帳號:guest(3.23.92.143)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳英正
作者(外文):Wu, Ying-Zheng
論文名稱(中文):建立大規模地震災後動態行人疏散模擬模型
論文名稱(外文):Construct a Post-disaster Dynamic Pedestrian Evacuation Simulation Model for Large-scale Earthquake
指導教授(中文):張國浩
指導教授(外文):Chang, Kuo-Hao
口試委員(中文):柯孝勳
林李耀
張子瑩
口試委員(外文):Ke, Xiao-Xun
Lin, Li-Yao
Zhang, Zi-Ying
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:108034527
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:78
中文關鍵詞:疏散模擬細胞傳輸模型隨機大規模地震
外文關鍵詞:Evacuation simulationCell transmission modelStochasticLarge-scaled earthquake
相關次數:
  • 推薦推薦:0
  • 點閱點閱:556
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
台灣位於環太平洋地震帶,常年飽受震災所苦,當大規模地震發生時,若未做好相關措施,將導致大量人民傷亡、設施機構倒塌,以及交通網路癱瘓等現象發生。眾多災害管理策略中,又以災後人潮疏散最為重要,能直接地降低傷亡人數。現行大多使用過往經驗擬定災後疏散決策,而大規模地震發生的稀缺性使得決策品質相對低落。因此,透過模擬疏散模型輔助相關疏散策略為本研究之核心目標,根據台灣交通現況及人民習慣之交通方式,提出一個隨機行人細胞傳輸模型(Stochastic Pedestrian Cell Transmission Model, SPCTM),將交通網路切割成數個細胞,使用細胞間之流入流出表示人口移動狀況,並使用隨機概念模擬行人的路徑選擇行為,減少與現實疏散狀況之差異。
本研究以台北市大安區進行個案探討,在山腳斷層發生大規模地震。在單次模擬結果顯示,在規模6.5的情境下,總疏散時長為2422秒,而80%以上的避難者成功抵達避難所需802秒。接著,進一步應用本研究提出之模型進行重複模擬,分析個案大安區,在遵循疏散策略之避難人口比例方面,發現若遵循人口比例越高,雖可有效降低位於避難所密集度高的區域的避難者的疏散時間,但對於整體疏散時長及避難者平均疏散時間,皆隨著遵循比例的提高而變得越差;在避難所開設數量與選擇方面,發現若當避難所數量縮減為原來的66%(12處),與並不會對於疏散結果造成顯著的差異。若增設過多的避難所,可能增加災後物資運送的難度,並導致分配資源不均等問題。
SPCTM可應用於許多層面,於災前可協助擬定疏散策略,透過模型找出合適的避難所開設位置及數量、各區域應前往的避難所,以及避難路線等等;於災後可提供模擬結果,輔助修復道路優先次序、避難所物資發放等相關決策。
Taiwan, located along the Circum-Pacific seismic belt, has been plagued by earthquakes for years. When a large earthquake occurs, failure to take proper measures can lead to massive casualties, collapse of public facilities, and disruption of traffic networks. Among many disaster management strategies, post-disaster evacuation is the most important, which directly reduces the number of casualties. At present, most post-disaster evacuation decisions are made based on past experience, but the rarity of large-scale earthquakes relatively lowers the decision-making quality. Therefore, this study primarily aims to assist relevant evacuation strategies through simulating evacuation models. Based on Taiwan's traffic situation and the transportation mode people are used to, this study proposes a stochastic pedestrian cell transmission model (SPCTM), which divides the traffic network into several cells and uses their inflow and outflow to represent the population movement, using randomness to simulate the selection behavior of pedestrians and reduce the differences between the traffic network and the realistic evacuation situation. The model proposed can help decision-makers optimize evacuation strategies to reduce the number of casualties significantly.
This research was conducted based on a case study in Daan District, Taipei City, where a large-scale earthquake occurred at the Shanchiao fault. The simulation results showed that for a magnitude 6.5 earthquake scenario, the total evacuation time was 2422 seconds and more than 80% evacuees successfully arrived at the shelter in 802 seconds. Then, applying the simulation model to analyze the impact of different environmental factor on the performance indicators. As the follow rate raise, we found that evacuees located in areas with high density of shelters will significantly reduce evacuation time. However, the overall maximum evacuation completion time and the average evacuation time for evacuees increases with the raise in follow rate, difference. In terms of the amount of shelters and selection, it is found that when the amount of shelters is greater than 12, there is not significantly difference in the maximum evacuation completion time and average evacuation time for each additional shelter. If too many shelters are located, it may be possible increase the difficulty of the delivery of the resources after disaster, and lead to the problem of unequal distribution of resources.
SPCTM can be applied in many ways. It can help to develop evacuation strategies before disasters. Through the model, it is possible to identify the appropriate locations and number of shelters to deploy, the shelters for each area, and the evacuation routes, etc. Simulation results can be provided after a disaster to assist in decisions related to road restoration priorities, distribution of supplies to shelters, etc.
摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 2
1.3論文架構 3
第二章 文獻回顧 4
2.1災害管理 4
2.2模擬模型 5
2.2.1 基於代理人模擬模型 7
2.2.2 離散事件模擬模型 7
2.3模擬疏散方法 8
第三章 模擬模型 11
3.1初始化模型 12
3.2細胞內傳輸模型 16
3.3細胞間傳輸模型 18
3.4人口更新模型 19
3.5最短路徑轉換模型 20
第四章 個案探討 21
4.1分析前處理 21
4.2模擬結果 26
第五章 統計分析 38
5.1遵循率對於疏散結果之影響 39
5.1.1遵循率分析(最大疏散完成時間) 39
5.1.2遵循率分析(平均疏散時間) 40
5.2不同遵循率下之高風險里別分布狀況 42
5.2.1高風險里別(平均最大疏散完成時間) 42
5.2.2高風險里別(平均疏散時間) 46
5.3避難所選擇與數量對於疏散結果之影響 49
5.3.1避難所篩選機制 52
5.3.2避難所開設數量(最大疏散完成時間) 54
5.3.3避難所開設數量(平均疏散時間) 57
5.4疏散策略對於疏散結果之影響 61
5.4.1疏散策略(最大疏散完成時間) 62
5.4.2疏散策略(平均疏散時間) 67
第六章 結論 73
參考文獻 74
李洋寧、劉淑燕、李沁妍、吳佳容、鄧敏政、柯孝勳、李中生(2014)。大臺北地區大規模地震衝擊情境分析報告II :道路系統、水電設施、重要設施、情境綜整。NCDR 102-T15。國家災害防救科技中心。
Altay, N., Green, W. G. (2006). OR/MS research in disaster operations management. European Journal of Operational Research, 175(1), 475–493.
Antonini, G., Bierlaire, M., & Weber, M. (2006). Discrete Choice Models of Pedestrian Walking Behavior. Transportation Research Part B: Methodological, 40(8): 667–687.
Asano, M., Sumalee, A., Kuwahara, M., & Tanaka, S. (2007). Dynamic Cell Transmission-Based Pedestrian Model with Multidirectional Flows and Strategic Route Choices. Transportation Research Record: Journal of the Transportation Research Board, 1710: 28–36.
Bayram, V. (2016). Optimization models for large scale network evacuation planning and management: A literature review. Surveys in Operations Research and Management Science, 21(2), 63–84.
Blue, V. J. & Adler, J. L. (2001). Cellular Automata Microsimulation for Modeling Bi-Directional Pedestrian Walkways. Transportation Research Part B: Methodological, 35(3): 293–312.
Bumgarner, J. B. (2008). Emergency management: a reference handbook., ABC-CLIO.
C.o.t.R.o.P.T.i.E.E. TRB, Transportation Research Board of the National Academies (2008). The role of transit in emergency evacuation. Special Report, 294.
Caunhye, A. M., Nie, X., & Pokharel, S. (2012). Optimization models in emergency logistics: A literature review. Socio-Economic Planning Sciences. 46(1), 4–13.
Chan, W. K. V., Son, Y., Macal, C. M. (2010). Agent-based simulation tutorial – Simulation of emergent behavior and differences between agent-based simulation and discrete-event simulation. Proceedings of the winter simulation conference, Baltimore, MD, 135–150.
Cimellaro, G.P., Malavisi, M., Mahin, S. (2017). Using Discrete Event Simulation Models to Evaluate Resilience of an Emergency Department. Journal of Earthquake Engineering, 21, 203–226.
Dixit, V., Wolshon, B. (2014). Evacuation traffic dynamics. Transportation Research Part C: Emerging Technologies, 49, 114–125.
FMEA, U.S. (2020). Hazus Earthquake Model Technical Manual Hazus 4.2 SP3. Washington, D.C. Retrieved from https://www.fema.gov/sites/default/files/2020-10/fema_hazus_earthquake_technical_manual_4-2.pdf
Gao, Z., Qu Y., Li, X., Long, J., & Huang, H. J. (2014). Simulating the Dynamic Escape Process in Large Public Places. Operations Research, 62(6): 1344–1357.
Goldberg, J., et al. (1990). A simulation model for evaluating a set of emergency vehicle base locations: development, validation, and usage. Socio-Economic Planning Sciences, 24(2), 125–141.
Gosavi, A., et al. (2019). Discrete-Event-Based Simulation Model for Performance Evaluation of Post-Earthquake Restoration in a Smart City. IEEE transaction on engineering management, 67(3), 582–592.
Guha-Sapir, D., Hoyois, P., Wallemacq, P., & Below, R. (2017). Annual disaster statistical review 2016 the numbers and trends. The Centre for Research on the Epidemiology of Disasters (CRED).
Guo, R. Y., Huang, H. J., & Wong, S. C. (2011). Collection, Spillback, and Dissipation in Pedestrian Evacuation: A Network-Based Method. Transportation Research Part B: methodological, 45(3): 490–506.
Helbing, D. & Molnar, P. (1995). Social Force Model for Pedestrian Dynamics. Physical Review E, 51(5): 4282.
Helbing, D. (1998). A Fluid Dynamic Model for the Movement of Pedestrians. Complex Systems, 6: 391–415.
Helbing, D., Farkas I. J., Molnar, P., & Vicsek, T. (2002). Simulation of Pedestrian Crowds in Normal and Evacuation Situations. In Pedestrian and Evacuation Dynamics, edited by Springer, Springer, 21–58.
Henderson, L. F. (1971). The Statistics of Crowd Fluids. Nature, 229: 381–383.
Hoogendoorn, S. & Bovy, P. (2000). Gas-Kinetic Modeling and Simulation of Pedestrian Flows. Transportation Research Record: Journal of the Transportation Research Board, 1710: 28–39.
Hoogendoorn, S. P. & Bovy, P. H. L. (2005). Pedestrian Travel Behavior Modeling. Networks and Spatial Economics, 5(2): 193–216.
Hoogendoorn, S. P. (2002). Microscopic Pedestrian Wayfinding and Dynamics Modelling. In Pedestrian and Evacuation Dynamics, edited by Springer, Springer, 123–155.
Kasaie, P., & Kelton, W. D. (2015). Guidelines for design and analysis in agent-based simulation studies. Winter Simulation Conference (WSC), 183–193.
Kolker, A. (2008). Process modeling of emergency department patient flow: effect of patient length of stay on ED diversion. Journal of Medical Systems, 32(5), 389-401.
Kwan, M. P., Lee, J. (2005). Emergency response after 9/11: the potential of real-time 3D GIS for quick emergency response in micro-spatial environments. Computers, Environment and Urban Systems, 29(2), 93–113.
Marano, K. D., Wald, D. J., & Allen, T. I. (2010). Global earthquake casualties due to secondary effects: a quantitative analysis for improving rapid loss analyses. Natural Hazards, 52(2), 319–328.
McLoughlin, D. (1985). A framework for integrated emergency management. Public Administration Review, 45, 165–172.
Morishita, H., Mizuguchi, R., Kanai, J., Baba T. J. (2019). Motion and speed of the frail elderly during evacuation process. Japan Society for Natural Disaster Science, 37(4): 397–406.
Na, H. S. & Banerjee, A. (2019). Agent-based discrete-event simulation model for no-notice natural disaster evacuation planning., Computers & Industrial Engineering, 129, 44–55.
Perry R. W., Lindell M. K. (2003). Preparedness for emergency response: guidelines for the emergency planning process. Disasters, 27(4), 336–350.
Robin, T., Antonini G., Bierlaire, M., & Cruz, J. (2009). Specification, Estimation and Validation of a Pedestrian Walking Behavior Model. Transportation Research Part B: Methodological, 43(1): 36–56.
Schadschneider, A. (2001). Cellular Automaton Approach to Pedestrian Dynamics-Theory. In Pedestrian and Evacuation Dynamics, edited by Springer, Springer, 75–86.
Scheidegger, A.P.G., et al. (2018). An introductory guide for hybrid simulation modelers on the primary simulation methods in industrial engineering identified through a systematic review of the literature. Computers & Industrial Engineering, 124, 474–492.
Southworth, F. (1991). Regional evacuation modeling: a state-of-the-art review. Technical Report, Oak Ridge National Laboratory Oak Ridge, TN, USA.
The International Federation of Red Cross and Red Crescent Societies (2011). The red cross red crescent approach to disaster and crisis management position paper. Geneva.
Tüydeş, H. (2005). Network traffic management under disaster conditions. Field of Civil and Environmental Engineering, Northwestern University.
Ukkusuri, S. V., et al. (2017). A-RESCUE: An agent based regional evacuation simulator coupled with user enriched behavior. Networks and Spatial Economics, 17(1), 197–223.
Yuan, S., et al. (2017). Traffic evacuation simulation based on multi-level driving decision model. Transportation Research Part C: Emerging Technologies, 78, 129–149.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *