|
[1] Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J., Adam, M., Gertych A., Tan, A., (2017). A deep convolutional neural network model to classify heartbeats, Computers in Biology and Medicine, 89, 389-396 [2] Cortes, C., Vapnik, V. (1995). Support-vector networks. Machine Learning 20, 273–297. [3] Cheon, S., Lee, H., Kim, C. O., & Lee, S. H. (2019). Convolutional Neural Network for Wafer Surface Defect Classification and the Detection of Unknown Defect Class. IEEE Transactions on Semiconductor Manufacturing, 32(2), 163- 170. doi:10.1109/TSM.2019.2902657 [4] Frid-Adar, M., Klang, E., Amitai, M., Goldberger J. and Greenspan H., "Synthetic data augmentation using GAN for improved liver lesion classification," 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, 2018, pp. 289-293, doi: 10.1109/ISBI.2018.8363576. 444 [5] Glorot, X, Bordes, A, Bengio, Y. (2011). Deep Sparse Rectifier Neural Networks. In International Conference on Artificial Intelligence and Statistics, 315-323 [6] Girshick, R., Donahue, J., Darrell, T., Malik, J. (2014). Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 580-587 [7] Goodfellow, I. J., Pouget-Abadie, J., Mirza M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. Generative adversarial nets. NIPS, 2014. [8] He, K., Gkioxari, G., Dollár, P., and Girshick, R. "Mask R-CNN," 2017 IEEE International Conference on Computer Vision (ICCV), Venice, 2017, pp. 2980-2988, doi: 10.1109/ICCV.2017.322. [9] Hertel, L., Barth, E., Käster, T., and Martinetz T. "Deep convolutional neural networks as generic feature extractors," 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, 2015, pp. 1-4, doi: 10.1109/IJCNN.2015.7280683. [10] Hendrycks, D., Lee, K., Mazeika, M. (2019). Using Pre-Training Can Improve Model Robustness and Uncertainty, In International Conference on Machine Learning. [11] He, K., Zhang, X., Ren, S., Sun, J. Deep Residual Learning for Image Recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778 [12] He K., Zhang X., Ren S., Sun J. (2016) Identity Mappings in Deep Residual Networks. In: Leibe B., Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9908. Springer, Cham. https://doi.org/10.1007/978-3-319-46493-0_38Tang, Z., & Fishwick, P. A. (1993). Feedforward neural nets as models for time series forecasting. ORSA journal on computing, 5(4), 374-385. [13] Huang, G., Liu, Z., L. van der M., Weinberger, K. Q.: Densely Connected Convolutional Networks Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 4700-4708 [14] H.-P. Lu and C.-T. Su (2021), “CNNs Combined with a Conditional GAN for Mura Defect Classification in TFT-LCDs,” IEEE Transactions on Semiconductor Manufacturing, Vol. 34, No. 1, pp. 25-33. [15] H. -P. Lu, C. -T. Su, S. -Y. Yang and Y. -P. Lin, "Combination of Convolutional and Generative Adversarial Networks for Defect Image Demoiréing of Thin-Film Transistor Liquid-Crystal Display Image," in IEEE Transactions on Semiconductor Manufacturing, vol. 33, no. 3, pp. 413-423, Aug. 2020 [16] Ioffe, S.,and Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of The 32nd International Conference on Machine Learning, pages 448–456, 2015. [17] Kido, S., Hirano, Y., Hashimoto, N. (2018, 7-9 Jan. 2018). Detection and classification of lung abnormalities by use of convolutional neural network (CNN) and regions with CNN features (R-CNN). Paper presented at the 2018 International Workshop on Advanced Image Technology (IWAIT). [18] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25(2), 1097-1105. [19] Kingma, D. P., and Ba, J. L. Adam: A method for stochastic optimization. Proceedings of the 3rd International Conference on Learning Representations (ICLR) arXiv preprint arXiv:1412.6980, 2014. [20] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. [21] McCulloch, W.S., Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5, 1467-1470. [22] Mirza, M., and Osindero, S. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014 [23] Nguyen, T.P., Choi, S., Park, SJ. (2021). Inspecting Method for Defective Casting Products with Convolutional Neural Network (CNN). Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 583–594 [24] Radford, A., Metz, L., Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, ICLR, 1-16, 2016. [25] Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408. [26] Srinath S. Kumar, Dulcy M. Abraham, Mohammad R. Jahanshahi, Tom Iseley, Justin Starr (2018). Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks, Automation in Construction, Volume 91, 273-283 [27] Shi, J., Li, Z., Zhu, T., Wang, D., Ni, C. (2020). Defect Detection of Industry Wood Veneer Based on NAS and Multi-Channel Mask R-CNN. Sensors, 20, 4398. [28] Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. ICLR, 2015 [29] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z. Rethinking the Inception Architecture for Computer Vision, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2818-2826 [30] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich. A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015. [31] Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014. [32] Tieleman, T. and Hinton, G. (2012). COURSERA: Neural Networks for Machine Learning. Lecture 6.5 – RMSProp. [33] Wang G., Kang W., Wu, Q., Wang Z. and J. Gao. "Generative Adversarial Network (GAN) Based Data Augmentation for Palmprint Recognition," 2018 Digital Image Computing: Techniques and Applications (DICTA), Canberra, Australia, 2018, pp. 1-7, doi: 10.1109/DICTA.2018.8615782. [34] Waheed, A., Goyal, M., Gupta, D., Khanna, A., Al-Turjman F. and Pinheiro, P. R. "CovidGAN: Data Augmentation Using Auxiliary Classifier GAN for Improved Covid-19 Detection," in IEEE Access, vol. 8, pp. 91916-91923, 2020, doi: 10.1109/ACCESS.2020.2994762. [35] Yang, J., Yu, K., Gong, Y., and Huang, T. (2009). Linear spatial pyramid matching using sparse coding for image classification, IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 1794-1801 [36] Zhang, Yu., Satapathy, S., Guttery, D., Górriz, J., Wang, S., (2021) Improved Breast Cancer Classification Through Combining Graph Convolutional Network and Convolutional Neural Network,Information Processing & Management,Volume 58, Issue 2,
|