帳號:guest(3.144.108.86)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):彭韻軒
作者(外文):Peng, Yun-Hsuan
論文名稱(中文):運用集成深度神經網路於太陽能發電量之預測
論文名稱(外文):Photovoltaic Generation Prediction based on Ensemble Deep Neural Networks
指導教授(中文):蘇朝墩
指導教授(外文):Su, Chao-Ton
口試委員(中文):陳隆昇
林家銘
蕭宇翔
口試委員(外文):Chen, Long-Sheng
Lin, Chia-Ming
Hsiao, Yu-Hsiang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:108034519
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:48
中文關鍵詞:太陽能發電發電量預測深度神經網路集成式學習
外文關鍵詞:Photovoltaic (PV) systemPrediction of generated electric energyDeep Neural NetworkEnsemble Learning
相關次數:
  • 推薦推薦:0
  • 點閱點閱:427
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
電力在現今人類生活中,已是不可或缺的一環,目前的電能大多是仰賴石化燃料或核分裂過程進行能量轉換所產生,然而這些資源蘊藏量相當有限且分佈不均,在能源轉換的過程中,更會產生具有放射性的分裂產物,進而產生潛在性的環境汙染問題。有鑑於上述能源短缺以及環保相關的議題,許多國家也嘗試推行多種能源轉型,其中透過太陽能、風力發電等再生能源最為興盛,這些方式能有效降低碳足跡、二氧化碳,而目前台灣也積極地推廣設置地面型及屋頂型太陽能發電系統。
欲快速且準確地預測太陽能即時發電量,本研究探討使用深度神經網路的模型所帶來的潛在優勢,並提出一個三階段的發電量預測程序,包括資料前處理,接著使用深度神經網路(Deep Neural Networks)結合集成學習(Ensemble Learning)演算法,訓練出適合的配置模型,最終與多種機器學習模型比較並進行模型評估與最佳模型選取。經由一個真實個案之分析,本研究收集太陽能廠歷史發電量之數據進行預測。執行結果顯示最佳模型為基於深度神經網路的集成式學習,使用此模型能夠使太陽能發電量之預測準確率高達95%,也就是誤差低於10瓩。本研究聚焦於關鍵特徵之數據變化,快速且準確預測及時應有之發電量水準,以提升太陽能廠對於整體發電效能及穩定度之掌控。
Electricity plays an indispensable role in human life today. Most of the current electricity must be relied on fossil or nuclear fuel to generate energy. However, these resources are limited and unevenly distributed on the earth. In the process of energy conversion, radioactive fission products will be generated, which will cause potential environmental pollution problems. In view of the above-mentioned issues, many countries are pursing energy transformation, hoping to reduce their carbon footprint and carbon dioxide through renewable energy such as solar and wind power. Currently, Taiwan is also actively promoting the installation of ground-type and rooftop-type solar power systems.
To quickly and accurately predict solar real-time photovoltaic (PV), this study proposes a three-stage procedure that includes data preprocessing; uses ensemble learning based on deep neural networks to train a suitable configuration model. Finally, it compares with multiple machine learning models and conducts model evaluation to select optimal model for power generation forecasting. Through the analysis of a real case, this study collects data on the historical photovoltaic from a solar power plant for prediction. The execution result shows that the most appropriate model is using ensemble learning based on deep neural networks, which can make the accuracy rate up to 95%, that is let the error of prediction lower than 10kW. When entering the key variables of PV system in this predicted model, it will output the timely estimated value of power generation precisely. Therefore, it can enhance the control of the overall efficiency and stability to solar power plant.
摘要 ii
Abstract iii
CONTENT v
LIST OF FIGURES vii
LIST OF TABLES viii
CHAPTER 1 INTRODUCTION 1
1.1 Background and Motivation 1
1.2 Research Purpose 2
1.3 Research Architecture 3
CHAPTER 2 LITERATURE REVIEW 5
2.1 Photovoltaic Technology Overview 5
2.2 Machine Learning 6
2.2.1 Support Vector Regression 6
2.2.2 K-Nearest Neighbor 8
2.2.3 Decision Trees 9
2.2.4 Linear Regression 10
2.3 Deep Neural Network 11
2.4 Ensemble Learning 13
CHAPTER 3 RESEARCH METHODOLOGY 15
3.1 Problem Definition 15
3.2 Research Procedure 16
3.3 Methods 16
3.3.1 Data Transformation 17
3.3.2 Support Vector Regression 18
3.3.3 K-Nearest Neighbors 19
3.3.4 Decision Tree 20
3.3.5 Linear Regression 20
3.3.6 Deep Neural Network 21
3.3.7 Ensemble Learning 25
3.4 Evaluation 29
CHAPTER 4. CASE STUDY 30
4.1 Problem Definition 30
4.2 Data Collection 30
4.3 Data Preprocessing 32
4.4 Machine Learning Models 33
4.5 Deep Neural Network 37
4.6 Ensemble Learning 39
4.7 Result and Recommendation 41
CHAPTER 5. CONCLUSIONS 43
5.1 Summary 43
5.2 Future Research 43
References 45
Altay, E., & Satman, M. H., Stock market forecasting: artificial neural network and linear regression comparison in an emerging market, Journal of Financial Management & Analysis, Vol. 18, No. 2, pp. 18 (2005).
Alzahrani, A., Shamsi, P., Dagli, C., & Ferdowsi, M., Solar irradiance forecasting using deep neural networks, Procedia Computer Science, Vol. 114, pp. 304-313 (2017).
Awad, M., & Khanna, R., Support vector regression, Efficient learning machines, pp. 67-80 (2015).
Badhiye, S. S., Sambhe, N. U., & Chatur, P. N., KNN technique for analysis and prediction of temperature and humidity data, International Journal of Computer Applications, Vol. 61, No. 14 (2013).
Benhmed, K., Touati, F., Al-Hitmi, M., Chowdhury, N. A., Gonzales, A. S., Qiblawey, Y., & Benammar, M., PV power prediction in Qatar based on machine learning approach, 2018 6th International Renewable and Sustainable Energy Conference (IRSEC), pp. 1-4 (2018).
De Jesús, D. A. R., Mandal, P., Velez-Reyes, M., Chakraborty, S., & Senjyu, T., Data Fusion Based Hybrid Deep Neural Network Method for Solar PV Power Forecasting, 2019 North American Power Symposium (NAPS), pp. 1-6 (2019).
Dietterich, T. G., Ensemble methods in machine learning, International workshop on multiple classifier systems, pp. 1-15 (2000).
Fausett, L., Fundamentals of neural networks: architectures, algorithms, and applications (1994).
Han, J., & Moraga, C., The influence of the sigmoid function parameters on the speed of backpropagation learning, International Workshop on Artificial Neural Networks, pp. 195-201 (1995).
Hong, W. C., Dong, Y., Chen, L. Y., & Wei, S. Y., SVR with hybrid chaotic genetic algorithms for tourism demand forecasting, Applied Soft Computing, Vol. 11, No. 2, pp. 1881-1890 (2011).
Ibrahim, S., Daut, I., Irwan, Y. M., Irwanto, M., Gomesh, N., & Farhana, Z., Linear regression model in estimating solar radiation in Perlis, Energy Procedia, Vol. 18, pp. 1402-1412 (2012).
Islam, T., & Meade, N., Forecasting the development of the market for business telephones in the UK, Journal of the Operational Research Society, Vol. 47, No. 7, pp. 906-918 (1996).
Khandakar, A., EH Chowdhury, M., Khoda Kazi, M., Benhmed, K., Touati, F., Al-Hitmi, M., & Gonzales, J. S., Machine learning based photovoltaics (PV) power prediction using different environmental parameters of Qatar, energies, Vol. 12, No. 14, pp. 2782 (2019).
Kim, G. G., Choi, J. H., Park, S. Y., Bhang, B. G., Nam, W. J., Cha, H. L., ... & Ahn, H. K., Prediction model for PV performance with correlation analysis of environmental variables, IEEE Journal of Photovoltaics, Vol. 9, No. 3, pp. 832-841 (2019).
Li, R., Wang, H. N., He, H., Cui, Y. M., & Du, Z. L., Support vector machine combined with k-nearest neighbors for solar flare forecasting, Chinese Journal of Astronomy and Astrophysics, Vol. 7, No. 3, pp. 441 (2007).
Mienye, I. D., Sun, Y., & Wang, Z., An improved ensemble learning approach for the prediction of heart disease risk, Informatics in Medicine Unlocked, Vol. 20, pp. 100402 (2020).
Mishra, S. P., & Dash, P. K., Short term wind power forecasting using Chebyshev polynomial trained by ridge extreme learning machine, 2015 IEEE Power, Communication and Information Technology Conference (PCITC), pp. 173-177 (2015).
Nair, V., & Hinton, G. E., Rectified linear units improve restricted boltzmann machines (2010).
Netsanet, S., Zhang, J., Zheng, D., Agrawal, R. K., & Muchahary, F., An aggregative machine learning approach for output power prediction of wind turbines, 2018 IEEE Texas Power and Energy Conference (TPEC), pp. 1-6 (2018).
Nti, I. K., Adekoya, A. F., & Weyori, B. A., A comprehensive evaluation of ensemble learning for stock-market prediction, Journal of Big Data, Vol. 7, No. 1, pp. 1-40 (2020).
Ospina, J., Newaz, A., & Faruque, M. O., Forecasting of PV plant output using hybrid wavelet-based LSTM-DNN structure model, IET Renewable Power Generation, Vol. 13, No. 7, pp. 1087-1095 (2019).
Parveen, N., Zaidi, S., & Danish, M., Support vector regression model for predicting the sorption capacity of lead (II), Perspectives in Science, Vol. 8, pp. 629-631 (2016).
Pasion, C. K., Modeling Power Output of Horizontal Solar Panels Using Multivariate Linear Regression and Random Forest Machine Learning (2019).
Pekel, E., Estimation of soil moisture using decision tree regression, Theoretical and Applied Climatology, Vol. 139, No. 3, pp. 1111-1119 (2020).
Polikar, R., Ensemble based systems in decision making, IEEE Circuits and systems magazine, Vol. 6, No. 3, pp. 21-45 (2006).
Raschka, S., Introduction to Artificial Neural Networks and Deep Learning (2016).
Ren, Y., Suganthan, P. N., & Srikanth, N., Ensemble methods for wind and solar power forecasting—A state-of-the-art review, Renewable and Sustainable Energy Reviews, Vol. 50, pp. 82-91 (2015).
Sengar, S., & Liu, X., Ensemble approach for short term load forecasting in wind energy system using hybrid algorithm, Journal of Ambient Intelligence and Humanized Computing, pp. 1-18 (2020).
Sharma, N., Sharma, P., Irwin, D., & Shenoy, P., Predicting solar generation from weather forecasts using machine learning, 2011 IEEE international conference on smart grid communications (SmartGridComm), pp. 528-533 (2011).
Singh, G. K., Solar power generation by PV (photovoltaic) technology: A review, Energy, Vol. 53, pp. 1-13 (2013).
Son, J., Park, Y., Lee, J., & Kim, H., Sensorless PV power forecasting in grid-connected buildings through deep learning, Sensors, Vol. 18, No. 8, pp. 2529 (2018).
Song, Y. Y., & Ying, L. U., Decision tree methods: applications for classification and prediction, Shanghai archives of psychiatry, Vol. 27, No. 2, pp. 130 (2015).
Tsai, C. F., & Wang, S. P., Stock price forecasting by hybrid machine learning techniques, Proceedings of the international multiconference of engineers and computer scientists, Vol. 1, No. 755, pp. 60 (2009).
Tso, G. K., & Yau, K. K., Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks, Energy, Vol. 32, No. 9, pp. 1761-1768 (2007).
Vapnik, V., The support vector method of function estimation, Nonlinear modeling, pp. 55-85 (1998).
Zamanlooy, B., & Mirhassani, M., Efficient VLSI implementation of neural networks with hyperbolic tangent activation function, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 22, No. 1, pp. 39-48 (2013).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *