帳號:guest(3.133.126.164)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐紫芸
作者(外文):Hsu, Tzu-Yun
論文名稱(中文):應用二元累加窮舉法與網頁排名於社群網路傳播機率預測與建模
論文名稱(外文):Applying Binary-Addition-Tree and PageRank for Predicting and Modeling Propagation Probability in Social Network
指導教授(中文):葉維彰
指導教授(外文):Yeh, Wei-Chang
口試委員(中文):賴智明
梁韵嘉
口試委員(外文):Lai, Chyh-Ming
Liang, Yun-Chia
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:108034532
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:73
中文關鍵詞:社群網路無尺度網路Barabás-Albert模型二元累加窮舉法PageRank個性化PageRank
外文關鍵詞:social networksscale-free networkBarabás-Albert modelBinary-Addition-TreePageRankPersonalized PageRank
相關次數:
  • 推薦推薦:0
  • 點閱點閱:257
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於現今智能設備的發展使得社群網絡越來越普及,人們利用社群網路學習新的點子、分享想法,並與志同道合的人或者組織互動。社群網路的影響力沒有國家、種族和宗教的限制,除了幫助企業輕鬆觸及到潛在客戶有著至關重要作用,也打破傳統媒體的壁壘,幫助訊息傳遞者能更快速散播訊息。透過增加預測社群網絡傳播機率的準確性會間接影響資訊傳播需要投入的金錢、人力和時間成本。
本研究提出了一種新方法來預測社群網路傳播的機率。首先我們證明了社群網路屬於一種無尺度網路,並使用Barabási- Albert 模型建構預測模型,透過二元累加窮舉法窮舉出所有可能傳播狀態後,利用PageRank 演算法計算每個社群網路節點出現的機率以及傳播機率,並利用個性化 PageRank 演算法來符合使用者偏好之設定;最後,利用新型二元累加窮舉法計算出所有節點至不同傳播範圍之機率預測值。
此外,我們證明了此方法中所提出的最大傳播狀態 PageRank 值可以作為識別傳播機率的有效工具,以及說明了使用者偏好主題性於傳播機率的影響。總體而言,此預測模型的貢獻為提供一個新的預測社群網路傳播之方法,協助社群網路創造有效的訊息傳播效果,實現了利用最小的投放成本達到最大傳播效率,使網路節點影響力增加。
The social network is now as smart devices become more and more prevalent. Users use the social network to learn new spots, share opinions, and interact with like-minded people and organizations. The influences of social networks have no limited national, ethnic, and religious. The social network not only plays an important role to help businesses reach their potential customers easily but also breaks the barriers of traditional media and helps the message sender to spread the message faster. The accuracy of predicting the probability of social network propagation will affect the cost of resource input including money, manpower, and time.
This study proposes a novel methodology to predict the probability of social network propagation. We firstly prove that the social network propagation can be represented as a scale-free network and construct a prediction model using the Barabási-Albert model. After enumerating all possible propagation states through the Binary-Addition-Tree, we use the PageRank algorithm calculates the probability of each social network nodes appearing and the probability of spreading, and using the Personalized PageRank algorithm to achieve the user preference settings. Finally, a new Binary-Addition-Tree algorithm is used to calculate the predicted probability of all nodes to different number of propagation areas.
Additionally, we demonstrate that the proposed maximum-state PageRank used in this methodology can be implemented separately as an effective tool to identify the propagation’s probability. Otherwise, the effect of user preference on propagation rates is also illustrated. Overall, the contribution of this predictive model is to provide a new method for predicting social network propagation’s probability, helping social networks create effective information dissemination effects, achieving the maximum transmission efficiency with the smallest delivery cost, and increase the influence of network nodes.
摘要 1
Abstract 2
目錄 3
圖目錄 5
表目錄 6
第一章、緒論 7
1.1 研究背景 7
1.2 研究動機與目的 9
1.3 研究架構 10
第二章、文獻回顧 11
2.1 社群網路 11
2.2 無尺度網路與Barabási-Albert模型 14
2.3 PageRank 演算法 17
2.4 二元累加窮舉法 23
2.5 文獻回顧小節 26
第三章、研究方法 28
3.1 數學符號 29
3.2 傳播狀態 30
3.3 新型二元累加窮舉法 37
3.4 方法驗證 41
第四章、模擬實驗 43
4.1 模型介紹 43
4.2 結果與討論 48
4.3 傳播機率應用 59
第五章、結論 60
參考文獻 62
附錄 70

[1] Kimura, M., et al., Extracting influential nodes on a social network for information diffusion. Data Mining and Knowledge Discovery, 2010. 20(1): p. 70-97.
[2] Kimura, M., K. Saito, and H. Motoda, Blocking links to minimize contamination spread in a social network. ACM Transactions on Knowledge Discovery from Data (TKDD), 2009. 3(2): p. 1-23.
[3] Gruhl, D., et al. Information diffusion through blogspace. in Proceedings of the 13th international conference on World Wide Web. 2004.
[4] Domingos, P., Mining social networks for viral marketing. IEEE Intelligent Systems, 2005. 20(1): p. 80-82.
[5] Domingos, P. and M. Richardson. Mining the network value of customers. in Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining. 2001.
[6] Richardson, M. and P. Domingos. Mining knowledge-sharing sites for viral marketing. in Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining. 2002.
[7] Borgatti, S.P. and B. Ofem, Social network theory and analysis. Social network theory and educational change, 2010: p. 17-29.
[8] Kadushin, C., Introduction to social network theory. Boston, Ma, 2004.
[9] Pei, S., et al., Exploring the complex pattern of information spreading in online blog communities. PloS one, 2015. 10(5): p. e0126894.
[10] Onnela, J.-P., et al., Structure and tie strengths in mobile communication networks. Proceedings of the national academy of sciences, 2007. 104(18): p. 7332-7336.
[11] Clauset, A., C.R. Shalizi, and M.E. Newman, Power-law distributions in empirical data. SIAM review, 2009. 51(4): p. 661-703.
[12] Bornholdt, S. and H. Ebel, World Wide Web scaling exponent from Simon’s 1955 model. Physical Review E, 2001. 64(3): p. 035104.
[13] Barabási, A.-L. and R. Albert, Emergence of scaling in random networks. science, 1999. 286(5439): p. 509-512.
[14] Zhu, Y.-X., et al., Influence of reciprocal links in social networks. PloS one, 2014. 9(7): p. e103007.
[15] Liu, C. and Z.-K. Zhang, Information spreading on dynamic social networks. Communications in Nonlinear Science and Numerical Simulation, 2014. 19(4): p. 896-904.
[16] Lü, L., D.-B. Chen, and T. Zhou, The small world yields the most effective information spreading. New Journal of Physics, 2011. 13(12): p. 123005.
[17] Haythommthwaite, K., Characterized social networks as having the following components: Actors. New York: Nodes, 2005.
[18] Barnes, J.A., Class and committees in a Norwegian island parish. Human relations, 1954. 7(1): p. 39-58.
[19] Kempe, D., J. Kleinberg, and É. Tardos. Maximizing the spread of influence through a social network. in Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. 2003.
[20] Litvak, N., W.R. Scheinhardt, and Y. Volkovich, In-degree and PageRank: why do they follow similar power laws? Internet mathematics, 2007. 4(2-3): p. 175-198.
[21] Weng, J., et al. Twitterrank: finding topic-sensitive influential twitterers. in Proceedings of the third ACM international conference on Web search and data mining. 2010.
[22] Xing, W. and A. Ghorbani. Weighted pagerank algorithm. in Proceedings. Second Annual Conference on Communication Networks and Services Research, 2004. 2004. IEEE.
[23] Liu, L., et al. Mining topic-level influence in heterogeneous networks. in Proceedings of the 19th ACM international conference on Information and knowledge management. 2010.
[24] Chen, S., et al., Online topic-aware influence maximization. Proceedings of the VLDB Endowment, 2015. 8(6): p. 666-677.
[25] Barbieri, N., F. Bonchi, and G. Manco, Topic-aware social influence propagation models. Knowledge and information systems, 2013. 37(3): p. 555-584.
[26] Agirre, E. and A. Soroa. Personalizing pagerank for word sense disambiguation. in Proceedings of the 12th Conference of the European Chapter of the ACL (EACL 2009). 2009.
[27] Xie, W., et al. Edge-weighted personalized pagerank: Breaking a decade-old performance barrier. in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2015.
[28] Pirouz, M. and J. Zhan, Toward efficient hub-less real time personalized pagerank. IEEE Access, 2017. 5: p. 26364-26375.
[29] Clauset, A., C. Moore, and M.E. Newman, Hierarchical structure and the prediction of missing links in networks. Nature, 2008. 453(7191): p. 98-101.
[30] Backstrom, L. and J. Leskovec. Supervised random walks: predicting and recommending links in social networks. in Proceedings of the fourth ACM international conference on Web search and data mining. 2011.
[31] Yeh, W.-C., Novel binary-addition tree algorithm (BAT) for binary-state network reliability problem. Reliability Engineering & System Safety, 2021. 208: p. 107448.
[32] Tarjan, R., Depth-first search and linear graph algorithms. SIAM journal on computing, 1972. 1(2): p. 146-160.
[33] Bundy, A. and L. Wallen, Breadth-first search, in Catalogue of artificial intelligence tools. 1984, Springer. p. 13-13.
[34] Goldenberg, J., B. Libai, and E. Muller, Using complex systems analysis to advance marketing theory development: Modeling heterogeneity effects on new product growth through stochastic cellular automata. Academy of Marketing Science Review, 2001. 9(3): p. 1-18.
[35] Goldenberg, J., B. Libai, and E. Muller, Talk of the network: A complex systems look at the underlying process of word-of-mouth. Marketing letters, 2001. 12(3): p. 211-223.
[36] Brown, J.J. and P.H. Reingen, Social ties and word-of-mouth referral behavior. Journal of Consumer research, 1987. 14(3): p. 350-362.
[37] Nadaraja, R. and R. Yazdanifard, Social media marketing: advantages and disadvantages. Center of Southern New Hempshire University, 2013: p. 1-10.
[38] Ellison, N.B., C. Steinfield, and C. Lampe, The benefits of Facebook “friends:” Social capital and college students’ use of online social network sites. Journal of computer-mediated communication, 2007. 12(4): p. 1143-1168.
[39] Sun, M., et al., Epidemic spreading on adaptively weighted scale-free networks. Journal of mathematical biology, 2017. 74(5): p. 1263-1298.
[40] Dong, S., Y.-B. Deng, and Y.-C. Huang, SEIR model of rumor spreading in online social network with varying total population size. Communications in Theoretical Physics, 2017. 68(4): p. 545.
[41] Garton, L., C. Haythornthwaite, and B. Wellman, Studying online social networks. Journal of computer-mediated communication, 1997. 3(1): p. JCMC313.
[42] Wellman, B. and S.B. Kiesler, Culture of the internet. 1997, 1997.
[43] Tripathi, S. and S. Verma, Analysing Technological Dimensions for Engagement with NGOs on Social Media.
[44] Khoo, D., Travel Planning for Social Networks. 2010, Google Patents.
[45] Qiu, T., et al., A survey of mobile social networks: Applications, social characteristics, and challenges. IEEE Systems Journal, 2017. 12(4): p. 3932-3947.
[46] Rahim, A., et al., Vehicular social networks: A survey. Pervasive and Mobile Computing, 2018. 43: p. 96-113.
[47] Alavi, S., I. Mehdinezhad, and B. Kahshidinia, A trend study on the impact of social media on advertisement. International Journal of Data and Network Science, 2019. 3(3): p. 185-200.
[48] Khoo, D., Location calendar targeted advertisements. 2013, Google Patents.
[49] Valente, T.W., Network models of the diffusion of innovations. 1995.
[50] Coleman, J.S., E. Katz, and H. Menzel, Medical innovation: A diffusion study. 1966: Indianapolis: Bobbs-Merrill Company.
[51] Blume, L.E. and S.N. Durlauf, The economy as an evolving complex system, III: Current perspectives and future directions. 2005: Oxford University Press.
[52] Morris, S., Contagion. The Review of Economic Studies, 2000. 67(1): p. 57-78.
[53] Asavathiratham, C., The influence model: A tractable representation for the dynamics of networked markov chains. 2001, Massachusetts Institute of Technology.
[54] Goldenberg, J., BL, and Muller, E. 2001. Talk of the network: A complex systems look at the underlying process of word-of-mouth. Marketing letters. 12.
[55] Granovetter, M., Threshold models of collective behavior. American journal of sociology, 1978. 83(6): p. 1420-1443.
[56] Chen, W., L.V. Lakshmanan, and C. Castillo, Information and influence propagation in social networks. Synthesis Lectures on Data Management, 2013. 5(4): p. 1-177.
[57] Pei, S. and H.A. Makse, Spreading dynamics in complex networks. Journal of Statistical Mechanics: Theory and Experiment, 2013. 2013(12): p. P12002.
[58] Barrat, A., M. Barthelemy, and A. Vespignani, Dynamical processes on complex networks. 2008: Cambridge university press.
[59] Kleinberg, J., Cascading behavior in networks: Algorithmic and economic issues. Algorithmic game theory, 2007. 24: p. 613-632.
[60] Goel, S., D.J. Watts, and D.G. Goldstein. The structure of online diffusion networks. in Proceedings of the 13th ACM conference on electronic commerce. 2012.
[61] Moreno, Y. and A. Vazquez, Disease spreading in structured scale-free networks. The European Physical Journal B-Condensed Matter and Complex Systems, 2003. 31(2): p. 265-271.
[62] Boguná, M., R. Pastor-Satorras, and A. Vespignani, Absence of epidemic threshold in scale-free networks with degree correlations. Physical review letters, 2003. 90(2): p. 028701.
[63] Faloutsos, M., P. Faloutsos, and C. Faloutsos, On power-law relationships of the internet topology, in The Structure and Dynamics of Networks. 2011, Princeton University Press. p. 195-206.
[64] Albert, R., H. Jeong, and A.-L. Barabási, Error and attack tolerance of complex networks. nature, 2000. 406(6794): p. 378-382.
[65] Blanka, G. and B. Reisdorf, The participatory web: A user perspective on Web 2.0. Information, Communication & Society, 2012. 15(4): p. 537-554.
[66] Kleinberg, J.M., et al. The web as a graph: Measurements, models, and methods. in International Computing and Combinatorics Conference. 1999. Springer.
[67] Broder, A., et al., Graph structure in the web, in The Structure and Dynamics of Networks. 2011, Princeton University Press. p. 183-194.
[68] Adamic, L.A., et al., Power-law distribution of the world wide web. science, 2000. 287(5461): p. 2115-2115.
[69] 林芳如 and 孫春在, 在有限資源下無尺度網路上的傳播動態. 2005.
[70] Barabási, A.-L., Scale-free networks: a decade and beyond. science, 2009. 325(5939): p. 412-413.
[71] Bollobás, B.e., et al., The degree sequence of a scale‐free random graph process. Random Structures & Algorithms, 2001. 18(3): p. 279-290.
[72] Bollobás, B., et al., The degree sequence of a scale-free random graph process, in The Structure and Dynamics of Networks. 2011, Princeton University Press. p. 384-395.
[73] Chen, Q. and D. Shi, The modeling of scale-free networks. Physica A: Statistical Mechanics and its Applications, 2004. 335(1-2): p. 240-248.
[74] Albert, R. and A.-L. Barabási, Statistical mechanics of complex networks. Reviews of modern physics, 2002. 74(1): p. 47.
[75] Holme, P. and B.J. Kim, Growing scale-free networks with tunable clustering. Physical review E, 2002. 65(2): p. 026107.
[76] Croft, W.B., D. Metzler, and T. Strohman, Search engines: Information retrieval in practice. Vol. 520. 2010: Addison-Wesley Reading.
[77] Brin, S. and L. Page, The anatomy of a large-scale hypertextual web search engine. 1998.
[78] Langville, A.N. and C.D. Meyer, Deeper inside pagerank. Internet Mathematics, 2004. 1(3): p. 335-380.
[79] Liu, B. and Y. Zhu, ProtDec-LTR3. 0: protein remote homology detection by incorporating profile-based features into Learning to Rank. Ieee Access, 2019. 7: p. 102499-102507.
[80] Sullivan, D., What is Google PageRank? A guide for searchers & webmasters. Search engine land, 2007.
[81] Valente, T., Network Models of the Diffusion of Innovations. Creswell. 1995, NJ: Hampton Free Press.
[82] Bharat, K. and G.A. Mihaila. When experts agree: using non-affiliated experts to rank popular topics. in Proceedings of the 10th international conference on World Wide Web. 2001.
[83] Haveliwala, T.H., Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search. IEEE transactions on knowledge and data engineering, 2003. 15(4): p. 784-796.
[84] Page, L., et al., The PageRank citation ranking: Bringing order to the web. 1999, Stanford InfoLab.
[85] Scozzafava, F., et al. Personalized PageRank with syntagmatic information for multilingual word sense disambiguation. in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations. 2020.
[86] Totty, M. and M. Mangalindan, As google becomes web’s gatekeeper, sites fight to get in. Wall Street Journal, 2003. 241: p. 39.
[87] Aven, T., Availability evaluation of oil/gas production and transportation systems. Reliability engineering, 1987. 18(1): p. 35-44.
[88] Bhavathrathan, B. and G.R. Patil, Analysis of worst case stochastic link capacity degradation to aid assessment of transportation network reliability. Procedia-Social and Behavioral Sciences, 2013. 104: p. 507-515.
[89] Yeh, W.-C., A squeezed artificial neural network for the symbolic network reliability functions of binary-state networks. IEEE transactions on neural networks and learning systems, 2016. 28(11): p. 2822-2825.
[90] Roberts, F.S., F. Hwang, and C.L. Monma, Reliability of computer and communication networks: proceedings of a DIMACS workshop, December 2-4, 1989. Vol. 5. 1991: American Mathematical Soc.
[91] Kakadia, D. and J.E. Ramirez-Marquez, Quantitative approaches for optimization of user experience based on network resilience for wireless service provider networks. Reliability Engineering & System Safety, 2020. 193: p. 106606.
[92] Lin, C., et al., Performance analysis for a wireless sensor network of star topology with random nodes deployment. Wireless Personal Communications, 2017. 97(3): p. 3993-4013.
[93] Yeh, W.-C. and J.-S. Lin, New parallel swarm algorithm for smart sensor systems redundancy allocation problems in the Internet of Things. The Journal of Supercomputing, 2018. 74(9): p. 4358-4384.
[94] Yeh, W.-C., A Novel Generalized Artificial Neural Network for Mining Two-Class Datasets. arXiv preprint arXiv:1910.10461, 2019.
[95] Yeh, W.-C., Novel Bounded Binary-Addition Tree Algorithm for Binary-State Network Reliability Problems. arXiv preprint arXiv:2011.14832, 2020.
[96] Su, Y.-Z. and W.-C. Yeh, Binary-Addition Tree Algorithm-Based Resilience Assessment for Binary-State Network Problems. Electronics, 2020. 9(8): p. 1207.
[97] Yeh, W.-C. and C.-C. Kuo, Predicting and Modeling Wildfire Propagation Areas with BAT and Maximum-State PageRank. Applied Sciences, 2020. 10(23): p. 8349.
[98] Lin, S., et al., A survey on expert finding techniques. Journal of Intelligent Information Systems, 2017. 49(2): p. 255-279.
[99] Hosseini-Pozveh, M., et al., Maximizing the spread of positive influence in signed social networks. Intelligent Data Analysis, 2016. 20(1): p. 199-218.
[100] Zhang, H., T.N. Dinh, and M.T. Thai. Maximizing the spread of positive influence in online social networks. in 2013 IEEE 33rd International Conference on Distributed Computing Systems. 2013. IEEE.
[101] Song, B.-R., 社群網路中多層次訊息傳播路徑探勘. 2011, National Central University.
[102] ShahD, Z., 2011Rumorsinanetwork: who’s the culprit. IEEE Trans. Inform. Theory. 57: p. 5163-5181.
[103] Pinto, P.C., P. Thiran, and M. Vetterli, Locating the source of diffusion in large-scale networks. Physical review letters, 2012. 109(6): p. 068702.
[104] Paluch, R., et al., Fast and accurate detection of spread source in large complex networks. Scientific reports, 2018. 8(1): p. 1-10.
[105] Hagberg, A., P. Swart, and D. S Chult, Exploring network structure, dynamics, and function using NetworkX. 2008, Los Alamos National Lab.(LANL), Los Alamos, NM (United States).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *