (2005). Bootstrap approach for estimating process quality yield with application to light emitting diodes. The International Journal of Advanced Manufacturing Technology, 25(5-6), 560-570. 39. Pearn, W. L., Kotz, S., & Johnson, N. L. (1992). Distributional and inferential properties of process capability indices. Journal of Quality Technology, 24(4), 216-231. 40. Pearn, W. L., Lin, G. H., & Chen, K. S. (1998). Distributional and inferential properties of the process accuracy and process precision indices. Communications in Statistics - Theory and Methods, 27(4), 985-1000. 41. Pearn, W. L., Wu, C. C., & Wu, C. H. (2015). Estimating process capability index Cpk: classical approach versus Bayesian approach. Journal of Statistical Computation and Simulation, 85(10), 2007-2021. 42. Pearn, W. L., & Wu, C. W. (2005). Process capability assessment for index Cpk based on bayesian approach. Metrika, 61(2), 221-234. 43. Pearson, K. (1900). X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50(302), 157-175. 44. Robert, C., & Casella, G. (2013). Monte Carlo statistical methods: Springer Science & Business Media. 45. Singh, S. K., Singh, U., & Kumar, D. (2013). Bayes estimators of the reliability function and parameter of inverted exponential distribution using informative and non-informative priors. Journal of Statistical Computation and Simulation, 83(12), 2258-2269. 46. Son, Y. S., & Oh, M. (2006). Bayesian estimation of the two-parameter Gamma distribution. Communications in Statistics-Simulation and Computation, 35(2), 285-293. 47. Stephens, M. A. (1974). EDF Statistics for Goodness of Fit and Some Comparisons. Journal of the American Statistical Association, 69(347), 730-737. 48. Tierney, L. (1994). Markov chains for exploring posterior distributions. The Annals of Statistics, 1701-1728. 49. Weerahandi, S. (1995). Generalized Confidence Intervals. In S. Weerahandi (Ed.), Exact Statistical Methods for Data Analysis (pp. 143-168). New York, NY: Springer New York. 50. Wu, C. W., & Huang, P. H. (2010). Generalized Confidence Intervals for Comparing the Capability of Two Processes. Communications in Statistics - Theory and Methods, 39(13), 2351-2364. 51. Wu, C. W., & Pearn, W. L. (2005). Capability testing based on Cpm with multiple samples. Quality and Reliability Engineering International, 21(1), 29-42. 52. Yang, R., & Berger, J. O. (1996). A catalog of noninformative priors: Institute of Statistics and Decision Sciences, Duke University. |