帳號:guest(18.191.97.124)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳詩涵
作者(外文):Chen, Shih-Han
論文名稱(中文):液靜壓主軸應用於皮帶驅動式磨床之設計與性能分析
論文名稱(外文):Design and Performance Analysis of Hydrostatic Spindle Applied to Belt-driven Grinder
指導教授(中文):林士傑
指導教授(外文):Lin, Shih-Chieh
口試委員(中文):宋震國
賴泰華
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:108033573
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:94
中文關鍵詞:液靜壓軸承皮帶驅動式磨床孔口節流器
外文關鍵詞:Hydrostatic bearingbelt-driven grinderorifice restrictor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:40
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
液靜壓軸承具有較佳的承載力、剛性和迴轉精度等特性,被廣泛應用於精密磨削工具機。對於皮帶驅動式磨床來說,其加工精度容易受到皮帶張力和磨削力的影響,故本研究將針對搭載於磨床機構之液靜壓主軸進行設計,預期利用液靜壓性能改善主軸振動問題以提升整體加工水準。
本研究透過雷諾方程式和有限差分法等基礎理論的推導,以數值分析方式建立模擬程式,可用於評估軸頸軸承和止推軸承之油膜壓力分布、承載力、剛性以及流量。並參考市面上磨床機構的規格與工作需求,設計出一液靜壓主軸,其特點為軸承各油腔將採用不一致的孔口節流器配置,以預先提供固定負載,來平衡主軸受到初始皮帶張力所導致的偏心。從性能模擬結果得知,此設計所能提供的承載力範圍較大,且在較大偏心率時仍能維持較佳的剛性表現。
最後完成液靜壓主軸的加工與組裝,接續進行靜態性能測試,確認節流器有達到預期節流與補償作用,並探討實際節流器流阻、油膜厚度或油品性質的影響,對模擬程式予以修正與優化,使其能更符合真實情形,將有利於液靜壓性能的預測。經由以上結果驗證本研究之主軸設計與性能模擬程式的可行性,也體認到液靜壓主軸對製造精度與油品性質要求的重要性。
Hydrostatic bearings had been characterized with low friction, high load capacity, high stiffness, high precision, high damping, and long operation life. These advantages make them extensively used in high precision grinding machining. For belt-driven grinder, the machining accuracy may be affected by belt tension and grinding force. The purpose of this research is to design a hydrostatic spindle to be used in a belt-driven grinder. It is expected that the use of hydrostatic spindle can improve the performance of the machine.
In this study, the fundamental theories for hydrostatic system were reviewed. Based on the Reynolds equation and the finite-difference method, simulation program was developed to evaluate the pressure distribution, load capacity, stiffness, and flow rate of the hydrostatic system. Based on the simulation results and specifications provided, the dimensions of the hydrostatic spindle were determined. It should be noted that, in this study, the orifice restrictors were purposely selected such that the spindle should be located around the center of the bearing when constant belt tension was applied. Finally, all components were machined, and the hydrostatic spindle was assembled. The performance of the hydrostatic spindle was test experimentally. The test results were closed to those had been studied in simulations.
摘要-----------------------------------I
Abstract------------------------------II
誌謝----------------------------------III
目錄-----------------------------------IV
圖目錄---------------------------------V
表目錄---------------------------------IX
第一章 序論-----------------------------1
第二章 文獻回顧-------------------------5
2.1 液靜壓軸承相關研究-------------------5
2.2 磨床系統相關研究--------------------13
第三章 研究方法-------------------------16
3.1 研究流程---------------------------16
3.2 主軸受力分析-----------------------18
3.3 軸承基本模型及性能分析--------------25
3.4 節流器參數設定---------------------36
第四章 液靜壓主軸之設計與性能分析--------39
4.1 液靜壓軸承設計---------------------39
4.2 液靜壓軸承性能模擬------------------49
4.3 液靜壓主軸系統設計------------------62
第五章 液靜壓系統架設與主軸性能測試------67
5.1 實驗設備簡介-----------------------67
5.2 液靜壓系統架設---------------------73
5.3 液靜壓主軸性能測試------------------79
第六章 結論----------------------------88
6.1 研究成果---------------------------88
6.2 未來展望---------------------------90
參考文獻-------------------------------91
附錄A:孔口節流器流阻實驗結果------------94
[1] Taniguchi, Norio (1983). Current status in, and future trends of, ultraprecision machining and ultrafine materials processing. Tokyo science university, Japan.
[2] 台灣區工具機暨零組件工業同業公會(2019)。2018年度工具機進出口分析。工具機零組件雜誌。檢自:TMBA (Oct., 2020)
[3] W. B. Rowe (2012). Hydrostatic, Aerostatic, and Hybrid Bearing Design. Elsevier, Amsterdam.
[4] R. Bassani, B. Piccigallo (1992). Hydrostatic Lubrication. Elsevier, Amsterdam.
[5] Hydrostatic spindles. HYPROSTATIK Schönfeld GmbH, Germany. Retrieved from https://hyprostatik.de/en/products-service/hydrostatic-bearing/ (Jun., 2020).
[6] Michael Corban (2019). Digitale und reale Dimensionen innovativer Produkte. KEM konstruktion das engineering magazine, (56), 131.
[7] T. Aoyama (2014). Hydrostatic Bearing. The International Academy for Production Engineering, Laperrière L., Reinhart G. (eds) CIRP Encyclopedia of Production Engineering. Springer, Berlin, Heidelberg.
[8] J. P. O’Donoghue, W. B. Rowe (1968). Hydrostatic journal bearing (exact procedure). Tribology international, 1(4), 230-236.
[9] M.K. Ghosh, B.C. Majumdar (1980). Design of multirecess hydrostatic oil journal bearings. Tribology international, 13(2), 226-232.
[10] M. P. Hitchiner, I. D. Marinescu, E. Uhlmann, W. B. Rowe, I. Inasaki (2006). Handbook of Machining with Grinding Wheels. CRC Press, USA.
[11] W. B. Rowe (2009). Principles of Modern Grinding Technology. Elsevier, Amsterdam.
[12] How to Improve Your Grinding Efficiency and Profitability. Saint-Gobain Abrasives, USA, Canada. Retrieved from https://www.nortonabrasives.com/
en-us/resources/expertise/how-improve-your-grinding-efficiency-and-profitability (Oct., 2020).
[13] Various grinding methods. A.L.M.T. Corp., Japan. Retrieved from https://www.allied-material.co.jp/en/products/diamond/knowledge/various_
grinding.html (Oct., 2020).
[14] J. Badger, A. Torrance (2000). A comparison of two models to predict grinding forces from wheel surface topography. International Journal of Machine Tools And Manufacture, 40(8), 1099-1120.
[15] A. W. Moerlein, E. R. Marsh, T. R. S. Deakyne, R. R. Vallance (2008). In-process force measurement for diameter control in precision cylindrical grinding. The International Journal of Advanced Manufacturing Technology, 42(1-2), 93-101.
[16] W. B. Rowe (1967). Experience with four types of Grinding Machine Spindle. Advances in Machine Tool Design and Research, 453-476.
[17] Richard, G. Budynas and J. Keith Nisbett (2011). Shigley’s Mechanical Engineering Design, 9th Edition in SI units. McGrawHill, USA. 879-906.
[18] 張濬顯(2018)。液靜壓內藏式主軸設計與測試。國立清華大學,動力機械研究所。
[19] 劉育瑋(2018)。孔口節流器補償之液靜壓內藏式主軸設計改進與性能測試。國立清華大學,動力機械研究所。
[20] T. A. Osman, M. Dorid, Z. S. Safar, M. O. A. Mokhtar (1996). Experimental assessment of hydrostatic thrust bearing performance, Tribology International, 29(3), 233-239.
[21] T. Hagemann, H. Blumenthal, C. Kraft, H. Schwarze (2015). A study on energetic and hydraulic interaction of combined journal and thrust bearings, Proceedings of ASME Turbo Expo 2015 : Turbine Technical Conference and Exposition, Canada. 
[22] 數位壓力表(泛用型) DPG-2.5。昶特有限公司(ATLANTIS),台灣。檢自:http://www.atlantis.tw/product_view.php?cid=104&id=405 (Jun., 2021)。
[23] 音波式ベルト張力計 U-508.。ゲイツ・ユニッタ・アジア 株式会社(Gates Unitta Asia),日本。檢自:https://www.unitta.co.jp/products/support/sound (Jun., 2021)。
[24] ダイヤルゲージ。ミツトヨ株式会社(Mitutoyo),日本。檢自:https://www.mitutoyo.co.jp/products/dialgauge/dialgauge.html (Jun., 2021)。
[25] eddyNCDT 3060/3070. MICRO-EPSILON, Germany. Retrieved from https://www.micro-epsilon.com/displacement-position-sensors/eddy-current-sensor/eddyNCDT_3060/ (Jun., 2021)。
[26] Multifunction I/O. NATIONAL INSTRUMENTS Corp., USA. Retrieved from https://www.ni.com/zh-tw/support/model.usb-6210.html (Jun., 2021)。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *