|
[1] Girard, L. D., 1862, Application des Surfaces Glissantes, Paris, Bachelier [2] Slocum, A. H., 1992, Precision Machine Design, NJ, Englewood Cliffs:Prentice Hall [3] 黃華志,2009, “液靜壓軸承技術清大演講”,工研院機械所. [4] Telingater, V. S., 1972, “Hydrostatic Slideways Using Standard Bearings ”, Machines and Tooling, Vol. 43, Iss. 2, pp.15-20 [5] Raimondi, A. A., Boyd, J.,1957, “An Analysis of Orifice and Capillary-compensated Hydrostatic Journal Bearing ” , Lubr. Eng, Vol. 13, Iss. 1, pp.28-37 [6] Ling, T. S., 1962, “On the Optimization of the Stiffness of Externally Pressurized Bearings”, Trans. ASME. J. Basic Eng, Vol. 84, pp.119-122 [7] O’Donoghue, J. P., 1972, “Parallel Orifice and Capillary Control for Hydrostatic Journal bearings”, Tribology International, Vol. 5, pp.81-82 [8] Sharma, S. C., Sinhasan, R., Jain, S. C., Singh, N., and Singh, S. K., 1995, “Comparative study of the performance of six-pocket and four-pocket hydrostatic/hybrid flexible journal bearings”, Tribology Transactions, Vol. 28, pp.531-539 [9] Sharma, S. C., Sinhasan, R., Jain, S. C., Singh, N., and Singh, S. K., 1998, “Performance of Hydrostatic/Hybrid Journal Bearings with Unconventional Recess Geometries”, Tribology Transactions, Vol. 41, pp.375-381 [10] Mohsin, M. E., 1963, “The Use of Controlled Restrictors for Compensating Hydrostatic Bearing”, Third International Conference on Machine Tool Design Research, pp.129-424 [11] Rowe, W. B. and O’Donoghue, J.P., 1970, “Diaphragm Valves for Controlling Opposed Pad Hydrostatic Bearing”, Proc. I. E. Tribology, Vol. 184, pp.1-9 [12] Moris, S. A., 1972, “Passively and Actively Controlled Externally Pressurized Oil-film Bearing”, Trans. ASME. Ser. F, Vol. 94, pp.56-63 [13] Rowe W. B., 1976, Hydrostatic Bearing Patent Application no.51919/67. Publish 15th November170 (1):602. Assigned to Wickman Ltd [14] Rowe W. B., 1969, Hydrostatic bearing patent application no.22072/66. Publish 15th November 170 (1):602. Assigned to Wickman Ltd [15] Tully, N., 1977, “Static and Dynamic Performance of an Infinite Stiffness Hydrostatic Thrust Bearing”, Trans. of ASME. J. of Lubrication Tech, Vol. 99, Iss.1, pp.106-112 [16] Osumi T., Mori H., Ikeuchi K., 1985, “Effects of Stabilizer on Initial Response of Self Controlled Externally Pressurized Bearings”, Trans. JSLE, Vol. 20, pp.651-657 [17] Yoshimoto, S., Anno, Y., Amari K., 1990, “Static Characteristics of Hydrostatic Journal Bearing with a Self Controlled Restrictor Employing Floating Disk”, Trans. JSLE, Vol. 56, pp.3360-3367 [18] Yoshimoto S., Kikuchi K., 1999, “Step Response Characteristics of Hydrostatic Journal Bearings with Self-controlled Restrictor Employing Floating Disk”, Trans. Int, Vol. 121, Iss. 4, pp. 315-320 [19] Robert Schoenfold, 2001, Regulator for Adjusting the Fluid Flow in a Hydrostatic or Aerostatic Device. US Patent number 6276491B1 [20] Singh, N., Sharma, S. C.,Jain, S. C., and Reddy, S. S., 2004, “Performance of Membrane Compensated Multirecess Hydrostatic Hybrid Flexible Journal Bearing System Considering Various Recess Shapes ”, Tribology International,Vol. 37, pp.11-24 [21] Kang, Y., Shen, P. C., Chen, C. H., Chang Y. P. and Lee, H. H., 2007, “Modified determination of fluid resistance for membrane-type restrictors”, Industrial Lubrication and Tribology, pp.123-131 [22] Mayer, J. E. and Shaw, M. C., 1963, “Characteristics of Externally Pressurized Bearing Having Variable External Flow Restrictors”, ASEM Journal of Basic Engineering, Vol. 85, pp.291 [23] Schoenfold, R., Flow-rate regulator for liquid and/or gaseous materials. D.E. Patent No. 3150117 A1 (1983) [24] 王翊丞,2015,“液靜壓軸承複合型節流裝置設計與實驗”國立清華大學動力機械系碩士論文 [25] 宋震國、王翊丞,2015,“主動式補償液靜壓軸承及其節流器”,中華民國發明專利第I597435號 [26] 黃裕修,2020,“以多層感知類神經網路輔助複合式節流器設計”國立清華大學動力機械系碩士論文 [27] McCulloch, W.S. & Pitts, W., 1943, “A logical calculus of the ideas immanent in nervous activity”, Bulletin of Mathematical Biophysics, Vol. 5, pp.115-133 [28] Hebb, D.O., 1949, The Organization of Behavior, New York, Wiley [29] 丁川康,2020,人工智慧導論Lec.1 Introduction to Artificial Intelligence課程講義 [30] Rosenblatt, F., 1957, The perceptron: a perceiving and recognizing automaton, Report 85-460-1, Cornell Aeronautical Laboratory [31] Minsky, M., Papert, S., 1969, Perceptrons: An Introduction to Computational Geometry, Cambridge, MA, USA: MIT Press. [32] Hopfield, J. J., April 1982, “Neural networks and physical systems with emergent collective computational abilities”, Proceedings of the National Academy of Sciences of the USA, vol. 79, Iss. 8, pp. 2554–2558 [33] Rumelhart, D. E., Hinton, G.E., Williams, R.J., 1986, “Learning representations by back-propagating errors”, Nature, Vol. 323, pp. 533-536 [34] Hinton, G. E., Sejnowski, T. J., Ackley, D. H., 1985, “A learning algorithm for boltzmann machines”, Cognitive Science, Vol. 9, pp. 147-169 [35] Hinton, G. E. and Salakhutdinov, R. R., 2006, “Reducing the Dimensionality of Data with Neural Networks”, Science, Vol. 313, Iss. 5786, pp. 504-507 [36] 張斐章,張麗秋,2010,類神經網路導論:原理與應用,滄海書局 [37] Canbulut, F., Sinanoglu, C., Yildirim, S., 2004, “Analysis of Effects of Sizes of Orifice and Pockets on the Rigidity of Hydrostatic Bearing Using Neural Network Predictor System”, KSME International Journal, Vol. 18, Iss. 3, pp. 432 ~ 442 [38] Canbulut, F., Sinanoglu, C., 2004, “ An investigation on the performance of hydrostatic pumps using artificial neural network”, JSME International Journal, Vol. 47, Iss. 3, pp 864-872 [39] Canbulut, F., 2004, “The experimental analyses of effects of the geometric and working parameters on the circular hydrostatic thrust bearing”, JSME International Journal, Vol. 48, Iss. 4, pp 715-722 [40] Canbulut, F., Yildirim, S., and Sinanoglu, C., 2004, “Design of an artificial neural network for analysis of frictional power loss of hydrostatic slipper bearings”, Tribology Letters, Vol. 17, Iss. 4, pp 887-898 [41] Bhutani N., Rangaiah G. P., Ray A. K., 2006,“First-Principles, Data-Based, and Hybrid Modeling and Optimization of an Industrial Hydrocracking Unit”, Industrial & Engineering Chemistry Research, Vol. 45, pp. 7807-7816. [42] Rafieea, J., Arvania, F., Harifib, A., Sadeghic, M.H., 2007, “Intelligent condition monitoring of a gearbox using artificial neural network”, Mechanical Systems and Signal Processing, Vol. 21, pp 1746–1754 [43] Saxena, A., Saad, A., 2007, “Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems”, Applied Soft Computing, Vol. 7, pp 441–454. [44] Wang, Y., Liu, Z., Zhao, Y., Chen, Q., Cai, L., 2019, “Research on an ANN system for monitoring hydrostatic turntable performance based on ODNE training”, Tribology International, Vol. 133, pp.21-31. [45] Timur Bikmukhametov, Johannes Jäschke, 2020, “Combining machine learning and process engineering physics towards enhanced accuracy and explainability of data-driven models”, Computers and Chemical Engineering, Vol. 133, pp.106834 [46] 高惟禎,2019,“以多層感知器網路輔助液靜壓軸承節流器設計” 國立清華大學動力機械系碩士論文 [47] Bruus, H., 2008, Theoretical microfluidics. Oxford master series in condensed matter physics, Oxford University Press [48] 鍾洪,張冠坤,2007,液體靜壓動靜壓軸承設計使用手冊,電子工業出版社:p.30 [49] 李威志,2012,“新型主動式補償液靜壓軸承之靜動態特性分析”國立清華大學動力機械系碩士論文 [50] 鮑思丞,2016,“智慧型線性液靜壓滑塊模組設計”國立清華大學動力機械系碩士論文 [51] 程瑾文,2017,“泛用型虛實整合系統架構建立─以液靜壓節流器之調整為驗證載具”國立清華大學動力機械系碩士論文 [52] 張軼峯,2018,“液靜壓複合式節流器設計─輔以類神經網路之決策” 國立清華大學動力機械系碩士論文 [53] 丁川康,2020,人工智慧導論Lec.18.7 Neural Networks課程講義 [54] 李宏毅,機器學習課程講議。 檢自:http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17_2.html [55] Standford CS class, CS231n: Convolutional Neural Networks for Visual Recognition. 檢自:http://cs231n.github.io/neural-networks-3/ [56] 丁川康,2020,人工智慧導論Lec.18 Learning from Observation課程講義
|