帳號:guest(3.142.196.191)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):辛佳靜
作者(外文):SHIN, JIA-JING
論文名稱(中文):群組化學習與介面設計對程序操作的影響: 以飛行儀表為例
論文名稱(外文):Effects of chunking learning and interface design on a procedure operation: an example of flight instruments
指導教授(中文):李昀儒
指導教授(外文):LEE, YUN-JU
口試委員(中文):瞿志行
黃瀅瑛
口試委員(外文):CHU, CHIH-HSING
HUANG, YING-YIN
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:108034569
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:78
中文關鍵詞:群組化心智負荷操作表現搜尋績效
外文關鍵詞:chunkingmental workloadoperation performancesearch efficiency
相關次數:
  • 推薦推薦:0
  • 點閱點閱:199
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
探討飛航事件中,發現人為因素與航空器是導致事故的主要原因。因此,近年來的研究皆關注於訓練以及儀表介面的設計,並透過心智負荷以及操作表現進行評估。再認圖標時,發現群組化教學方式可以降低工作記憶的負荷,有較好的表現。此外,目前僅有針對不同儀表的學習曲線分析,目前尚無文獻探討不同學習方式下的儀表學習曲線。因此,本研究將評估群組化學習對於學習表現與心智負荷的影響,並在後續操作兩種不同的介面,以了解不同介面設計的差異。
本研究總共招收30人,並將受試者分為兩組學習組,每組為15人。受試者為視力正常且無飛行經驗者。進行正式實驗前,受試者需要進行視覺空間工作記憶測驗。實驗共分為三階段,第一階段為儀表學習,兩組學習組分別以群組化擺放的方式以及隨機呈現儀表的方式來學習28個飛行儀表。第二階段為介面點擊學習,兩組學習組分別以群組化或是按照A介面上至下順序點及介面中的儀表。爾後,受試者便依照語音指示點擊儀表,此步驟需重複15次。我們會在完成第1、第5、第10與第15次後請受試者填寫心智負荷問卷。第三階段為不同介面測試,介面為B介面(優化介面)與C介面(凝視路徑較長介面)。同第二階段,兩組別將使用不同方式點擊介面,並聆聽語音點擊介面,此步驟僅需一次。實驗過程中會以眼動儀紀錄點擊過程。介面點擊軟體也會記錄受試者點擊表現。
本研究結果發現兩組間的視覺空間工作記憶沒有差異。兩組15次介面點擊之學習曲線也並無差異。在第一次介面點擊中,可以發現群組化組較對照組有較好的表現。而在後續表現中,組群化組具有較好的視覺搜尋表現。然而,兩組之心智負荷問卷分數並無顯著差異。在操作不同介面下,發現B介面較C介面有較好的表現且較低的心智負荷,但錯誤次數上並無顯著差異。從研究結果可以發現群組化學習在初次練習時可以有較好的表現。在後續表現上,群組化教學下,視覺搜尋較對照組更有效率。在介面設計方面,可以發現優化的介面具有較低的心智負荷、較有效率的搜尋與較好的學習表現。而在學習方法與介面設計的交互作用下,可以發現群組化組在優化介面下具有較好的表現。本研究僅為再認實驗,可能無法讓受試者有明顯感受到負荷。建議後續研究可以增加實驗擬真度,體現實際飛行情形與表現。此外,建議增加不同設計介面以探討群組化學習的效果。
When it comes to flight accidents causes, the human factors and avionics dominate the most. Hence, recent aviation studies focused on flight training and interface design through mental workload and flight performance. It was found that using chunking learning on recognizing icons could reduce mental workload and enhance better performance. Additionally, recent studies explored learning curve only on different flight interfaces, the difference of learning approach under learning curve hadn’t been figured out yet. Therefore, this research would evaluate the impact of chunking learning on learning curve, learning performance and mental load, and operate two different interfaces afterwards to understand the differences in different interface designs.
There were 30 subjects enrolled in this study, and they were divided into 2 learning groups. Subjects should have neither nearsighted nor flight experience. Before the experiment started, subjects were required to take visuospatial working memory test. The formal experiment separated into 3 phases, the first phase was instrument learning. The chunking group learned the 28 instruments through chunking instruments while the control group learned the instruments in random order. In the second phase practicing phase. The chunking group clicked the instruments through chunking order. For the control group, they click the instruments from the top to the down of the interface. Subsequently, all the subjects clicked the instruments according to audio instructions. Subjects would practice this step for 15 times. After finished 1st, 5th, 10th ,15th of the practices, subjects were asked to fill in the mental workload questionnaire. In the third phase, B interface (optimized interface) and C interface (interface with longer scanning path) were applied as testing interfaces. The step in the third phase was same as the second phase. However, instead of practicing 15 times, subjects only need to do once on each interface in the third phase. Eye tracker would record subject’s visual search during the experiment. The software would also record the subject’s performance.
The research of this study found out that there was no difference in visual spatial working memory between two groups. Learning rate between two group didn’t show significantly different. In the second phase of first practice, the chunking group showed better performance than control group. Additionally, visual searching in chunking group appeared to be more efficiency than control group in the following practice. On the other hand, there’s no difference in mental workload between groups during the whole practice. In the third phase, subjective score for B interface showed lower mental workload than C interface. On top of that, B interface had better performance than C interface. The error times shows no different between two groups. From the research result we can find that chunking learning motivated better learning performance and visual search efficiency. In addition to the first time of practice, the chunking group showed better visual search efficiency than control group in the following practice. In terms of interface design, the optimized interface had lower mental workload, more efficient visual search and better performance. Under the interaction of learning approach and interface design, the optimized interface brought better performance than others. To reflect more closely to actual flight situation, it’s recommended to increase experimental fidelity in the future research. Additionally, future experiments also needed to explore different kinds of interface manipulation under chunking learning.
摘要 II
Abstract IV
第一章 緒論 1
1.1研究背景與動機 1
1.2研究範圍與目的 2
1.3研究架構與流程 3
第二章 文獻探討 5
2.1 機艙儀表板演變 5
2.1.1 組件設計原則 8
2.1.2 介面設計評估指標 8
2.2學習理論 10
2.2.1 知識習得 10
2.2.2 群組化學習 10
2.2.2 學習曲線 11
2.3 認知負荷 12
2.3.1 主觀問卷評估認知負荷 14
2.4 眼動行為 15
2.4.1 眼睛構造 15
2.4.2 眼睛動作 16
2.4.3 眼動儀分析方式 18
2.5 小結 19
第三章 研究方法 20
3.1 問題定義與描述 20
3.2 實驗參與者 20
3.2.1 招募方式 20
3.2.2 研究對象 20
3.3 實驗設備與環境 21
3.3.1 眼動儀 21
3.3.2 實驗材料 21
3.3.3實驗環境 24
3.4實驗設計 25
3.4.1 測前階段 25
3.4.2 知識階段 26
3.4.3 學習與測試階段 27
3.5 數據分析 27
3.6 統計方法 28

第四章 結果 30
4.1 視覺空間工作記憶 30
4.2 學習效果 31
4.2.1 學習率 31
4.2.2 反應時間 32
4.2.3 錯誤次數 34
4.2.4 心智負荷 36
4.2.5 凝視次數 40
4.2.6 平均凝視期間 42
4.2.7 凝視範圍 44
4.2.8 掃視次數 46
4.3 介面操作表現 48
4.3.1 反應時間 48
4.3.2 錯誤次數 50
4.3.3 心智負荷 51
4.3.4 眼動行為之凝視次數 53
4.3.5 眼動行為之平均凝視期間 54
4.3.6 眼動行為之凝視範圍 56
4.3.7 眼動行為之掃視次數 57
4.4 小結 59
第五章 討論 61
5.1 學習效果 61
5.1.1 學習率 61
5.1.2 學習次數的影響 61
5.2學習方式對於介面操作之影響 62
5.2.1 學習方式對於初次練習表現的差異 62
5.2.2 學習方式對於後續練習表現的差異 64
5.3 學習方式對於介面設計之影響 64
5.3.1 不同介面操作差異 64
5.3.2 不同學習方式操作介面差異 66
5.4 心智負荷 67
5.5 研究限制 68
第六章 結論 69
參考資料 70
附錄A-儀表步驟操作 75
附錄B-任務負荷主觀量表(NASA-TLX) 78


1. Accettullo, E. E. (2004). Instrument pilot skill acquisition in the early phases of flight training using an advanced cockpit display system. Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
2. Ackerman, P. L., & Kanfer, R. (1988). Declarative and Procedural Knowledge in Skill Acquisition: An Aptitude—Treatment Interaction Framework for Training. Proceedings of the Human Factors Society Annual Meeting,
3. Anzanello, M. J., & Fogliatto, F. S. (2011). Learning curve models and applications: Literature review and research directions. International Journal of Industrial Ergonomics, 41(5), 573-583. https://doi.org/https://doi.org/10.1016/j.ergon.2011.05.001
4. Beal, G. (1945). Making the cockpit practical for the pilot. SAE Transactions, 437-496.
5. Briefing, F. S. (2018). Transition Training. https://www.faa.gov/news/safety_briefing/2018/media/SE_Topic_18-06.pdf
6. Cooper, G., Harper Jr, RP. (1969). The Use of Pilot Rating in the Evaluation of Aircraft Handling Qualities.
7. Cornsweet, T. N. (1970). Visual perception Academic Press. New York London.
8. Davson, H. (1980). Physiology of the eye. 4th Edn., New York, USA, Churchill Livingstone. In: Elsevier. pp.
9. Dawson, E. C. (2006). Code of Federal Regulations, Title 14, Aeronautics and Space, Pt. 1200-End, Revised as of January 1 2006. Office of the Federal Register.
10. Duchowski, A. T., & Duchowski, A. T. (2017). Eye tracking methodology: Theory and practice. Springer.
11. Duchowski, A. T., Medlin, E., Gramopadhye, A., Melloy, B., & Nair, S. (2001). Binocular eye tracking in VR for visual inspection training. Proceedings of the ACM symposium on Virtual reality software and technology,
12. Ellis, K. K. E. (2009). Eye tracking metrics for workload estimation in flflight deck operations. THESES AND DISSERTATIONS. https://doi.org/https://doi.org/10.17077/etd.a773626l
13. Gittins, D. (1986). Icon-based human-computer interaction. International Journal of Man-Machine Studies, 24(6), 519-543. https://doi.org/https://doi.org/10.1016/S0020-7373(86)80007-4
14. Gobet, F., Lane, P. C., Croker, S., Cheng, P. C., Jones, G., Oliver, I., & Pine, J. M. (2001). Chunking mechanisms in human learning. Trends in cognitive sciences, 5(6), 236-243. https://doi.org/https://doi.org/10.1016/S1364-6613(00)01662-4
15. Greenhouse, S. W., Geisser, Seymour. (1959). On methods in the analysis of profile data. Psychometrika, 24(2), 95-112. https://doi.org/https://doi.org/10.1007/BF02289823
16. Gregory, R. L. (2015). Eye and brain: The psychology of seeing (Vol. 80). Princeton university press.
17. Hart, S. G. (1988). Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. Advanced in Psychology. https://doi.org/https://doi.org/10.1016/S0166-4115(08)62386-9
18. Hertzum, M., & Holmegaard, K. D. (2013). Perceived time as a measure of mental workload: Effects of time constraints and task success. International Journal of Human-Computer Interaction, 29(1), 26-39. https://doi.org/https://doi.org/10.1080/10447318.2012.676538
19. Hettinger, L. J., Nelson, W. T., & Haas, M. W. (1994). Applying virtual environment technology to the design of fighter aircraft cockpits: Pilot performance and situation awareness in a simulated air combat task. Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
20. Hill, S. G., Iavecchia, H. P., Byers, J. C., Bittner Jr, A. C., Zaklade, A. L., & Christ, R. E. (1992). Comparison of four subjective workload rating scales. Human factors, 34(4), 429-439. https://doi.org/https://doi.org/10.1177/001872089203400405
21. Huynh, H., & Feldt, L. S. (1976). Estimation of the Box correction for degrees of freedom from sample data in randomized block and split-plot designs. Journal of educational statistics, 1(1), 69-82. https://doi.org/https://doi.org/10.3102/10769986001001069
22. Hwang, S.-L., Yau, Y.-J., Lin, Y.-T., Chen, J.-H., Huang, T.-H., Yenn, T.-C., & Hsu, C.-C. (2008). Predicting work performance in nuclear power plants. Safety Science, 46(7), 1115-1124. https://doi.org/https://doi.org/10.1016/j.ssci.2007.06.005
23. Jahn, G., Oehme, A., Krems, J. F., & Gelau, C. (2005). Peripheral detection as a workload measure in driving: Effects of traffic complexity and route guidance system use in a driving study. Transportation Research Part F: Traffic Psychology and Behaviour, 8(3), 255-275. https://doi.org/https://doi.org/10.1016/j.trf.2005.04.009
24. Joseph H. Goldberg, X. P. K. (1999). Computer interface evaluation using eye movements: methods and constructs. International Journal of Industrial Ergonomics. https://doi.org/https://doi.org/10.1016/S0169-8141(98)00068-7
25. Kotval, X. P., & Goldberg, J. H. (1998). Eye movements and interface component grouping: An evaluation method. Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
26. Kramer, A. F. (1991). Physiological metrics of mental workload: A review of recent progress. Multiple-task performance, 279-328.
27. Lai, M.-L., Tsai, M.-J., Yang, F.-Y., Hsu, C.-Y., Liu, T.-C., Lee, S. W.-Y., . . . Tsai, C.-C. (2013). A review of using eye-tracking technology in exploring learning from 2000 to 2012. Educational research review, 10, 90-115. https://doi.org/https://doi.org/10.1016/j.edurev.2013.10.001
28. Lange, C., Feltgen, N., Junker, B., Schulze-Bonsel, K., & Bach, M. (2009). Resolving the clinical acuity categories “hand motion” and “counting fingers” using the Freiburg Visual Acuity Test (FrACT). Graefe's Archive for Clinical and Experimental Ophthalmology, 247(1), 137-142. https://doi.org/https://doi.org/10.1007/s00417-008-0926-0
29. Lee, P. U.-J., & Zhai, S. (2004). Top-down learning strategies: can they facilitate stylus keyboard learning? International journal of human-computer studies, 60(5-6), 585-598. https://doi.org/https://doi.org/10.1016/j.ijhcs.2003.10.009
30. Li, W.-C. (2015). How Cockpit Design Impacts Pilots’ Attention Distribution and Perceived Workload during Aiming a Stationary Target. Procedia Manufacturing. https://doi.org/https://doi.org/10.1016/j.promfg.2015.07.781
31. Li, W.-C., Zhang, J., Le Minh, T., Cao, J., & Wang, L. (2019). Visual scan patterns reflect to human-computer interactions on processing different types of messages in the flight deck. International Journal of Industrial Ergonomics, 72, 54-60. https://doi.org/https://doi.org/10.1016/j.ergon.2019.04.003
32. Loftus, G. R. (1981). Tachistoscopic simulations of eye fixations on pictures. Journal of Experimental Psychology: Human Learning and Memory, 7(5), 369. https://doi.org/https://doi.org/10.1037/0278-7393.7.5.369
33. May, J. G., Kennedy, R. S., Williams, M. C., Dunlap, W. P., & Brannan, J. R. (1990). Eye movement indices of mental workload. Acta psychologica, 75(1), 75-89. https://doi.org/https://doi.org/10.1016/0001-6918(90)90067-P
34. McCormick, E. J., & Sanders, M. S. (1982). Human factors in engineering and design. McGraw-Hill Companies.
35. McKinlay, W. (1993). The Evolution of Aircraft Instruments: A review of recent and expected developments in the field of aircraft instrumentation. Aircraft Engineering and Aerospace Technology: An International Journal, 42(2), 32-37. https://doi.org/https://doi.org/10.1108/eb034604
36. Moacdieh, N. M., Prinet, J. C., & Sarter, N. B. (2013). Effects of modern primary flight display clutter: Evidence from performance and eye tracking data. Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
37. Moray, N. (1988). Mental workload since 1979. International Review of Ergonomics, 2, 123-150.
38. Moray, N. (2013). Mental workload: Its theory and measurement (Vol. 8). Springer Science & Business Media.
39. Nassar, M. R., Helmers, J. C., & Frank, M. J. (2018). Chunking as a rational strategy for lossy data compression in visual working memory. Psychological review, 125(4), 486. https://doi.org/https://doi.org/10.1037/rev0000101
40. Niemelä, M., & Saariluoma, P. (2003). Layout attributes and recall. Behaviour & information technology, 22(5), 353-363. https://doi.org/https://doi.org/10.1080/0144929031000156924
41. Niemelä, M., & Saarinen, J. (2000). Visual search for grouped versus ungrouped icons in a computer interface. Human factors, 42(4), 630-635. https://doi.org/https://doi.org/10.1518/001872000779697999
42. Noguchi, K., Gel, Y. R., Brunner, E., & Konietschke, F. (2012). nparLD: an R software package for the nonparametric analysis of longitudinal data in factorial experiments. Journal of Statistical software, 50(12). http://resolver.sub.uni-goettingen.de/purl?gs-1/9492
43. Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological bulletin, 124(3), 372. https://doi.org/https://doi.org/10.1037/0033-2909.124.3.372
44. Recarte, M. A., Nunes, Luis M. (2000). Effects of verbal and spatial-imagery tasks on eye fixations while driving. Journal of Experimental Psychology: Human Learning and Memory. https://doi.org/https://psycnet.apa.org/buy/2000-13870-003
45. Reid, G. B., & Nygren, T. E. (1988). The subjective workload assessment technique: A scaling procedure for measuring mental workload. In Advances in psychology (Vol. 52, pp. 185-218). Elsevier. https://doi.org/https://doi.org/10.1016/S0166-4115(08)62387-0
46. Rubio, S., Díaz, E., Martín, J., & Puente, J. M. (2004). Evaluation of subjective mental workload: A comparison of SWAT, NASA‐TLX, and workload profile methods. Applied Psychology, 53(1), 61-86. https://doi.org/ https://doi.org/10.1111/j.1464-0597.2004.00161.x
47. Salvucci, D. D., & Bogunovich, P. (2010). Multitasking and monotasking: The effects of mental workload on deferred task interruptions. Proceedings of the SIGCHI conference on human factors in computing systems,
48. Schunk, D. H. (1996). Learning theories. Printice Hall Inc., New Jersey, 53.
49. Sheue-Ling Hwang, Y.-J. Y., Yu-Ting Lin,Jun-Hao Chen,Tsun-Hung Huang,Tzu-Chung Yenn. (2008). Predicting work performance in nuclear power plants. Safety Science. https://doi.org/https://doi.org/10.1016/j.ssci.2007.06.005
50. Skaff, M. (2010). F-35 lightning II cockpit vision. SAE International Journal of Passenger Cars-Electronic and Electrical Systems, 3(2010-01-2330), 131-140. https://www.fujitsu.com/downloads/MICRO/fma/marcom/convergence/data/papers/2010-01-2330.pdf
51. Socha, V. (2020). Pilots’ Performance and Workload Assessment: Transition from Analogue to Glass-Cockpit. Applied Science. https://doi.org/https://doi.org/10.3390/app10155211
52. Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane cognitive load. Educational psychology review, 22(2), 123-138. https://doi.org/https://doi.org/10.1007/s10648-010-9128-5
53. THALES. (2018). Learn more about cockpit: history, how it works and evolution. https://www.thalesgroup.com/en/global/activities/aerospace/flight-deck-avionics-equipment-functions/flight-deck/learn-more-about
54. Thevenot, J., Cordonnier, C., Rougeron, A., Le Goff, O., Nguyen, H. T., Denis, S., . . . Blanquet-Diot, S. (2015). Enterohemorrhagic Escherichia coli infection has donor-dependent effect on human gut microbiota and may be antagonized by probiotic yeast during interaction with Peyer’s patches. Applied microbiology and biotechnology, 99(21), 9097-9110. https://doi.org/https://doi.org/10.1007/s00253-015-6704-0
55. Vits, J., & Gelders, L. (2002). Performance improvement theory. International journal of production economics, 77(3), 285-298. https://doi.org/https://doi.org/10.1016/S0925-5273(00)00087-6Get
56. Wang, H., Xue, C., & Liu, Q. (2010). The Eye Movement Experiment and the Usability Evaluation of the Fighter Cockpit Digital Interface. 2010 2nd International Conference on Information Engineering and Computer Science. https://doi.org/10.1109/ICIECS.2010.5678205
57. Wang, Q., Yang, S., Liu, M., Cao, Z., & Ma, Q. (2014). An eye-tracking study of website complexity from cognitive load perspective. Decision support systems, 62, 1-10. https://doi.org/https://doi.org/10.1016/j.dss.2014.02.007
58. Wang, Y., Guo, X., Liu, Q., Yang, X., Bai, Y., Du, J., & Xiong, D. (2017). Eye movement characteristics research on pilots of different experience background during aircraft cockpit display image visual search task. International Conference on Man-Machine-Environment System Engineering,
59. Wang, Y., Liu, Q., Lou, W., Xiong, D., Bai, Y., Du, J., & Guo, X. (2018). Ergonomics evaluation of large screen display in cockpit based on eye-tracking technology. International Conference on Man-Machine-Environment System Engineering,
60. Wertheimer, M. (1938). Gestalt theory.
61. Wright, S., & O'Hare, D. (2015). Can a glass cockpit display help (or hinder) performance of novices in simulated flight training? Applied ergonomics, 47, 292-299. https://doi.org/https://doi.org/10.1016/j.apergo.2014.10.017
62. Wright, T. P. (1936). Factors affecting the cost of airplanes. Journal of the aeronautical sciences, 3(4), 122-128. https://doi.org/https://doi.org/10.2514/8.155
63. Yan, S., Tran, C. C., Chen, Y., Tan, K., & Habiyaremye, J. L. (2017). Effect of user interface layout on the operators’ mental workload in emergency operating procedures in nuclear power plants. Nuclear Engineering and Design, 322, 266-276. https://doi.org/https://doi.org/10.1016/j.nucengdes.2017.07.012
64. Zaccara, G., Gangemi, P., Muscas, G., Paganini, M., Pallanti, S., Parigi, A., . . . Arnetoli, G. (1992). Smooth-pursuit eye movements: alterations in Alzheimer's disease. Journal of the neurological sciences, 112(1-2), 81-89. https://doi.org/https://doi.org/10.1016/0022-510X(92)90136-9
65. Zhou, Q., Cheng, Y., Liu, Z., Chen, Y., & Li, C. (2018). The Layout Evaluation of Man-Machine Interface Based on Eye Movement Data. Congress of the International Ergonomics Association,
66. 石裕川, 鄭志展, 陳宜寧, & 洪憲忠. (2016). 高齡者與年輕人之駕駛模擬器學習效果與作業負荷之比較. 運輸計劃季刊, 45(2), 81-99.
67. 飛航安全調查委員會. (2018). 台灣飛安統計報告 2007-2018. 飛航安全調查委員會. https://www.ttsb.gov.tw/media/1139/%E5%8F%B0%E7%81%A3%E9%A3%9B%E5%AE%89%E7%B5%B1%E8%A8%88-2008-2017.pdf



 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *