|
1. 吳蔓君. (2015). 肌少症簡介. 家庭醫學與基層醫療, 30(4), 103-107. 2. 蔡政龍. (2006). 肌電圖強度與速度分析於機器手臂控制之應用. 國立交通大學電機與控制工程系所碩士論文. 3. Anwary, A. R., Yu, H., & Vassallo, M. (2018). Optimal foot location for placing wearable IMU sensors and automatic feature extraction for gait analysis. IEEE Sensors Journal, 18(6), 2555-2567. 4. Baghdadi, A., Megahed, F. M., Esfahani, E. T., & Cavuoto, L. A. (2018). A machine learning approach to detect changes in gait parameters following a fatiguing occupational task. Ergonomics, 61(8), 1116-1129. 5. Barbieri, F. A., Dos Santos, P. C. R., Lirani-Silva, E., Vitório, R., Gobbi, L. T. B., & Van Diëen, J. H. (2013). Systematic review of the effects of fatigue on spatiotemporal gait parameters. Journal of back and musculoskeletal rehabilitation, 26(2), 125-131. 6. Bogdanis, G. C. (2012). Effects of physical activity and inactivity on muscle fatigue. Frontiers in physiology, 3, 142. 7. Boyas, S., Hajj, M., & Bilodeau, M. (2013). Influence of ankle plantarflexor fatigue on postural sway, lower limb articular angles, and postural strategies during unipedal quiet standing. Gait & posture, 37(4), 547-551. 8. Chen, L.-K., Woo, J., Assantachai, P., Auyeung, T.-W., Chou, M.-Y., Iijima, K., . . . Kim, S. (2020). Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. Journal of the American Medical Directors Association, 21(3), 300-307. e302. 9. Chen, W.-M., Park, J., Park, S.-B., Shim, V. P.-W., & Lee, T. (2012). Role of gastrocnemius–soleus muscle in forefoot force transmission at heel rise—A 3D finite element analysis. Journal of biomechanics, 45(10), 1783-1789. 10. Cruz-Jentoft, A. J., Baeyens, J. P., Bauer, J. M., Boirie, Y., Cederholm, T., Landi, F., . . . Schneider, S. M. (2010). Sarcopenia: European consensus on definition and diagnosisReport of the European Working Group on Sarcopenia in Older PeopleA. J. Cruz-Gentoft et al. Age and ageing, 39(4), 412-423. 11. Dadashi, F., Mariani, B., Rochat, S., Büla, C. J., Santos-Eggimann, B., & Aminian, K. (2014). Gait and foot clearance parameters obtained using shoe-worn inertial sensors in a large-population sample of older adults. Sensors, 14(1), 443-457. 12. Dimitrova, N., Arabadzhiev, T., Hogrel, J.-Y., & Dimitrov, G. (2009). Fatigue analysis of interference EMG signals obtained from biceps brachii during isometric voluntary contraction at various force levels. Journal of Electromyography and Kinesiology, 19(2), 252-258. 13. Gadaleta, M., & Rossi, M. (2018). Idnet: Smartphone-based gait recognition with convolutional neural networks. Pattern Recognition, 74, 25-37. 14. Gallagher, D., Visser, M., De Meersman, R. E., Sepúlveda, D., Baumgartner, R. N., Pierson, R. N., . . . Heymsfield, S. B. (1997). Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. Journal of applied physiology, 83(1), 229-239. 15. Gard, S. A., & Childress, D. S. (1999). The influence of stance-phase knee flexion on the vertical displacement of the trunk during normal walking. Archives of physical medicine and rehabilitation, 80(1), 26-32. 16. Gimmon, Y., Riemer, R., Oddsson, L., & Melzer, I. (2011). The effect of plantar flexor muscle fatigue on postural control. Journal of Electromyography and Kinesiology, 21(6), 922-928. 17. Hirasaki, E., Moore, S. T., Raphan, T., & Cohen, B. (1999). Effects of walking velocity on vertical head and body movements during locomotion. Experimental brain research, 127(2), 117-130. 18. Hlavackova, P., & Vuillerme, N. (2012). Do somatosensory conditions from the foot and ankle affect postural responses to plantar-flexor muscles fatigue during bipedal quiet stance? Gait & posture, 36(1), 16-19. 19. Hunt, M. A., & Hatfield, G. L. (2017). Ankle and knee biomechanics during normal walking following ankle plantarflexor fatigue. Journal of Electromyography and Kinesiology, 35, 24-29. 20. Hwang, A.-C., Liu, L.-K., Lee, W.-J., Peng, L.-N., & Chen, L.-K. (2018). Calf circumference as a screening instrument for appendicular muscle mass measurement. Journal of the American Medical Directors Association, 19(2), 182-184. 21. Hwang, T.-H., Reh, J., Effenberg, A. O., & Blume, H. (2018). Real-time gait analysis using a single head-worn inertial measurement unit. IEEE Transactions on Consumer Electronics, 64(2), 240-248. 22. Janssen, I., Heymsfield, S. B., Wang, Z., & Ross, R. (2000). Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. Journal of applied physiology. 23. Karthick, P., Ghosh, D. M., & Ramakrishnan, S. (2018). Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms. Computer methods and programs in biomedicine, 154, 45-56. 24. Kavanagh, J., Barrett, R., & Morrison, S. (2006). The role of the neck and trunk in facilitating head stability during walking. Experimental brain research, 172(4), 454. 25. Kavanagh, J. J., Barrett, R. S., & Morrison, S. (2005). Age-related differences in head and trunk coordination during walking. Human movement science, 24(4), 574-587. 26. Kim, S., Soangra, R., Grant-Beuttler, M., & Aminian, A. (2019). Wearable Sensor-based Gait Classification in Idiopathic Toe Walking Adolescents. Biomedical sciences instrumentation, 55(2), 178. 27. Köse, A., Cereatti, A., & Della Croce, U. (2012). Bilateral step length estimation using a single inertial measurement unit attached to the pelvis. Journal of neuroengineering and rehabilitation, 9(1), 1-10. 28. Kuo, Y.-H., Wang, T.-F., Liu, L.-K., Lee, W.-J., Peng, L.-N., & Chen, L.-K. (2019). Epidemiology of sarcopenia and factors associated with it among community-dwelling older adults in Taiwan. The American Journal of the Medical Sciences, 357(2), 124-133. 29. Langley, P. (1994). Selection of relevant features in machine learning. Proceedings of the AAAI Fall symposium on relevance, 30. Latt, M. D., Menz, H. B., Fung, V. S., & Lord, S. R. (2008). Walking speed, cadence and step length are selected to optimize the stability of head and pelvis accelerations. Experimental brain research, 184(2), 201-209. 31. Lewis, C. L., Laudicina, N. M., Khuu, A., & Loverro, K. L. (2017). The human pelvis: variation in structure and function during gait. The Anatomical Record, 300(4), 633-642. 32. Lim, Y. P., Lin, Y. C., & Pandy, M. G. (2013). Muscle function during gait is invariant to age when walking speed is controlled. Gait & posture, 38(2), 253-259. 33. Lu, Y., Wang, H., Qi, Y., & Xi, H. (2021). Evaluation of classification performance in human lower limb jump phases of signal correlation information and LSTM models. Biomedical Signal Processing and Control, 64, 102279. 34. MacIntosh, B. R., Holash, R. J., & Renaud, J.-M. (2012). Skeletal muscle fatigue–regulation of excitation–contraction coupling to avoid metabolic catastrophe. Journal of cell science, 125(9), 2105-2114. 35. Malmstrom, T. K., & Morley, J. E. (2013). SARC-F: a simple questionnaire to rapidly diagnose sarcopenia. Journal of the American Medical Directors Association, 14(8), 531-532. 36. Mannion, A. F., & Dolan, P. (1994). Electromyographic median frequency changes during isometric contraction of the back extensors to fatigue. Spine, 19(11), 1223-1229. 37. Marcora, S. M., Staiano, W., & Manning, V. (2009). Mental fatigue impairs physical performance in humans. Journal of applied physiology, 106(3), 857-864. 38. Maslivec, A., Bampouras, T., Dewhurst, S., Vannozzi, G., Macaluso, A., & Laudani, L. (2018). Mechanisms of head stability during gait initiation in young and older women: a neuro-mechanical analysis. Journal of Electromyography and Kinesiology, 38, 103-110. 39. Mason, J. E., Traoré, I., & Woungang, I. (2016). Machine Learning Techniques for Gait Biometric Recognition. Springer. 40. Mehta, R. K., & Parasuraman, R. (2014). Effects of mental fatigue on the development of physical fatigue: a neuroergonomic approach. Human factors, 56(4), 645-656. 41. Millar, C., Siddique, N., & Kerr, E. (2020). LSTM Classification of sEMG Signals For Individual Finger Movements Using Low Cost Wearable Sensor. 2020 International Symposium on Community-centric Systems (CcS), 42. Murad, A., & Pyun, J.-Y. (2017). Deep recurrent neural networks for human activity recognition. Sensors, 17(11), 2556. 43. Neptune, R. R., Kautz, S., & Zajac, F. (2001). Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. Journal of biomechanics, 34(11), 1387-1398. 44. Nilwik, R., Snijders, T., Leenders, M., Groen, B. B., van Kranenburg, J., Verdijk, L. B., & van Loon, L. J. (2013). The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Experimental gerontology, 48(5), 492-498. 45. Olson, R. L., Chang, Y.-K., Brush, C. J., Kwok, A. N., Gordon, V. X., & Alderman, B. L. (2016). Neurophysiological and behavioral correlates of cognitive control during low and moderate intensity exercise. NeuroImage, 131, 171-180. 46. Parijat, P., & Lockhart, T. E. (2008). Effects of quadriceps fatigue on the biomechanics of gait and slip propensity. Gait & posture, 28(4), 568-573. 47. Puetz, T. W. (2006). Physical activity and feelings of energy and fatigue. Sports medicine, 36(9), 767-780. 48. Requiao, L., Nadeau, S., Milot, M., Gravel, D., Bourbonnais, D., & Gagnon, D. (2005). Quantification of level of effort at the plantarflexors and hip extensors and flexor muscles in healthy subjects walking at different cadences. Journal of Electromyography and Kinesiology, 15(4), 393-405. 49. Rieser, J. J., Pick, H. L., Ashmead, D. H., & Garing, A. E. (1995). Calibration of human locomotion and models of perceptual-motor organization. Journal of Experimental Psychology: Human Perception and Performance, 21(3), 480. 50. Roerdink, M., Hlavackova, P., & Vuillerme, N. (2011). Effects of plantar-flexor muscle fatigue on the magnitude and regularity of center-of-pressure fluctuations. Experimental brain research, 212(3), 471-476. 51. Santos, P. C. R. d., Barbieri, F. A., Zijdewind, I., Gobbi, L. T. B., Lamoth, C., & Hortobágyi, T. (2019). Effects of experimentally induced fatigue on healthy older adults’ gait: A systematic review. PLoS One, 14(12), e0226939. 52. Sherratt, F., Plummer, A., & Iravani, P. (2021). Understanding LSTM network behaviour of IMU-based locomotion mode recognition for applications in prostheses and wearables. Sensors, 21(4), 1264. 53. Steuer, I., & Guertin, P. A. (2019). Central pattern generators in the brainstem and spinal cord: an overview of basic principles, similarities and differences. Reviews in the Neurosciences, 30(2), 107-164. 54. Surface ElectroMyoGraphy for the Non-Invasive Assessment of Muscles, SENIAM. http://www.seniam.org/ 55. Svoboda, Z., Janura, M., Kutilek, P., & Janurova, E. (2016). Relationships between movements of the lower limb joints and the pelvis in open and closed kinematic chains during a gait cycle. Journal of human kinetics, 51(1), 37-43. 56. Tunca, C., Pehlivan, N., Ak, N., Arnrich, B., Salur, G., & Ersoy, C. (2017). Inertial sensor-based robust gait analysis in non-hospital settings for neurological disorders. Sensors, 17(4), 825. 57. Ulloa, J. G. (2018). Applied Biomechatronics Using Mathematical Models. Academic press. 58. Wan, J.-j., Qin, Z., Wang, P.-y., Sun, Y., & Liu, X. (2017). Muscle fatigue: general understanding and treatment. Experimental & molecular medicine, 49(10), e384-e384. 59. Wang, R., Fukuda, D. H., Stout, J. R., Robinson, E. H., Miramonti, A. A., Fragala, M. S., & Hoffman, J. R. (2015). Evaluation of electromyographic frequency domain changes during a three-minute maximal effort cycling test. Journal of sports science & medicine, 14(2), 452. 60. Wu, C.-C., Chen, Y.-J., Hsu, C.-S., Wen, Y.-T., & Lee, Y.-J. (2020). Multiple Inertial Measurement Unit Combination and Location for Center of Pressure Prediction in Gait. Frontiers in Bioengineering and Biotechnology, 8, 1252. 61. Xing, X., Zhong, B., Luo, H., Rose, T., Li, J., & Antwi-Afari, M. F. (2020). Effects of physical fatigue on the induction of mental fatigue of construction workers: A pilot study based on a neurophysiological approach. Automation in Construction, 120, 103381. 62. Yang, K., Ahn, C. R., & Kim, H. (2020). Deep learning-based classification of work-related physical load levels in construction. Advanced Engineering Informatics, 45, 101104. 63. Zhang, J., Lockhart, T. E., & Soangra, R. (2014). Classifying lower extremity muscle fatigue during walking using machine learning and inertial sensors. Annals of biomedical engineering, 42(3), 600-612. 64. Zhao, A., Qi, L., Dong, J., & Yu, H. (2018). Dual channel LSTM based multi-feature extraction in gait for diagnosis of Neurodegenerative diseases. Knowledge-Based Systems, 145, 91-97. 65. Zhu, X., & Wu, X. (2004). Class noise vs. attribute noise: A quantitative study. Artificial intelligence review, 22(3), 177-210. |