帳號:guest(3.144.8.212)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳延淋
作者(外文):Chen,Yen-Lin
論文名稱(中文):電容式近接與觸覺力感測晶片之設計與實現
論文名稱(外文):Design and Implementation of Capacitive Proximity and Tactile Force Sensor
指導教授(中文):方維倫
指導教授(外文):Fang, Wei-Leun
口試委員(中文):羅丞曜
葉勝凱
口試委員(外文):Lo, Cheng-Yao
Yeh, Sheng-Kai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:108033595
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:128
中文關鍵詞:CMOS-MEMS電容式陣列近接感測器觸覺力感測器三軸
外文關鍵詞:CMOS-MEMScapacitivearrayproximity sensortri-axial force sensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:192
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
機器人產業的蓬勃發展,應用場域也變得十分廣泛。為了使得機器人在行動時能夠對於外界環境能保有著良好的感知能力,觸覺感測器的應用將扮演著一個重要的角色,因此若觸覺感測器能擁有多種感知能力將能夠提供更多樣化的資訊以提高機器人對於外在環境的掌握。本研究提出於台積電 0.18μm 1P6M標準商用CMOS製程平台上,設計、製造以及實現了近接感測器與三軸觸覺力感測器功能的整合。其中近接感測器將能夠扮演著雷達的角色增加物體定位的精度以避免機器人與物體間的碰撞;而三軸力感測器所提供之回饋訊號則扮演著控制施力大小的角色,避免不當的施力而造成毀損。另外本研究選擇之電容式近接感測機制擁有不論導體即非導體皆能夠感測的能力,並透過PCB上接地電極的輔助,提升了近接感測器感測範圍;其中陣列式的電極結構有著能夠同時實現電容式三軸力感測器的優勢,透過整合高分子材料作為力傳介面,並進一步的在高分子材料中埋入玻璃凸塊透過剛性的調變來提升整體元件的力傳及性能表現。
With recently swift development of robotic industry, application fields of robots go more and more various. To make sure robots acquire sufficient data to properly operate, tactile sensors serve to translate diverse environmental information like external force into electrical signals.
This study proposes to design, fabricate and implement a tactile sensor equipped with proximity and tri-axial force sensing ability on standard TSMC 0.18μm 1P6M CMOS platform. Capacitive type proximity sensing mechanism is chosen for its diverse objects sensing ability, and PCB shielding metal is utilized for sensing range enhancement. Meanwhile, electrodes array is suitable for implementation of capacitive tri-axial force sensor, and polymer is heterogeneously integrated as the force transmission and protection layer. Furthermore, glass bump is embedded in the polymer for stiffness adjustment to improve the force transmission efficiency and moreover the force sensitivity.
摘要 I
Abstract II
誌謝 III
目錄 V
圖目錄 IX
表目錄 XV
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-2-1 觸覺力感測器 4
1-2-2 近接感測器 8
1-2-3 CMOS-MEMS 11
1-2-4 高分子材料 12
1-3 研究動機與目標 14
1-4 全文架構 16
第二章 感測原理與設計規劃 31
2-1 TSMC 0.18μm 1P6M CMOS製程平台 31
2-2 高分子材料 32
2-3 感測機制 35
2-3-1 電容式近接感測原理 35
2-3-2 電容式觸覺力感測原理 37
2-4 元件設計概念 40
2-4-1 近接感測設計概念 41
2-4-2 三軸觸覺力感測設計概念 42
2-5 模擬分析 45
2-5-1 近接感測模型建立 45
2-5-2 三軸觸覺力感測模型建立 47
第三章 製程流程 63
3-1 製程流程 63
3-2 製程步驟探討 64
3-2-1 金屬濕式蝕刻 64
3-2-2 雷射及打線 66
3-2-3 高分子模造 67
3-3 製程結果與討論 68
第四章 量測結果 80
4-1 近接感測單元量測 80
4-1-1 物體材料 81
4-1-2 方向性 82
4-2 觸覺力感測單元量測 83
4-2-1 正向力感測 84
4-2-2 平面剪力感測 86
4-3 近接與觸覺力雙模式量測 88
4-4 三軸力解析 89
第五章 結論與未來工作 99
5-1 結論 99
5-2 未來工作 100
參考文獻 106
附錄A 結合電容與壓阻式之三軸力感測器 114
A-1 感測器設計 114
A-1-1壓阻式感測機制 114
A-1-2 元件設計概念 117
A-2 製程流程與結果 119
A-3 量測結果與討論 120
[1] Analog Device, https://www.analog.com/en/index.html, 2020
[2] Sensirion, https://www.sensirion.com/cn/, 2020
[3] Vesper, https://vespermems.com/?lang=zh-hans, 2020
[4] TSMC, https://www.tsmc.com/chinese, 2020
[5] XFAB, https://www.xfab.com/home/, 2020
[6] Global Foundries, https://www.globalfoundries.com/, 2020
[7] IEEE SENSORS COUNCIL, https://site.ieee.org/italy-sensors/tactile-sensors/,2020
[8] S. Yeh, J. Lee, & W. Fang, (2019). On the detection interfaces for inductive type tactile sensors. Sensors and Actuators A: Physical, 297, 111545.
[9] M. Ohka, (2007). Optical Three-Axis Tactile Sensor. Mobile Robots: Perception & Navigation.
[10] H. Lee, J. Chung, S. Chang, & E. Yoon, (2011). Real-time measurement of the three-axis contact force distribution using a flexible capacitive polymer tactile sensor. Journal of Micromechanics and Microengineering, 21(3), 035010.
[11] Y. Liu, C. Sun, L. Lin, M. Tsai, & W. Fang, (2011). Development of a CMOS-Based Capacitive Tactile Sensor With Adjustable Sensing Range and Sensitivity Using Polymer Fill-In. Journal of Microelectromechanical Systems, 20(1), 119-127.
[12] J. A. Dobrzynska, & M. A. Gijs, (2012). Polymer-based flexible capacitive sensor for three-axial force measurements. Journal of Micromechanics and Microengineering, 23(1), 015009.
[13] Q. Guo, C. Mastrangelo, & D. Young, (2016). High performance MEMS tactile sensor array with robustness and fabrication simplicity. 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS).
[14] D. V. Dao, & S. Sugiyama, (2006). Fabrication and Characterization of 4-DOF Soft-Contact Tactile Sensor and Application to Robot Fingers. 2006 IEEE International Symposium on MicroNanoMechanical and Human Science.
[15] T.-V. Nguyen, B.-K. Nguyen, H. Takahashi, K. Matsumoto, & I. Shimoyama, (2014). High-sensitivity triaxial tactile sensor with elastic microstructures pressing on piezoresistive cantilevers. Sensors and Actuators A: Physical, 215, 167-175.
[16] H. Takahashi, A. Nakai, T.-V. Nguyen, K. Matsumoto, & I. Shimoyama, (2013). A triaxial tactile sensor without crosstalk using pairs of piezoresistive beams with sidewall doping. Sensors and Actuators A: Physical, 199, 43-48.
[17] K. Noda, K. Hoshino, K. Matsumoto, & I. Shimoyama, (2006). A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material. Sensors and Actuators A: Physical, 127(2), 295-301.
[18] E. Kolesar, & C. Dyson, (1995). Object imaging with a piezoelectric robotic tactile sensor. Journal of Microelectromechanical Systems, 4(2), 87-96.
[19] G. Krishna, & K. Rajanna, (2002). Tactile sensor based on piezoelectric resonance. Proceedings of IEEE Sensors, 1037370.
[20] D. Goger, N. Gorges, & H. Worn, (2009). Tactile sensing for an anthropomorphic robotic hand: Hardware and signal processing. 2009 IEEE International Conference on Robotics and Automation, 5152650.
[21] T. Schlegl, T. Bretterklieber, M. Neumayer, & H. Zangl, (2011). Combined Capacitive and Ultrasonic Distance Measurement for Automotive Applications. IEEE Sensors Journal, 11(11), 2636–2642.
[22] D. Goeger, M. Blankertz, & H. Woern, (2010). A tactile proximity sensor. 2010 IEEE Sensors.
[23] Z.-H. Chen, & R.-C. Luo, (1998). Design and implementation of capacitive proximity sensor using microelectromechanical systems technology. IEEE Transactions on Industrial Electronics, 45(6), 886–894.
[24] H.-K. Lee, S.-I. Chang, & E. Yoon, (2009). Dual-Mode Capacitive Proximity Sensor for Robot Application: Implementation of Tactile and Proximity Sensing Capability on a Single Polymer Platform Using Shared Electrodes. IEEE Sensors Journal, 9(12), 1748–1755.
[25] P.-H. Lo, C. Hong, S.-C. Lo, & W. Fang, (2011). Implementation of inductive proximity sensor using nanoporous anodic aluminum oxide layer. 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.
[26] P.-H. Lo, C. Hong, S.-H. Tseng, J.-H. Yeh, & W. Fang, (2012). Implementation of vertical-integrated dual mode inductive-capacitive proximity sensor. 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 6170268.
[27] M. Hsieh, S. Yeh, J. Lee, P. Lin, M. Lai, & W. Fang, (2019). Vertically Integrated Multiple Electrode Design for Sensitivity Enhancement of CMOS-MEMS Capacitive Tactile Sensor. 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII).
[28] S.-Y. Tu, W.-C. Lai, & W. Fang, (2017). Vertical Integration of Capacitive and Piezo-resistive Sensing Units to Enlarge the Sensing Range of CMOS-MEMS Tactile Sensor. 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS).
[29] S. Yeh, H. Chang, C. Lu, & W. Fang, (2018). A CMOS-MEMS Electromagnetic-Type Tactile Sensor with Polymer-Filler and Chrome-Steel Ball Sensing Interface. 2018 IEEE Sensors.
[30] J. Lee, S. Yeh, & W. Fang, (2019). Monolithic/Vertical Integration of Piezo-Resistive Tactile Sensor and Inductive Proximity Sensor Using CMOS-MEMS Technology. 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS).
[31] C. Sun, M. Tsai, Y. Liu, & W. Fang, (2010). Implementation of a Monolithic Single Proof-Mass Tri-Axis Accelerometer Using CMOS-MEMS Technique. IEEE Transactions on Electron Devices, 57(7), 1670-1679.
[32] C. Chang, P. Hong, S. Yeh, Y. Lin, M. Lai, & W. Fang, (2020). Environmental Sensing Hub on Single Chip Using Double-Side Post-CMOS Processes. 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS).
[33] T. Shen, Y. Lee, K. Chang, & W. Fang, (2018). Responsivity enhancement of CMOS-MEMS thermoelectric infrared sensor by heat transduction absorber design. 2018 IEEE Micro Electro Mechanical Systems (MEMS).
[34] R. Dahiya, G. Metta, M. Valle, & G. Sandini, (2010). Tactile Sensing—From Humans to Humanoids. IEEE Transactions on Robotics, 26(1), 1-20.
[35] T. K. Kim, J. K. Kim, & O. C. Jeong, (2011). Measurement of nonlinear mechanical properties of PDMS elastomer. Microelectronic Engineering, 88(8), 1982-1985.
[36] K. L. Johnson (1987), Contact mechanics., Cambridge,UK: Cambridge university press.
[37] S. Timoshenko, & J. Goodier, (1951), Theory of Elasticity., New Tork, NY: McGraw-Hill.
[38] W. Kan, Y. Huang, X. Zeng, X. Guo, & P. Liu, (2018). A dual-mode proximity sensor with combination of inductive and capacitive sensing units. Sensor Review, 38(2), 199–206.
[39] C. Brown, A. Kay, Y. Sugita, & K. Kida, (2015). A Capacitive Touch Panel for Simultaneous Detection of Non-Conductive and Conductive Objects. SID Symposium Digest of Technical Papers, 46(1), 891–894.
[40] M. Bao, (2004). Micro mechanical transducers: Pressure sensors, accelerometers and gyroscopes. Amsterdam: Elsevier.
[41] G. Fedder, (n.d.). CMOS-Based Sensors. IEEE Sensors, 2005.
[42] Z. Wang, A. A. Volinsky, & N. D. Gallant, (2014). Crosslinking Effect on Polydimethylsiloxane Elastic Modulus Measured by Custom-built Compression Instrument. Journal of Applied Polymer Science, 131(22).
[43] S.-K. Yeh, & W. Fang, (2019). Integration of Stainless-Steel Tactile Bump with Inductive Tactile Sensor Array for 3D Micro Joystick Button Application. 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII).
[44] M. Liu, J. Sun, Y. Sun, C. Bock, & Q. Chen, (2009). Thickness-Dependent Mechanical Properties of Polydimethylsiloxane Membranes. Journal of Micromechanics and Microengineering, 19(3), 035028.
[45] J. Detry, D. Konevai and S. Blackstone, A Comparison of Resistance in Polysilicon, Laser-recrystaIlized Polysilicon and Single Crystal Silicon, Tech. Digest, 3rd Int. Conf. Solid-State Sensors and Actuators (Transducers ’85), 1985, pp. 278-280.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *