帳號:guest(3.144.251.199)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周佑儒
作者(外文):Jhou, You-Ru
論文名稱(中文):整合型微流體平台於新冠病毒偵測技術之應用
論文名稱(外文):An Integrated Microfluidic Platform for Detection of COVID-19
指導教授(中文):李國賓
指導教授(外文):Lee, Gwo-Bin
口試委員(中文):馬席彬
沈延盛
口試委員(外文):Ma, Hsi-Pin
Shan, Yan-Shen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:108033612
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:77
中文關鍵詞:環形核酸恆溫增幅法微流體即時診斷定點照護新冠病毒
外文關鍵詞:loop-mediated isothermal amplificationmicrofluidicspoint-of-careSARS-CoV-2COVID-19
相關次數:
  • 推薦推薦:0
  • 點閱點閱:377
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究運用微流體技術及環形核酸恆溫增幅法針對新冠病毒中三個基因做快速檢測。RdRp、E和N,為構成新冠病毒中的病毒膜蛋白中的三個特定基因。此三種特定基因可用於偵測患者中的新冠病毒。此微流體平台利用微型控制器作為流體控制以及溫度控制,並搭配即時偵測螢光模組以用來快速檢測新冠病毒基因。研究結果顯示其在基因放大的過程中,其反應區域之溫度可以被精準地調控在0.5°C以內,整體實驗並可以在90分鐘內完成。實驗結果顯示若使用合成之病毒RNA,不活化病毒和從臨床檢體萃取中的病毒RNA來測試,其拷貝數數量在5000個以上,該系統可成功放大以及檢測檢體中的三個特定基因。如果用病毒的互補DNA,其系統對RdRp基因的檢測極限則可以到100個拷貝數,而對於E和N基因的檢測極限數則可以到1000個拷貝數。這個新的環形核酸恆溫增幅法即時偵測系統可作為檢測新冠病毒的平台,並且此小型檢驗系統因為其微型化和可攜性,更加適合作為定點照護的新冠病毒檢測系統。
A new integrated microfluidic platform utilizing real-time loop-mediated isothermal amplification (LAMP) for detecting three viral genes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for coronavirus diseases 2019 (COVID-19) was reported in this study. Three specific genes, including RNA dependent RNA polymerase (RdRp), E, and N genes encoding for the membrane proteins of viruses which are highly expressed in SARS-CoV-2 infected patients, were molecularly diagnosed. A compact integrated microfluidic system combining a microfluidic chip, a microcontroller, a fluidic control module, and a temperature control module was developed for rapid detection of RdRp, E, and N genes in SARS-CoV-2. Experimental results showed that the temperature inside the reaction chamber could be accurately regulated with a variation less than 0.5°C. The entire on-chip process including RNA extraction, reverse transcription and LAMP could be carried out in 90 min. Moreover, the developed system could successfully amplify RdRp, E, and N genes with a limit of detection (LOD) as low as 5x10^3 copies/reaction for each gene by using synthesized RNA, inactive viruses, and RNA extracts from clinical samples. The LOD could be as low as 10^2 copies/reaction for RdRp gene while 10^3 copies/reaction for E and N genes by using complementary DNA. This compact microfluidic platform may serve as a useful tool for SARS-CoV-2 point-of-care applications.
Abstract i
中文摘要 iii
誌謝 iv
Table of contents vi
Nomenclature and abbreviations x
List of tables xiii
List of figures xiv
Chapter 1 Introduction 1
1-1 Severe acute respiratory syndrome coronavirus 2 1
1-2 Loop-mediated isothermal amplification 2
1-3 Real-time LAMP 3
1-4 Microfluidic systems 4
1-5 Point-of-care (POC) 5
1-6 Motivation and novelty 5
Chapter 2 Materials and Methods 9
2-1 Preparation of magnetic beads and RT-LAMP reagent 9
2-2 Experimental procedure 12
2-3 Microfluidic chip design and fabrication 15
2-4 Real-time RT-LAMP device 20
2-4.1 Optical detection module 20
2-4.2 Pneumatic control module and electromagnetic valve control module 24
2-4.3 Temperature control module 28
2-4.4 Casing of the device 29
2-5 Agarose gel electrophoresis 32
2-6 Real-time RT-LAMP quantification 32
Chapter 3 Results and discussions 36
3-1 Characterization of temperature control module 36
3-2 Characteriztion of the microfluic chip 37
3-3 Specificity tests using sythesized RNA samples 41
3-4 Sensitivity test of LAMP using cDNA samples 42
3-5 Sensitivity tests including RNA extraction and RT-LAMP by using cDNA and synthesized RNA samples 45
3-6 Real-time RT-LAMP tests by using synthesized RNA samples 48
3-7 Sensitivity tests by using inactive virus samples 54
3-7.1 Sensitivity tests including virus lysis, RNA extraction, and RT-LAMP by
using inactive virus samples 54
3-7.2 Real-time RT-LAMP tests by using inactive virus samples 56
3-8 Sensitivity tests by using RNA extract of clinical samples 60
3-8.1 RNA extraction, and RT-LAMP by using RNA extract of clinical samples from 4 different outbreak areas 60
3-8.2-1 Sensitivity tests including RNA extraction, and RT-LAMP by using RNA extract of clinical samples from Taiwan 62
3-8.2-2 Real-time RT-LAMP tests by using RNA extract of clinical samples from Taiwan …………………………………………………………………………..64
3-8.3 Sensitivity tests including RNA extraction, and RT-LAMP by using RNA extract of clinical samples from England 68
Chapter 4 Conclusions and future perspectives 70
4-1 Conclusions 70
4-2 Future perspectives 71
References 73
Publication list..............................................................................................................77
[1] Y. R. Guo, Q. D. Cao, Z. S. Hong, Y. Y. Tan, S. D. Chen, H. J. Jin, K. S. Tan, D. Y. Wang, and Y. Yan, "The Origin, Transmission and Clinical Therapies on Coronavirus Disease 2019 (COVID-19) Outbreak - An Update on the Status," Military Medical Research, vol 7, pp. 11-21, 2020.
[2] X. Pan, D. Chen, Y. Xia, X. Wu, T. Li, X. Ou, L. Zhou, and J. Liu, "Asymptomatic Cases in a Family Cluster with SARS-CoV-2 Infection," Lancet, vol 20, pp. 410-411, 2020.
[3] W. Wang, Y. Xu, R. Gao, R. Lu, K. Han, G. Wu, and W. Tan, "Detection of SARS-CoV-2 in Different Types of Clinical Specimens," JAMA, vol 323, pp. 1843-1844, 2020.
[4] H. Wang, X. Li, T. Li, S. Zhang, L. Wang, X. Wu, and J. Liu, "The Genetic Sequence, Origin, and Diagnosis of SARS-CoV-2," Eur J Clin Microbiol Infect Dis, vol 39, pp. 1629-1635, 2020.
[5] A. R. Fehr and S. Perlman, "Coronaviruses: An Overview of Their Replication and Pathogenesis," Methods Mol Biol, vol 1282, pp. 1-23, 2015.
[6] V. M. Corman, O. Landt, M. Kaiser, R. Molenkamp, A. Meijer, D. K. Chu, T. Bleicker, S. Brünink, J. Schneider, M. L. Schmidt, D. G. Mulders, B.L. Haagmans, B. van der Veer, S. van den Brink, L. Wijsman, G. Goderski, J.L. Romette, J. Ellis, M. Zambon, M. Peiris, H. Goossens, C. Reusken, M.P. Koopmans, and C. Drosten, "Detection of 2019 Novel Coronavirus (2019-nCoV) by Real-time RT-PCR," Euro Surveill, vol 25, pp. 3-11, 2020.
[7] T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, and T. Hase, "Loop-mediated isothermal Amplification of DNA," Nucleic Acids Res, vol 28, pp. 63-67, 2000.
[8] J. S. Kumar, D. Saxena, M. Parida, and S. Rathinam, "Evaluation of Real-time Reverse-transcription Loop-mediated Isothermal Amplification Assay for Clinical Diagnosis of West Nile Virus in Patients," Indian J Med Res, vol 147, pp. 293-298, 2018.
[9] M. Parida, S. Sannarangaiah, P. K. Dash, P. V. Rao, and K. Morita, "Loop Mediated Isothermal Amplification (LAMP): A New Generation of Innovative Gene Amplification Technique; Perspectives in Clinical Diagnosis of Infectious Diseases," Rev Med Virol, 2008, vol 18, pp. 407-21, 2008.
[10] Y. Aoi, M. Hosogai, and S. Tsuneda, "Real-time Quantitative LAMP (Loop-Mediated Isothermal Amplification of DNA) as A Simple method for Monitoring Ammonia-oxidizing Bacteria," J Biotechnol, vol 125, pp. 484-91, 2006.
[11] H. L. Wang, G. Li, J. Zhao, Y. J. Li, and Y. S. Ai, "An Overview of Nucleic Acid Testing for the Novel Coronavirus SARS-CoV-2," Frontiers in Medicine, vol 7, pp. 1-7 , 2021.
[12] V. M. Corman,, O. Landt, M. Kaiser, R. Molenkamp, A. Meijer, D. K. Chu, T. Bleicker, S. Brünink, J. Schneider, M. L. Schmidt, D. G. Mulders, B. L. Haagmans, B. van der Veer, S. van den Brink, L. Wijsman, G. Goderski, J. L. Romette, J. Ellis, M. Zambon, M. Peiris, H. Goossens, C. Reusken, M. P. Koopmans, and C. Drosten, "Detection of 2019 Novel Coronavirus (2019-nCoV) by Real-time RT-PCR," Euro Surveill, vol 25, pp. 3-10, 2020.
[13] D. Stadlbauer, F. Amanat, V. Chromikova, K. Jiang, S. Strohmeier, G.A. Arunkumar, J. Tan, D. Bhavsar, C. Capuano, E. Kirkpatrick, P. Meade, R. N. Brito, C. Teo, M. McMahon, V. Simon, and F. Krammer, "SARS-CoV-2 Seroconversion in Humans: A Detailed Protocol for A Serological Assay, Antigen Production, and Test Setup," Curr Protoc Microbiol, vol 57, pp. 100-114, 2020.
[14] Q. X. Long,, B. Z. Liu, H. J. Deng, G. C. Wu, K. Deng, Y. K. Chen, P. Liao, J. F. Qiu, Y. Lin, X. F. Cai, D. Q. Wang, Y. Hu, J. H. Ren, N. Tang, Y. Y. Xu, L. H. Yu, Z. Mo, F. Gong, X. L. Zhang, W. G. Tian, L. Hu, X. X. Zhang, J. L. Xiang, H. X. Du, H. W. Liu, C. H. Lang, X. H. Luo, S. B. Wu, X. P. Cui, Z. Zhou, M. M. Zhu, J. Wang, C. J. Xue, X. F. Li, L. Wang, Z. J. Li, K. Wang, C. C. Niu, Q. J. Yang, X. J. Tang, Y. Zhang, X. M. Liu, J. J. Li, D. C. Zhang, F. Zhang, P. Liu, J. Yuan, Q. Li, J. L. Hu, J. Chen, and A. L. Huang, "Antibody Responses to SARS-CoV-2 in Patients with COVID-19," Nat Med. vol 26, pp. 845-848, 2020
[15] A. J. Jääskeläinen, E. M. Korhonen, E. Huhtamo, M. Lappalainen, O. Vapalahti, and H. Kallio-Kokko, "Validation of Serological and Molecular Methods for Diagnosis of Zika Virus Infections," J Virol Methods, vol 263, pp. 68-74, 2019.
[16] R. Lu, X. Wu, Z. Wan, Y. Li, X. Jin, and C. Zhang, "A Novel Reverse Transcription Loop-Mediated Isothermal Amplification Method for Rapid Detection of SARS-CoV-2," Int J Mol Sci, vol 21, pp. 2826-2835, 2020.
[17] Y. Mori and T. Notomi, "Loop-mediated Isothermal Amplification (LAMP): a Rapid, Accurate, and Cost-effective Diagnostic Method for Infectious Diseases," J Infect Chemother, vol 15, pp. 62-69, 2009.
[18] W. H. Chang, S. Y. Yang, C. H. Wang, M. A. Tsai, P. C. Wang, T. Y. Chen, S.C. Chen, and G. B. Lee, "Rapid Isolation and Detection of Aquaculture Pathogens in An Integrated Microfluidic System Using Loop-mediated Isothermal Amplification," Sensors and Actuators B: Chemical, vol 180, pp. 96-106, 2003.
[19] H. Zhang, Y. Xu, Z. Fohlerova, H. Chang, C. Iliescu, and P. Neuzil, "LAMP-on-a-chip: Revising Microfluidic Platforms for Loop-mediated DNA Amplification," Trends Analyt Chem, vol 113, pp. 44-53, 2019.
[20] P. J. Asiello and A. J. Baeumner, "Miniaturized Isothermal Nucleic Acid Amplification," a review. Lab Chip, vol 11, pp. 1420-1430, 2011.
[21] X. Fang, Y. Liu, J. Kong, and X. Jiang, "Loop-mediated Isothermal Amplification Integrated on Microfluidic Chips for Point-of-care Quantitative Detection of Pathogens," Anal Chem, vol 82, pp. 3002-3006, 2010.
[22] K. Kaarj, P. Akarapipad, and J.Y. Yoon, "Simpler, Faster, and Sensitive Zika Virus Assay Using Smartphone Detection of Loop-mediated Isothermal Amplification on Paper Microfluidic Chips," Sci Rep, vol 8, pp. 12438-12448, 2018.
[23] N. W. Lucchi, A. Demas, J. Narayanan, D. Sumari, A. Kabanywanyi, S. P. Kachur, J.W. Barnwell, and V. Udhayakumar, "Real-time Fluorescence Loop Mediated Isothermal Amplification for The Diagnosis of Malaria," PLoS One, vol 5, pp. 13733-13739, 2010.
[24] A. Ganguli, A. Mostafa, J. Berger, M.Y. Aydin, F. Sun, S.A.S. Ramirez, E. Valera, B.T. Cunningham, W.P. King, and R. Bashir, "Rapid Isothermal Amplification and Portable Detection System for SARS-CoV-2," Proc Natl Acad Sci, vol 117, pp. 22727-22735, 2020.
[25] K. G. de Oliveira, P. F. N. Estrela, G. M. Mendes, C. A. Dos Santos, E. P. Silveira-Lacerda, and G. R. M. Duarte, "Rapid Molecular Diagnostics of COVID-19 by RT-LAMP in A Centrifugal Polystyrene-toner Based Microdevice with End-point Visual Detection," Analyst, vol 146, pp. 1178-1187, 2021.
[26] R.R.G. Soares, A.S. Akhtar, I.F. Pinto, N. Lapins, D. Barrett, G. Sandh, X. Yin, V. Pelechano, and A. Russom, "Sample-To-Answer COVID-19 Nucleic Acid Testing Using a Low-Cost Centrifugal Microfluidic Platform with Bead-Based Signal Enhancement and Smartphone Read-Out," Lab on a Chip, vol 21, pp. 2932-2944, 2021.
[27] B. Udugama, P. Kadhiresan, H.N. Kozlowski, A. Malekjahani, M. Osborne, V.Y.C. Li, H. Chen, S. Mubareka, J.B. Gubbay, and W.C.W. Chan, "Diagnosing COVID-19: The Disease and Tools for Detection," ACS Nano, vol 14, pp. 3822-3835, 2020.
[28] W. H. Chang,, J. C. Yu, S. Y. Yang, Y. C. Lin, C. H. Wang, H. L. You, J. J. Wu, M. S. Lee, and G. B. Lee, "Vancomycin-resistant Gene Identification from Live Bacteria on An Integrated Microfluidic System by Using Low Temperature Lysis and Loop-mediated Isothermal Amplification, " Biomicrofluidics, vol 11, pp. 24101-24112, 2017.
[29] C. H. Wang, K. Y. Lien, J. J. Wu, and G. B. Lee, "A Magnetic Bead-based Assay for The Rapid Detection of Methicillin-resistant Staphylococcus Aureus by Using A Microfluidic System with Integrated Loop-mediated Isothermal Amplification, " Lab Chip, vol 11, pp. 1521-1531, 2011.
[30] Y. D. Ma,, K. H. Li, Y. H. Chen, Y. M. Lee, S. T. Chou, Y. Y. Lai, P. C. Huang, H. P. Ma, and G. B. Lee, "A Sample-to-answer, Portable Platform for Rapid Detection of Pathogens with A Smartphone Interface, " Lab on a Chip, vol 19, pp. 3804-3814, 2019.
[31] K. W. Hsu, W. B. Lee, H. L. You, M. S. Lee, and G. B. Lee, "An Automated and Portable Antimicrobial Susceptibility Testing System for Urinary Tract Infections, " Lab on a Chip, vol 21, pp. 755-763, 2021.
[32] Y. Cao, L. Wang, L. Duan, J. Li, J. Ma, S. Xie, L. Shi, and H. Li, “Development of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and quantitative detection of Ustilago maydis,” Scientific Reports, vol 7, pp. 13394-13405, 2017.
[33] M. Platten, D. Hoffmann, R. Grosser, F. Wisplinghoff, H. Wisplinghoff, G. Wiesmüller, O. Schildgen, and V. Schildgen, "SARS-CoV-2, CT-Values, and Infectivity-Conclusions to Be Drawn from Side Observations, " Viruses, vol 13, pp. 1459-1464, 2021.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 自驅動微流體技術與微型手持式系統之整合於傳染性疾病分子診斷技術之應用
2. 電磁式整合型微流體平台運用反轉錄恆溫式圈環形核酸增幅法於病毒偵測
3. 核酸適體篩選技術之自動化微流控系統研發及其於 SARS-CoV-2 S1 protein適體之篩選
4. 使用溴化乙錠與恆溫環型核酸增幅法於人類關節液樣本中偵測活菌之整合型微流體系統
5. 整合型微流體晶片系統在分子生物標誌之篩選與應用
6. 使用電磁驅動的陣列微流體平台進行多重 RT-PCR快速診斷SARS-CoV-2和A/B型流感
7. 垂直式與側流式紙基免疫分析試片之開發 —— 以燒燙傷口深度與新冠肺炎檢測為實施例
8. 電雙層場效電晶體生物感測器之SARS-CoV-2 病毒蛋白快篩平台的開發研究
9. 以新型冠狀病毒棘突蛋白受體結合區融合大腸桿菌第二型b型忌熱型腸毒素A次單元開發鼻噴型新冠肺炎黏膜疫苗
10. 醣遮蔽棘蛋白技術開發第三代新冠肺炎疫苗抗原
11. 以去醣化與醣遮蔽棘蛋白抗原開發次世代新冠疫苗
12. 通過系統生物學方法和基於五種藥物設計規範的 DNN-DTI 模型重新定位 COVID-19 相關急性呼吸窘迫綜合徵和非病毒性急性呼吸窘迫綜合徵的多分子藥物療法
13. 利用宿主病原體時間剖析資料及系統生物學方法和基於藥物設計規範的深度神經網路架構的藥物標靶作用模型重新定位用於阻斷SARS-CoV-2感染進程的多分子藥物
14. 以電雙層閘控場效電晶體建立的生物感測平台進行細胞增生及核酸檢測之開發研究
15. 開發一個快速且穩定的感染抑制劑篩選平台以對抗嚴重特殊傳染性肺炎
 
* *