帳號:guest(3.12.34.148)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周庭瑱
作者(外文):Chou, Ting-Chen
論文名稱(中文):基於使用者操作行為模擬及元件配置最佳化的介面設計:以二維圖形化使用者介面為例
論文名稱(外文):Interface Design through the Simulation of User’s Operations and the Optimization of Component Layout: The 2D Graphical User Interface as an Example
指導教授(中文):盧俊銘
指導教授(外文):Lu, Jun-Ming
口試委員(中文):廖崇碩
林瑞豐
口試委員(外文):Liao, Chung-Shou
Lin, Jui-Feng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:108034561
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:112
中文關鍵詞:易用性操作時間預估策略區分霍夫曼模型費茨定律
外文關鍵詞:usabilityprediction of operation timeidentification of strategiesHoffmann’s modelFitts’ law
相關次數:
  • 推薦推薦:0
  • 點閱點閱:241
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
介面的易用性是近年來受重視的議題,以往多採用專家或使用者的評估,這些方法雖被廣泛應用,但人為介入都是必要的,因此可能面臨使用者反應未盡自然、難以反映全體使用者行為、專業人員培訓困難等挑戰,且涉及一定程度的金錢與時間成本;此外,由於評估通常並非系統開發者所擅長,其與設計變更也因此常演變為分別進行的獨立作業,難免造成理解差異而無法有效解決評估時發現的問題或是影響了時效。因此,本研究旨在提出一套模擬使用者行為並運用演算法將介面佈局最佳化的方法,藉以減少人為介入帶來的限制、有效提昇介面的易用性。
本研究以熟手使用者與二維圖形化介面互動的績效作為探討標的,基於模擬使用者的操作行為,採用多目標遺傳演算法進行介面佈局最佳化,最佳化目標式包含縮短操作時間、限制按鍵幾何形狀與提昇按鍵一致性。操作時間的估計是以按鍵層級模型拆解使用者在介面上操作的行為,再透過霍夫曼模型推估按鍵間的移動時間,同時考量不同操作策略之間的差異;按鍵幾何形狀之目標則是在於避免按鍵過於狹長而導致搜索或點擊不易,因此針對長寬比過大的元件賦予懲罰值以限制此情形;按鍵一致性的目標則是為維持介面的整齊性並增加搜索效率,因此對功能相同卻大小不同的按鍵給予懲罰值加以限制。
基於前述概念,本系統能根據介面組成元件特性模擬使用者的操作行為、直接產生最佳化的介面佈局,為建立使用者模擬的模型並驗證最佳化的介面是否能如預期地提昇操作績效,本研究設計兩階段的實驗,各招募30名裸視或配戴隱形眼鏡矯正後視力達0.8以上且互不重複的參與者,第一階段實驗包含男性13名、女性17名,平均年齡為22.57 ± 1.17歲,第二階段實驗包含男性14名、女性16名,平均年齡為22.63 ± 1.59歲。第一階段實驗是為了建立模擬使用者行為的基礎,參與者需以滑鼠操作電腦,與根據一般性設計原則產生的二維圖形化介面互動,藉以蒐集操作二維平面介面時之各項行為(如點擊、確認等)所花費的時間,並從移動行為推估霍夫曼模型的斜率與截距;此外,即便於相同介面上執行相同任務,不同操作策略也會影響介面操作績效,為使策略區分能屏除人為的介入、提昇客觀性,本研究提出四種以數值分析為基礎的方法區分行為策略,以全面性地衡量使用者操作介面的績效;基於績效預測模型與策略區分方法,便可發展介面佈局最佳化的演算法並產生介面設計。第二階段為驗證實驗,要求參與者操作與第一階段相同的介面以及透過演算法產生的最佳化介面,過程中皆蒐集使用者的操作時間與瞳孔直徑以評估介面操作績效與客觀心智負荷,再根據比較結果確認本系統的成效。
結果發現,本研究所提出的策略區分方法中以「依序記錄被點擊的按鍵類別」的結果與人為主觀判斷結果最為接近,但四種方法都未能與人為判斷有完全一致的分類結果,因此採用人為主觀判斷的分類結果推估整體操作績效;基於按鍵層級模型拆解操作行為,再依據霍夫曼模型推估移動所需的時間,也成功建立了績效預估模型,雖然高估個別行為的操作時間,但就所有策略平均操作時間或被採用次數最多的策略之操作時間而言,預估時間與真實時間皆無顯著誤差,故預測的準確度在可接受範圍內。以上述使用者操作行為的模擬為基礎將介面佈局最佳化,可自動產生符合幾何形狀限制與按鍵一致性的介面,且改善後介面之預估操作時間較原始介面的預估操作時間短。經由第二階段實驗的驗證也發現,以本研究提出的演算法所產生的介面佈局確實能提昇使用者的操作績效,並且不會造成客觀心智負荷上升之負面效果。此外,從第二階段實驗的訪談亦可得知參與者對於介面改善時的具體期望:首先,參與者會考量「會被連續點擊的按鍵應擺放在相鄰位置」以減少移動距離、降低操作時間;其次,當「容易點擊」與「縮短移動距離」兩個目標衝突時,參與者會主觀地選擇其中一種;最後,個人所習慣或偏好的操作模式也是影響自認理想介面的因素。整體而言,改善後介面有如預期地縮短移動距離、將接續點擊的按鍵擺放在附近,因此大致上是符合參與者期待的。
總結而言,本研究透過使用者操作行為的模擬以及最佳化演算法改善二維圖形化介面佈局,除了克服過往在使用者測試或專家評估所遭遇的限制,也經實驗驗證確實能提昇操作效率。在資源或時間有限的狀況下,可在介面開發的前期應用此方法、具體整合評估與設計變更,以便快速地擬定具易用性的介面佈局。
Usability of interfaces has received much attention in recent years. Generally speaking, usability is evaluated through either user testing or expert review. These frequently-used methods however involve much human intervention, which may lead to unnatural behavior being observed, not representing the target population, and difficulty in expert development. Besides, they are cost- and time-consuming. Further, the separated processes of design and evaluation may lead to discrepancy in understanding between the two teams, and hence fail to solve the problem efficiently and in time. Therefore, this study aimed to propose a method that can simulate the user’s behavior of interface interaction and consequently optimize the interface layout, which helps reduce the restrictions caused by human intervention as well as enhancing the usability of interface.
This study focused on the performance of experienced users while operating a computer program with a two-dimensional graphical interface. Interface layout could be optimized by using the multi-objective genetic algorithm based on the simulation of user’s operations. The objectives included minimizing operation time, unifying the geometry of buttons, and avoiding inconsistent shape of the same type of button. Following these concepts, an interface with good usability while complying with general design principles could be generated.
The user’s operations could be simulated according to the characteristics of interface components, so as to generate the optimized layout. To establish the simulation model and verify whether the performance can be optimized, a two-stage experiment was proposed. At each stage, 30 participants with a 16/20 vision (naked or corrected) were recruited. The first stage of the experiment included 13 males and 17 females, with an average age of 22.57 ± 1.17 years old. The second stage of the experiment included 14 males and 16 females, with an average age of 22.63 ± 1.59 years old. The first stage of the experiment was to build the simulation model. Participants were asked to operate a desktop PC with a mouse to interact with the two-dimensional graphical interface. The collected behavioral data can be used to estimate the operation time as well as verifying methods for strategy identification. In the second stage, participants were asked to interact with both the original interface presented at the first stage and the optimized interface generated by the algorithm. During the experiment, operation time and pupil diameter were collected to evaluate the user’s performance and mental workload.
It turned out that “button types of sequential clicks” was the best one among four methods to identify strategies. However, none of the four methods yielded consistent classification of strategies with human judgment. So, strategies were eventually identified by human judgement. The operation behavior was decomposed based on the keystroke-level model, and the time required for movement was estimated according to the Hoffmann’s model. The data collected in the first stage of experiment showed that the accuracy of the prediction seems to be acceptable. Subsequently, the optimized interface layout was generated along with the predicted operation time, which was shorter than the estimated operation time of the original interface. Through the verification in the second stage of the experiment, it was also found that the interface layout generated by the algorithm proposed in this study could indeed improve the user’s performance, while not leading to a higher mental workload. Furthermore, from the interviews in the second stage of the experiment, it was found that the optimized layout was generally in line with the expectations of participants.
To sum up, this study improved the two-dimensional graphical interface layout through the simulation of user behavior and optimization algorithms. Its effectiveness had also been verified with experimental data. In the case of limited resources, this method can be applied in the early stage of interface development to integrate evaluation and redesign, so as to rapidly generate interface layout with good usability.
摘要 I
Abstract III
第一章 緒論 1
1.1. 研究背景與動機 1
1.2. 研究目的與範圍 4
1.3. 研究架構與流程 5
第二章 文獻探討 8
2.1. 使用者的操作績效預估 8
2.1.1.移動時間的預估模型 8
2.1.2.滑鼠操作行為 10
2.2. 使用者行為區分 11
2.2.1.二維平面介面中的操作行為區分 12
2.2.2.動作策略分析 12
2.3. 基於最佳化的平面佈局改善 13
2.3.1.問題定義 13
2.3.2.最佳化介面佈局 14
2.3.3.啟發式演算法 14
2.4. 演算法實作 15
2.4.1.遺傳演算法 15
2.4.2.多目標式中解的比較 16
2.4.3.切割樹 17
2.5. 小結 19
第三章 研究方法 21
3.1. 研究規畫與準備 21
3.1.1.本研究探討之使用者介面 21
3.1.2.兩階段實驗 23
3.1.3.研究參與者 24
3.2. 第一階段實驗:建立預測模型與區分行為策略 25
3.2.1.實驗流程 25
3.2.2.建立預測模型 27
3.2.3.區分行為策略 28
3.2.4.前測結果 33
3.3. 生成最佳化介面 33
3.3.1.介面佈局最佳化的目標 33
3.3.2.多目標遺傳演算法實作 37
3.3.3.切割樹的遺傳運算 40
3.3.4.參數設定 44
3.4. 第二階段實驗:驗證實驗 45
3.4.1.實驗流程 45
3.4.2.資料蒐集與分析 48
3.4.3.前測結果 48
第四章 研究結果 49
4.1. 策略區分方法 49
4.2. 績效預估模型之建立與績效檢驗 51
4.3. 依最佳化演算法產生的改善後介面 55
4.4. 改善後介面之驗證 57
4.5. 訪談結果 59
4.5.1. 偏好介面 59
4.5.2. 自認理想的介面佈局 60
4.5.3. 自認理想介面之預估操作績效 63
第五章 討論 65
5.1. 使用者操作行為 65
5.1.1.兩種介面的操作績效預估準確度 66
5.1.2.與過往預測模型之比較 67
5.1.3.影響操作績效的可能因素 68
5.2. 行為策略 69
5.2.1. 策略被採用比例與介面佈局之關係 70
5.2.2. 策略區分方法之評估 71
5.3. 演算法之穩定性 72
5.3.1. 介面佈局與績效的穩定性 73
5.3.2. 演算法的修改建議 74
5.4. 修改目標式對操作績效預估結果的影響 75
5.4.1. 操作時間與移動距離之目標比較 75
5.4.2. 以極小化極大值衡量整體介面績效 77
第六章 結論 79
6.1. 主要發現 79
6.1.1. 使用者行為模擬 79
6.1.2. 介面佈局最佳化 80
6.1.3. 使用者對介面佈局的主觀認知 82
6.2. 研究貢獻與應用 82
6.3. 研究限制與未來方向 83
參考文獻 87
附錄一、研究倫理審查核可證明 95
附錄二、人為判斷的行為策略分類(第一階段實驗) 96
附錄三、策略區分結果:第一階段實驗 98
附錄四、第二階段實驗中參與者繪製的自認理想介面 99
附錄五、策略區分結果:第二階段實驗 103
附錄六、人為判斷的行為策略分類(第二階段實驗) 105
附錄七、檢驗演算法穩定性之9種介面佈局 107
附錄八、以移動距離為目標之10種介面佈局 109
附錄九、以極小化極大值原則產生之13種介面佈局 111
中文:
1. 王譯辰(2018)。中高齡與高齡族群之腳眼協調策略分析:以足部定位為例。清華大學工業工程與工程管理學系學位論文。
英文:
1. Acosta-Vargas, P., Salvador-Ullauri, L. A., & Luján-Mora, S. (2019). A heuristic method to evaluate web accessibility for users with low vision. IEEE Access, 7, 125634-125648.
2. Aiello, G., La Scalia, G., & Enea, M. (2012). A multi objective genetic algorithm for the facility layout problem based upon slicing structure encoding. Expert Systems with Applications, 39(12), 10352-10358.
3. Blickle, T. & Thiele, L. (1996). A comparison of selection schemes used in evolutionary algorithms. Evolutionary Computation, 4(4), 361-394.
4. Bozer, Y. A. & Meller, R. D. (1997). A reexamination of the distance-based facility layout problem. IIE Transactions, 29(7), 549-560.
5. Cao, Z. & Zhang, Z. (2010, December). Parameter settings of genetic algorithm based on multi-factor analysis of variance. In 2010 Fourth International Conference on Genetic and Evolutionary Computing (pp. 305-307). IEEE.
6. Card, S. K., Moran, T. P., & Newell, A. (1980). The keystroke-level model for user performance time with interactive systems. Communications of the ACM, 23(7), 396-410.
7. Card, S. K., Moran, T. P., & Newell, A. (1983). The Psychology of Human-Computer Interaction. Hillsdale, NJ.: Lawrence Rrlbaum Associates. Inc.
8. Chavan, A. L. & Ajmera, R. (2007, July). When in Rome... Be Yourself: A Perspective on Dealing with Cultural Dissimilarities in Ethnography. In International Conference on Usability and Internationalization (pp. 33-36). Springer, Berlin, Heidelberg.
9. Chen, L. & Tsoi, H. K. (2011, October). Users’ decision behavior in recommender interfaces: Impact of layout design. In RecSys’ 11 Workshop on Human Decision Making in Recommender Systems.
10. Chen, S. & Epps, J. (2014). Using task-induced pupil diameter and blink rate to infer cognitive load. Human-Computer Interaction, 29(4), 390-413.
11. Chen, S. Y., Fan, J. P., & Macredie, R. D. (2006). Navigation in hypermedia learning systems: Experts vs. novices. Computers in Human Behavior, 22(2), 251-266.
12. Chen, Y., Hoffmann, E. R., & Goonetilleke, R. S. (2015). Structure of hand/mouse movements. IEEE Transactions on Human-Machine Systems, 45(6), 790-798.
13. Chiroma, H., Abdulkareem, S., Abubakar, A., Zeki, A., Gital, A. Y. U., & Usman, M. J. (2013, December). Correlation study of genetic algorithm operators: crossover and mutation probabilities. In Proceedings of the International Symposium on Mathematical Sciences and Computing Research (pp. 6-7).
14. Choi, W., Ono, T., & Hachimura, K. (2009, September). Body Motion Analysis for Similarity Retrieval of Motion Data and Its Evaluation. In 2009 Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (pp. 1177-1180). IEEE.
15. Cobb, H. G., & Grefenstette, J. J. (1993). Genetic algorithms for tracking changing environments. Naval Research Lab Washington DC.
16. Codish, D., Rabin, E., & Ravid, G. (2019). User behavior pattern detection in unstructured processes-a learning management system case study. Interactive Learning Environments, 27(5-6), 699-725.
17. Coello, C. A. C., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolutionary algorithms for solving multi-objective problems (Vol. 5, pp. 79-104). New York: Springer.
18. Coffman, D. D. (1990). Effects of mental practice, physical practice, and knowledge of results on piano performance. Journal of Research in Music Education, 38(3), 187-196.
19. Dayama, N. R., Todi, K., Saarelainen, T., & Oulasvirta, A. (2020, April). GRIDS: Interactive Layout Design with Integer Programming. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1-13).
20. Diego-Mas, J. A., Garzon-Leal, D., Poveda-Bautista, R., & Alcaide-Marzal, J. (2019). User-interfaces layout optimization using eye-tracking, mouse movements and genetic algorithms. Applied Ergonomics, 78, 197-209.
21. Diego-Mas, J. A., Santamarina-Siurana, M. C., Alcaide-Marzal, J., & Cloquell-Ballester, V. A. (2009). Solving facility layout problems with strict geometric constraints using a two-phase genetic algorithm. International Journal of Production Research, 47(6), 1679-1693.
22. Diego-Mas, J. A., Santamarina-Siurana, M. C., Cloquell-Ballester, V. A., & Alcaide-Marzal, J. (2008). Slicing tree's geometric potential: an indicator for layout problems based on slicing tree structure. International Journal of Production Research, 46(4), 1071-1087.
23. Driscoll, D. L. (2011). Introduction to primary research: Observations, surveys, and interviews. Writing Spaces: Readings on Writing, 2, 153-174.
24. Driskell, J. E., Copper, C., & Moran, A. (1994). Does mental practice enhance performance?. Journal of Applied Psychology, 79(4), 481.
25. Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47(6), 381.
26. Fonteyn, M. E., Kuipers, B., & Grobe, S. J. (1993). A Description of Think Aloud Method and Protocol Analysis. Qualitative Health Research, 3(4), 430-441.
27. Gan, K. C. & Hoffmann, E. R. (1988). Geometrical conditions for ballistic and visually controlled movements. Ergonomics, 31(5), 829-839.
28. García-Holgado, A., Reiris, I. T., Kearney, N., Martinus, C., & García-Peñalvo, F. J. (2019, July). An app to support yoga teachers to implement a yoga-based approach to promote wellbeing among young people: usability study. In International Conference on Human-Computer Interaction (pp. 38-49). Springer, Cham.
29. Garza-Fabre, M., Pulido, G. T., & Coello, C. A. C. (2009, November). Ranking methods for many-objective optimization. In Mexican International Conference on Artificial Intelligence (pp. 633-645). Springer, Berlin, Heidelberg.
30. Goettl, J. S., Brugh, A. W., & Julstrom, B. A. (2005, March). Call me e-mail: arranging the keyboard with a permutation-coded genetic algorithm. In Proceedings of the 2005 ACM symposium on Applied computing (pp. 947-951).
31. Hajela, P. & Lin, C. Y. (1992). Genetic search strategies in multicriterion optimal design. Structural Optimization, 4(2), 99-107.
32. Hardin, C. T. & Usher, J. S. (2005, June). Facility layout using swarm intelligence. In Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005. (pp. 424-427). IEEE.
33. Heldsinger, S. & Humphry, S. (2010). Using the method of pairwise comparison to obtain reliable teacher assessments. The Australian Educational Researcher, 37(2), 1-19.
34. Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press.
35. Hsieh, T. Y. & Wu, K. C. (2015). The Influence of Gender Difference on the Information-Seeking Behaviors for the Graphical Interface of Children's Digital Library. Universal Journal of Educational Research, 3(3), 200-206.
36. Jefferies, R., Miller, J. R., Wharton, C., & Uyeda, K. (1991). User interface evaluation in the real world: A comparison of four techniques. In proceedings of CHI’91. In Conference on Human Factors and Computing Systems, New Orleans, LA (pp. 119-124).
37. Jeffries, R., Miller, J. R., Wharton, C., & Uyeda, K. (1991, March). User interface evaluation in the real world: a comparison of four techniques. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems (pp. 119-124).
38. Kahn, M. J. & Prail, A. (1994). Formal usability inspections. In Usability Inspection Methods (pp. 141-171).
39. Kaku, B. K., Thompson, G. L., & Baybars, I. (1988). A heuristic method for the multi-story layout problem. European Journal of Operational Research, 37(3), 384-397.
40. Karrenbauer, A. & Oulasvirta, A. (2014, October). Improvements to keyboard optimization with integer programming. In Proceedings of the 27th annual ACM Symposium on User interface Software and Technology (pp. 621-626).
41. Kieras, D. (1994). A guide to GOMS task analysis. University of Michigan.
42. Kieras, D. (2001). Using the keystroke-level model to estimate execution times. University of Michigan.
43. Koopmans, T. C. & Beckmann, M. (1957). Assignment problems and the location of economic activities. Econometrica: journal of the Econometric Society, 53-76.
44. Kuo, W. H. & Yang, D. L. (2006). Minimizing the total completion time in a single-machine scheduling problem with a time-dependent learning effect. European Journal of Operational Research, 174(2), 1184-1190.
45. Lacquaniti, F., Terzuolo, C., & Viviani, P. (1983). The law relating the kinematic and figural aspects of drawing movements. Acta Psychologica, 54(1-3), 115-130.
46. Lewis, C., Polson, P. G., Wharton, C., & Rieman, J. (1990, March). Testing a walkthrough methodology for theory-based design of walk-up-and-use interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 235-242).
47. Lin, C. T., Chen, D. S., & Wang, Y. W. (2002, May). An efficient genetic algorithm for slicing floorplan area optimization. In 2002 IEEE International Symposium on Circuits and Systems (ISCAS) (Vol. 2, pp. II-II). IEEE.
48. Lin, R. F. & Drury, C. G. (2013). Verification of models for ballistic movement time and endpoint variability. Ergonomics, 56(4), 623-636.
49. Lynch, M. (2010). Evolution of the mutation rate. TRENDS in Genetics, 26(8), 345-352.
50. Mack, Z. & Sharples, S. (2009). The importance of usability in product choice: A mobile phone case study. Ergonomics, 52(12), 1514-1528.
51. MacKenzie, I. S. & Buxton, W. (1992, June). Extending Fitts' law to two-dimensional tasks. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 219-226).
52. MacKenzie, I. S. (1989). A note on the information-theoretic basis for Fitts’ law. Journal of Motor Behavior, 21(3), 323-330.
53. MacKenzie, I. S. (1992). Fitts' law as a research and design tool in human-computer interaction. Human-computer Interaction, 7(1), 91-139.
54. Maia, M., Almeida, J., & Almeida, V. (2008, April). Identifying user behavior in online social networks. In Proceedings of the 1st workshop on Social Network Systems (pp. 1-6).
55. Malas, T. M. Taifour, S. S., & Abandah, G. A. (2008). Toward optimal Arabic keyboard layout using genetic algorithm. Proc. 9th Int’l Middle Eastern Multiconf. on Simulation and Modeling (MESM 2008), 50-54.
56. Marler, R. T. & Arora, J. S. (2010). The weighted sum method for multi-objective optimization: new insights. Structural and Multidisciplinary Optimization, 41(6), 853-862.
57. Mathiyazhagan, T. & Nandan, D. (2010). Survey research method. Media Mimansa, 4(1), 34-45.
58. McKendall Jr., A. R. & Liu, W. H. (2012). New Tabu search heuristics for the dynamic facility layout problem. International Journal of Production Research, 50(3), 867-878.
59. Meller, R. D. & Gau, K. Y. (1996). The facility layout problem: recent and emerging trends and perspectives. Journal of Manufacturing Systems, 15(5), 351-366.
60. Meller, R. D., Narayanan, V., & Vance, P. H. (1998). Optimal facility layout design. Operations Research Letters, 23(3-5), 117-127.
61. Meller, R. D., Narayanan, V., & Vance, P. H. (1998). Optimal facility layout design. Operations Research Letters, 23(3-5), 117-127.
62. Misola, M. G. & Navarro, B. B. (2013). Optimal facility layout problem solution using genetic algorithm. International Journal of Industrial and Manufacturing Engineering, 7(8), 1691-1696.
63. Montreuil, B. (1991). A modelling framework for integrating layout design and flow network design. In Material handling’90 (pp. 95-115). Springer, Berlin, Heidelberg.
64. Mosheiov, G. (2001). Scheduling problems with a learning effect. European Journal of Operational Research, 132(3), 687-693.
65. Nielsen, J. & Molich, R. (1990, March). Heuristic evaluation of user interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 249-256).
66. Nielsen, J. (1994). Usability engineering. Morgan Kaufmann Publishers.
67. Nielsen, J. (1994, April). Usability inspection methods. In Conference companion on Human Factors in Computing Systems (pp. 413-414).
68. O'Donovan, F. T., Fournelle, C., Gaffigan, S., Brdiczka, O., Shen, J., Liu, J., & Moore, K. E. (2013, July). Characterizing user behavior and information propagation on a social multimedia network. In 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW) (pp. 1-6). IEEE.
69. Olson, J. R. & Olson, G. M. (1995). The growth of cognitive modeling in human-computer interaction since GOMS. In Readings in Human-Computer Interaction (pp. 603-625). Morgan Kaufmann Publishers.
70. Onsorodi, A. H. H. & Korhan, O. (2020). Application of a genetic algorithm to the keyboard layout problem. PloS One, 15(1), e0226611.
71. Osyczka, A. (1978). An approach to multicriterion optimization problems for engineering design. Computer Methods in Applied Mechanics and Engineering, 15(3), 309-333.
72. Otten, R. H. (1982, June). Automatic floorplan design. In 19th Design Automation Conference (pp. 261-267). IEEE.
73. Oulasvirta, A. (2017). User interface design with combinatorial optimization. Computer, 50(1), 40-47.
74. Oulasvirta, A. (2017, December). Optimizing user interfaces for human performance. In International Conference on Intelligent Human Computer Interaction (pp. 3-7). Springer, Cham.
75. Paes, F. G., Pessoa, A. A., & Vidal, T. (2017). A hybrid genetic algorithm with decomposition phases for the unequal area facility layout problem. European Journal of Operational Research, 256(3), 742-756.
76. Perumalla, A. K. (2016). A Genetic Algorithm for ASIC Floorplanning. Osmania University.
77. Phillips, J. G. & Triggs, T. J. (2001). Characteristics of cursor trajectories controlled by the computer mouse. Ergonomics, 44(5), 527-536.
78. Roy, M. C., Dewit, O., & Aubert, B. A. (2001). The impact of interface usability on trust in Web retailers. Internet Research, 11(5), 388-398.
79. Santos, C., Miranda, B., Araujo, T., Carneiro, N., Marques, A., Mota, M., Morais, J. & Meiguins, B. (2016, July). Guidelines for graphical user interface design in mobile augmented reality applications. In International Conference on Virtual, Augmented and Mixed Reality (pp. 71-80). Springer, Cham.
80. Sarmady, S. (2007). An investigation on genetic algorithm parameters. School of Computer Science, Universiti Sains Malaysia, 126.
81. Saxena, D. K., Duro, J. A., Tiwari, A., Deb, K., & Zhang, Q. (2012). Objective reduction in many-objective optimization: Linear and nonlinear algorithms. IEEE Transactions on Evolutionary Computation, 17(1), 77-99.
82. Scholz, D., Petrick, A., & Domschke, W. (2009). STaTS: a slicing tree and tabu search based heuristic for the unequal area facility layout problem. European Journal of Operational Research, 197(1), 166-178.
83. Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379-423.
84. Singh, S. P. & Sharma, R. R. (2006). A review of different approaches to the facility layout problems. The International Journal of Advanced Manufacturing Technology, 30(5-6), 425-433.
85. Srinivas, N. & Deb,K. (1995). Multiobjective optimization using non-dominated sorting in genetic algorithms. Evolutionary Computation, 2, 221-248.
86. Srivastava, J., Cooley, R., Deshpande, M., & Tan, P. N. (2000). Web usage mining: Discovery and applications of usage patterns from web data. ACM Sigkdd Explorations Newsletter, 1(2), 12-23.
87. Tinos, R. & Yang, S. (2007). Genetic algorithms with self-organizing behaviour in dynamic environments. In Evolutionary Computation in Dynamic and Uncertain Environments (pp. 105-127). Springer, Berlin, Heidelberg.
88. Tognazzini, B. (2014). First principles of interaction design. Interaction design solutions for the real world. Retrieved January 10, 2021, from: https://asktog.com/atc/principles-of-interaction-design.
89. Torres, E. B. & Zipser, D. (2002). Reaching to grasp with a multi-jointed arm. I. Computational model. Journal of Neurophysiology, 88(5), 2355-2367.
90. Tsutsui, S., Fujimoto, Y., & Ghosh, A. (1997). Forking genetic algorithms: GAs with search space division schemes. Evolutionary Computation, 5(1), 61-80.
91. Turgay, S. (2018). Multi objective simulated annealing approach for facility layout design. International Journal of Mathematical, Engineering and Management Sciences, 3(4), 365-380.
92. Van Someren, M. W., Barnard, Y. F., & Sandberg, J. A. C. (1994). The think aloud method: a practical approach to modelling cognitive. London: AcademicPress.
93. Whisenand, T. G. & Emurian, H. H. (1999). Analysis of cursor movements with a mouse. Computers in Human Behavior, 15(1), 85-103.
94. Wong, D. F. & Liu, C. L. (1986, June). A new algorithm for floorplan design. In 23rd ACM/IEEE Design Automation Conference (pp. 101-107). IEEE.
95. Wong, D. F., Leong, H. W., & Liu, H. W. (2012). Simulated annealing for VLSI design (Vol. 42). Springer Science & Business Media.
96. Yang, S. (2007, April). Genetic algorithms with elitism-based immigrants for changing optimization problems. In Workshops on Applications of Evolutionary Computation (pp. 627-636). Springer, Berlin, Heidelberg.
97. Zhang, W., Yang, H., Samaras, D., & Zelinsky, G. (2005). A Computational Model of Eye Movements during Object Class Detection. In Proceedings of the 18th International Conference on Neural Information Processing Systems (pp. 1609–1616). MIT Press.
(此全文20260823後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *