帳號:guest(3.138.117.184)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡宇軒
作者(外文):Tsai, Yu-Shiuan
論文名稱(中文):電磁式整合型微流體平台運用反轉錄恆溫式圈環形核酸增幅法於病毒偵測
論文名稱(外文):Electromagnetically-driven Integrated Microfluidic Platform Using Reverse Transcription Loop-mediated Isothermal Amplification for Viral Detection
指導教授(中文):李國賓
指導教授(外文):Lee, Gwo-Bin
口試委員(中文):陳致真
沈延盛
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:108033614
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:94
中文關鍵詞:新型冠狀肺炎微流體反轉錄恆溫式圓環形核酸增幅法電磁鐵微幫浦微混合器病毒偵測定點照護
外文關鍵詞:COVID-19microfluidicsRT-LAMPelectromagnetsmicropumpsmicromixersviral detectionpoint-of-care
相關次數:
  • 推薦推薦:0
  • 點閱點閱:236
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
對於嚴重急性呼吸道症候群冠狀病毒二型(SARS-CoV-2)快速且準確的偵測是非常重要的,目前主要是利用即時反轉錄聚合酶連鎖反應對新型冠狀肺炎進行檢測,然而這整個的過程通常會耗費4小時。取而代之的反轉錄恆溫式圈環形核酸增幅法是一種更加靈敏以及專一的核酸增幅法,並且在30~60分鐘之內就可以完成反應。本研究提出一個新型電磁驅動整合型微流體系統運用恆溫式圈環形核酸增幅法以及反轉錄恆溫式圈環形核酸增幅法伴隨著RNA的萃取,並可以在60分鐘內完成整套流程且運用在新型冠狀病毒的快速偵測。藉由反轉錄恆溫式圈環形核酸增幅法結合RNA的萃取後加上熒光偵測,快速並自動化診斷SARS-CoV-2可以被實現並且偵測極限可以達到5 x 103 copies/reaction。可攜式微流體裝置未來有希望可以用在一些資源比較有限的區域。
Rapid and accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is important nowadays. Real-time PCR was commonly used for coronavirus disease diagnosis. However, it takes about up to four hrs to finish the whole process of amplification. Alternatively, reverse transcription loop-mediated isothermal amplification (RT-LAMP) could be more sensitive and specific, which could be finished within a shorter period of time (about 30~60 mins). In this work, a new electromagnetically-driven integrated microfluidic system was reported to perform the entire procedure for LAMP and RT-LAMP within 60 mins for fast diagnosis of SARS-CoV-2, followed by RNA extraction. By means of fluorescent detection after RT-LAMP with RNA extraction, fast diagnosis of SARS-CoV-2 could be automated with a LOD as low as 5 x 103 copies/reaction. The portable microfluidic device may be promising in resource-limited countries in the near future.
Abstract…………………………………………………………..................I
摘要………………………………………………………………………....II
Acknowledgements………………………………………………………..III
Table of contents…………………………………………………………..IV
List of figures……………………………………………………………..VII
List of tables…………………………………………………………….XVII
Abbreviations and nomenclature…………………………………….XVIII
Chapter 1: Introduction……………………………………………………1
1.1 Coronavirus
1.2 Reverse transcription loop-mediated isothermal amplification
1.3 Diagnostic methods for viral detection
1.4 Point-of-care diagnostics
1.5 Fluorescent dyes for RT-LAMP
1.6 Application of microfluidic with RT-PCR and RT-LAMP for detection of SARS-CoV-2
1.7 Motivation and novelty
Chapter 2: Materials and methods……………………………………….16
2.1 Experimental process
2.2 Design of microfluidic chip
2.3 Microfabrication process
2.4 Sample and reagent preparation
2.5 Experimental setup
2.5.1 Optical detection module
2.5.2 Electromagnetic control module
2.5.3 Temperature control module
Chapter 3: Results and discussion………………………………………..41
3.1 Characterization of temperature control module
3.2 Characterization of microfluidic chip
3.3 Sensitivity tests by using cDNA samples for LAMP on chip for three genes
3.4 Specificity tests by using cDNA samples for LAMP on chip for three genes
3.5. Optimization of calcein solution concentration
3.6. Sensitivity tests by using synthetic RNA samples for RT-LAMP with RNA extraction on chip for three genes
3.7. Sensitivity tests by using synthetic RNA samples for fluorescent detection after RT-LAMP by using an ELISA reader and an optical setup
3.8. Sensitivity tests with inactive virus samples
3.9 Clinical samples tests by using extracted RNA from patients
Chapter 4: Conclusions and future perspectives………………………...83
References…………………………………………………………………86
Publication list……………………………………………………………..94
1. C. Chen, "COVID-19 Pandemic," International Surgery, 104, pp. 89-89, 2019.
2. C.P. Czerny, "Corona Viruses-A Pathogenically Variable Family," Tierarztliche Umschau, 49, pp. 511-515, 1994.
3. P. Lio, and N. Goldman, "Phylogenomics and Bioinformatics of SARS-CoV," Trends in Microbiology, 12, pp. 106-111, 2004.
4. R.J. De-Groot, S.C. Baker, R.S. Baric, C.S. Brown, C. Drosten, L. Enjuanes, R.A.M. Fouchier, M. Galiano, A.E. Gorbalenya, Z.A. Memish, S. Perlman, L.L.M. Poon, E.J. Snijder, G.M. Stephens, P.C.Y. Woo, A.M. Zaki, M. Zambon, and J. Ziebuhr, "Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group," Journal of Virology, 87, pp. 7790-7792, 2013.
5. M. Hasoksuz, S. Kilic, and F. Sarac, "Coronaviruses and SARS-COV-2," Turkish Journal of Medical Sciences, 50, pp. 549-556, 2020.
6. T.H. Li, H.Z. Lu, and W.H. Zhang, "Clinical Observation and Management of COVID-19 Patients," Emerging Microbes & Infections, 9, pp. 687-690, 2020.
7. T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, and T. Hase, "Loop-mediated Isothermal Amplification of DNA," Nucleic Acids Research, 28, pp. 1-7, 2000.
8. K. Nagamine, T. Hase, and T. Notomi, "Accelerated Reaction by Loop-mediated Isothermal Amplification Using Loop Primers," Molecular and Cellular Probes, 16, pp. 223-229, 2002.
9. T. Iwamoto, T. Sonobe, and K. Hayashi, "Loop-mediated Isothermal Amplification for Direct Detection of Mycobacterium Tuberculosis Complex, M-avium, and M-intracellulare in Sputum Samples," Journal of Clinical Microbiology, 41, pp. 2616-2622, 2003.
10. Y. Mori, K. Nagamine, N. Tomita, and T. Notomi, "Detection of Loop-mediated Isothermal Amplification Reaction by Turbidity Derived from Magnesium Pyrophosphate Formation," Biochemical and Biophysical Research Communications, 289, pp. 150-154, 2001.
11. M. Goto, E. Honda, A. Ogura, A. Nomoto, and K.I. Hanaki, "Colorimetric Detection of Loop-mediated Isothermal Amplification Reaction by Using Hydroxy Naphthol Blue," Biotechniques, 46, pp. 167-172, 2009.
12. C.B. Poole, Z.R. Li, A. Alhassan, D. Guelig, S. Diesburg, N.A. Tanner, Y.H. Zhang, T.C. Evans, P. LaBarre, S. Wanji, R.A. Burton, and C.K.S. Carlow, "Colorimetric Tests for Diagnosis of Filarial Infection and Vector Surveillance Using Non-instrumented Nucleic Acid Loop-mediated Isothermal Amplification (NINA-LAMP)," Plos One, 12, pp. 1-15, 2017.
13. B.L. Fernandez-Carballo, C. McBeth, I. McGuiness, M. Kalashnikov, C. Baum, S. Borros, A. Sharon, and A.F. Sauer-Budge, "Continuous-flow, Microfluidic, qRT-PCR System for RNA Virus Detection," Analytical and Bioanalytical Chemistry, 410, pp. 33-43, 2018.
14. A. Fraisse, C. Coudray-Meunier, S. Martin-Latil, C. Hennechart-Collette, S. Delannoy, P. Fach, and S. Perelle, "Digital RT-PCR Method for Hepatitis A Virus and Norovirus Quantification in Soft Berries," International Journal of Food Microbiology, 243, pp. 36-45, 2017.
15. K. Kaarj, P. Akarapipad, and J.Y. Yoon, "Simpler, Faster, and Sensitive Zika Virus Assay Using Smartphone Detection of Loop-mediated Isothermal Amplification on Paper Microfluidic Chips," Scientific Reports, 8, pp. 1-11, 2018.
16. A. Ganguli, A. Ornob, H. Yu, G.L. Damhorst, W. Chen, F. Sun, A. Bhuiya, B.T. Cunningham, and R. Bashir, "Hands-free Smartphone-based Diagnostics for Simultaneous Detection of Zika, Chikungunya, and Dengue at Point-of-care," Biomedical Microdevices, 19, pp. 1-13, 2017.
17. Y.D. Ma, Y.S. Chen, and G.B. Lee, "An Integrated Self-driven Microfluidic Device for Rapid Detection of the Influenza A (H1N1) Virus by Reverse Transcription Loop-mediated Isothermal Amplification," Sensors and Actuators B-Chemical, 296, pp. 1-9, 2019.
18. K.G. Shah, and P. Yager, "Wavelengths and Lifetimes of Paper Autofluorescence: A Simple Substrate Screening Process to Enhance the Sensitivity of Fluorescence-Based Assays in Paper," Analytical Chemistry, 89, pp. 12023-12029, 2017.
19. P.W. Qin, M. Park, K.J. Alfson, M. Tamhankar, R. Carrion, J.L. Patterson, A. Griffiths, Q. He, A. Yildiz, R. Mathies, and K. Du, "Rapid and Fully Microfluidic Ebola Virus Detection with CRISPR-Cas13a," Acs Sensors, 4, pp. 1048-1054, 2019.
20. A.J. Tudos, G.A.J. Besselink, and R.B.M. Schasfoort, "Trends in Miniaturized Total Analysis Systems for Point-of-care Testing in Clinical Chemistry," Lab on a Chip, 1, pp. 83-95, 2001.
21. X.H. Cheng, D. Irimia, M. Dixon, K. Sekine, U. Demirci, L. Zamir, R.G. Tompkins, W. Rodriguez, and M. Toner, "A Microfluidic Device for Practical Label-free CD4+T cell Counting of HIV-infected Subjects," Lab on a Chip, 7(2), pp. 170-178, 2007.
22. C.H. Su, M.H. Tsai, C.Y. Lin, Y.D. Ma, C.H. Wang, Y.D. Chung, and G.B. Lee, "Dual Aptamer Assay for Detection of Acinetobacter Baumannii on An Electromagnetically-driven Microfluidic Platform," Biosensors & Bioelectronics, 159, pp. 1-7, 2020.
23. Y.D. Ma, K.H. Li, Y.H. Chen, Y.M. Lee, S.T. Chou, Y.Y. Lai, P.C. Huang, H.P. Ma and G.B. Lee, "A Sample-to-answer, Portable Platform for Rapid Detection of Pathogens with A Smartphone Interface," Lab on a Chip, 19, pp. 3804–3814, 2019.
24. W.L. Wang, Y.L. Xu, R.Q. Gao, R.J. Lu, K. Han, G.Z. Wu and W.J. Tan, "Detection of SARS-Cov-2 in Different Types of Clinical Specimens," JAMA, 323, pp. 1843-1844, 2020.
25. G. Seyrig, R.D. Stedtfeld, D.M. Tourlousse, F. Ahmad, K. Towery, A.M. Cupples, J.M. Tiedje and S.A. Hashsham, "Selection of Fluorescent DNA Dyes for Real-time LAMP with Portable and Simple Optics," Journal of Microbiological Methods, 119, pp. 223-227, 2015.
26. N. Tomita, Y. Mori, H. Kanda and T. Notomi, "Loop-mediated Isothermal Amplification (LAMP) of Gene Sequences and Simple Visual Detection of Products," Nature Protocols, 3, pp. 877-882, 2008.
27. J.W. Furry, and H. Diehl, "Preparation of High-purity Calcein Assay, Properties and Application to the Routine Determination of Certain Metals," Abstracts of Papers of the American Chemical Society, 180, pp. 178-224, 1980.
28. L.L. Du, W.J. Shi, X.J. Li, Y. Lan, F. Sun, Y.J. Fan, T. Zhou and Y.J. Zhou, "A Reverse-Transcription Loop-mediated Isothermal Amplification (RT-LAMP) Assay for Detecting the Pathogen of Maize Rough Dwarf Disease in China," Australasian Plant Pathology, 48, pp. 485-489, 2019.
29. X. Jin, S. Yue, and K.S. Wells, "SYBR Green I and SYBR Green II New Ultrasensitive Fluorescent Stains for Detecting Picogram Levels of Nucleic Acids in Polyacrylamide or Agarose Gels," Faseb Journal, 8, pp. 1266-1266, 1994.
30. T. Iwamoto, T. Scnobe, and K. Hayashi, "Loop-mediated Isothermal Amplification for Direct Detection of Mycobacterium Tuberculosis Complex, M-avium, and M-intracellulare in Sputum Samples," Journal of Clinical Microbiology, 41, pp. 2616-2622, 2003.
31. S. Vilcek, L. Strojny, B. Durkovic, W. Rossmanith, and D. Paton, "Storage of Bovine Viral Diarrhoea Virus Samples on Filter Paper and Detection of Viral RNA by a RT-PCR Method," Journal of Virological Methods, 92, pp. 19-22, 2001.
32. K.R. Daher, G. Stewart, M. Boissinot, and M.G. Bergeron, "Recombinase Polymerase Amplification for Diagnostic Applications," Clinical Chemistry, 62, pp. 947-958, 2016.
33. Y. Tang, X. Yu, H. Chen, and Y.X. Diao, "An Immunoassay-based Reverse-Transcription Loop-mediated Isothermal Amplification Assay for the Rapid Detection of Avian Influenza H5N1 Virus Viremia," Biosensors and Bioelectronics, 86, pp. 255-261, 2016.
34. C.H. Van-Den-Kieboom, S.L. Van-Der-Beek, T. Meszaros, R.E. Gyurcsanyi, G. Ferwerda, and M.I. De-Jonge, "Aptasensors for Viral Diagnostics," TrAC Trends in Analytical Chemistry, 74, pp. 58-67, 2015.
35. S. Patra, R.G. Kerry, G.K. Maurya, B. Panigrahi, S. Kumari, and J.R. Rout, "Emerging Molecular Prospective of SARS-CoV-2: Feasible Nanotechnology Based Detection an Inhibition," Frontiers in Microbiology, 11, pp.1-23, 2020.
36. M. Adiraj-Lyer, G. Oza, S. Velumani, A. Maldonado, J. Romero, M.D. Munoz, M. Sridharan, R. Asomoza, and J.S. Yi, "Scanning Fluorescence-based Ultrasensitive Detection of Dengue Viral DNA on ZnO Thin Films," Sensors and Actuators B: Chemical, 202, pp. 1338-1348, 2014.
37. C.E. Noguero, M.L. Valls, and B. Sot, "CRISPR/Cas Technology as a Promising Weapon to Combat Viral Infection," Bioessays, 43, pp. 1-16, 2021.
38. D.M. Dudley, C.M. Newman, A.M. Weiler, M.D. Ramuta, C.G. Shortreed, A.S. Heffron, M.A. Accola, W.M. Rehrauer, T.C. Friedrich, and D.H. O'Connor, "Optimizing Direct RT-LAMP to Direct Transmissible SARS-CoV-2 from Primary Nasopharyngeal Swab Samples," Plos One, 15, pp. 1-15, 2020.
39. K.G. De-Oliveira, P.F. Neves-Estrela, G. De-Melo-Mendes, C.A. Dos-Santos, E.D.P. Silverira-Lacerda, and G.R. Mendes-Duarte, "Rapid Molecular Diagnostics of COVID-19 by RT-LAMP in a Centrifugal Polystyrene-toner Based Microdevice with End-point Visual Detection," Analyst, 4, pp. 1178-1187, 2021.
40. A. Ganguli, A. Mostafa, J. Berger, M.Y. Aydin, F. Sun, S.S. De-Ramirez, E. Valera, B.T. Cunningham, W.P. King, and R. Bashir, "Rapid Isothermal Amplification and Portable Detection System for SARS-CoV-2," PNAS, 117, pp. 22727-22735, 2020.
41. X. Xie, T. Gjorgjieva, Z. Attieh, M.M. Dieng, M. Arnoux, M. Khair, Y. Moussa, F.A. Jaliaf, N. Rahiman, C.A. Jackson, L.E. Messery, K. Pampiona, Z. Victoria, M. Zafar, R. Ali, F. Piano, K.C. Gunsaius, and Y. Idaghdour, ''Microfluidic Nano-Scale qPCR Enables Ultra-Sensitive and Quantitative Detection of SARS-CoV-2," Processes, 8, pp. 1-12, 2020.
42. H.W. Xiong, X. Ye, Y. Li, X. Fang, and J. Kong, "Efficient Microfluidic-Based Air Sampling/Monitoring Platform for Detection of Aerosol SARS-CoV-2 On-site," Analytical Chemistry, 93, pp. 4270-4276, 2021.
43. M.H. Ji, Y. Xia, J.F.C. Loo, L. Li, H.P. Ho, J. He, and D. Gu, "Automated Multiplex Nucleic Acid Tests for Rapid Detection of SARS-CoV-2, Influenza A and B Infection with Direct Reverse-Transcription Quantitative PCR (DirRT-qPCR) Assay in a Centrifugal Microfluidic Platform," RSC Advances, 10, pp. 34088-34098, 2020.
44. R.R.G. Soares, A.S. Akhtar, I.F. Pinto, N. Lapins, D. Barrett, G. Sandh, X. Yin, V. Pelechano, and A. Russom, "Sample-To-Answer COVID-19 Nucleic Acid Testing Using a Low-Cost Centrifugal Microfluidic Platform with Bead-Based Signal Enhancement and Smartphone Read-Out," Lab on a Chip, 21, pp. 2932-2944, 2021.
45. K.G. de Oliveria, P.F.N. Estrela, G. de Melo Mendes, C.A. dos Santos, E. de Paula Silveira Lacerda, and G.R.M. Duarte, "Rapid Molecular Diagnostics of COVID-19 by RT-LAMP in a Centrifugal Polystyrene-Toner Based Microfluidic with End-Point Visual Detection," Analyst, 146, pp. 1178-1187, 2021.
46. B. Udugama, P. Kadhiresan, H.N. Kozlowski, A. Malekjahani, M. Osborne, V.Y.C. Li, H. Chen, S. Mubareka, J.B. Gubbay, and W.C.W. Chan, "Diagnosing COVID-19: The Disease and Tools for Detection," ACS Nano, 14, pp. 3822-3835, 2020.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *