帳號:guest(3.147.126.211)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):簡俊宇
作者(外文):Chien, Chun-Yu
論文名稱(中文):3D微影技術之光路徑補償研究—以振鏡系統製作光柵為例
論文名稱(外文):Research on Optical Path Compensate of 3D Lithography Technology: Galvanometer System to make Grating Structure
指導教授(中文):傅建中
指導教授(外文):Fu, Chien-Chung
口試委員(中文):李三良
項維巍
張德宜
口試委員(外文):Lee, San-Liang
Hsiang, Wei-Wei
Chang, Te-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:108033570
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:80
中文關鍵詞:雙光子聚合振鏡系統光柵大面積製造
外文關鍵詞:two-photon polymerizationgalvanometer systemgrating structurelarge area manufacturing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:241
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以當前實驗室建立之振鏡式曝光平台進行研究,針對以往曝光成品所不足之問題進行分析與修正,通過硬體的調整以及輔助軟體的開發,建立一套完善的振鏡式曝光系統,並驗證該系統之可行性。
針對硬體設備方面,以光學模擬軟體Zemax進行初步光路模擬實際加工情形,同時導入兩光學元件Scan lens與Tube lens用以修正振鏡系統光路,並以模擬軟體分析輔助做為架設依據,而針對振鏡加工的傾角所導致的光能量損失無法完全修正之問題,透過光能量補償進行分析,依據不同曝光區域之光強度進行修正與測試,以建立光能量-位置關係圖,並設計一路徑優化功能,將光能量損失區域與未損失區域之路徑規劃不同參數以補償能量損失,而振鏡系統有別於一般曝光系統,其加工範圍有所限制,為提升整體所能加工之最大範圍,本研究提出透過將一大範圍結構分割為多個獨立區塊進行獨立加工,針對拼接結構拼接縫隙進行補償與修正,解除加工範圍的限制,並為其設計一套路徑分割輔助軟體,使其不受加工範圍的限制與提升結構精度,最終以光學元件-光柵驗證該功能應用於振鏡系統之可行性,拓展振鏡式曝光系統可應用的領域如生醫、光學與半導體製程相關元件的設計與製作。
This research is based on the galvanometer exposure system in the current laboratory to analyze and correct the lack of previous exposure products. Establish a complete galvanometer exposure system to verify the feasibility of the system by hardware adjustments and the development of auxiliary software.
First, for the hardware equipment, we add two optical components Scan lenses and Tube lens. It's revised for the optical path of the galvanometer systems and used the optical simulation software Zemax to conduct a preliminary optical simulation of the actual processing situation. Secondly, for the software, we analyzed the light energy loss is caused by the inclination angle of the galvanometer process. Therefore, the correction and testing are carried out according to the light intensity of different exposure areas to establish the light energy-position relationship diagram, while design a path optimization function to plan different parameters for the path of the light energy loss area and the non-loss area to compensate for the energy loss. Thirdly, the galvanometer system is different from the general exposure system because its processes range limited. This research develops path segmentation software, which can divide a large-area structure of multiple independent areas and compensated the structure splicing gap to increase the working range and improves the structural accuracy. Finally, the optical component - grating can verify that the function is applied to the galvanometer system. It can expand the applicable fields of the galvanometer exposure system, such as the design and production of components related to biomedicine, optics, and semiconductor manufacturing.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 4
1.2.1 雙光子聚合 4
1.2.2 振鏡系統相關應用 8
1.2.3 振鏡系統應用於曝光製程 9
1.2.4 奈米3D微影系統發展 13
1.3 研究動機 22
1.4 論文架構 24
第二章 研究方法 25
2.1 奈米3D微影系統實驗設備 25
2.1.1 整體振鏡系統架構 25
2.1.2 振鏡式加工與位移平台 27
2.1.3 人機介面與加工流程 29
2.2 臨界點乾燥機(Critical Point Dryer, CPD) 32
第三章 實驗規劃 33
3.1 光學模擬軟體分析 33
3.2 光路徑補償分析 34
3.2.1 振鏡傾角補償分析 35
3.2.2 劑量累積補償分析 35
3.3 分割軟體 37
3.4 光柵結構製造 40
3.4.1 結構規劃 40
3.4.2 製程參數測試 40
第四章 結果與討論 41
4.1 硬體設計與光學分析 41
4.1.1光學模擬設備架設 41
4.1.2 光能量補償分析 50
4.2 分割軟體設計 56
4.3 拼接補償 60
4.3.1幾何光柵結構設計1 69
4.3.2幾何光柵結構設計2 71
第五章 結論與建議 74
5.1結論 74
5.2建議 77
參考文獻 79
[1] Vieu, C., et al., Electron beam lithography: resolution limits and applications. Applied surface science, 2000. 164(1-4): p. 111-117.
[2] Guckel, H., High-aspect-ratio micromachining via deep X-ray lithography. Proceedings of the IEEE, 1998. 86(8): p. 1586-1593.
[3] Keskinbora, K., et al., High-throughput synthesis of modified Fresnel zone plate arrays via ion beam lithography. Beilstein Journal of Nanotechnology, 2018. 9(1): p. 2049-2056.
[4] Judy, J.W., Microelectromechanical systems (MEMS): fabrication, design and applications. Smart materials and Structures, 2001. 10(6): p. 1115.
[5] Li, J., et al., Recent advances in the development of NIR-II organic emitters for biomedicine. Coordination Chemistry Reviews, 2020. 415: p. 213318.
[6] Joshi, M.P., et al., Three-dimensional optical circuitry using two-photon-assisted polymerization. Applied physics letters, 1999. 74(2): p. 170-172.
[7] Ostendorf, A. and B.N. Chichkov, Two-photon polymerization: a new approach to micromachining. Photonics spectra, 2006. 40(10): p. 72.
[8] Guo, R., et al., Micro lens fabrication by means of femtosecond two photon photopolymerization. Optics Express, 2006. 14(2): p. 810-816.
[9] Ovsianikov, A., et al., Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. Acs Nano, 2008. 2(11): p. 2257-2262.
[10] Wu, D., et al., 100% fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision. IEEE Photonics Technology Letters, 2009. 21(20): p. 1535-1537.
[11] Rizvi, S., Handbook of photomask manufacturing technology. 2018: CRC Press.
[12] Naqvi, S.S.H., et al., Linewidth measurement of gratings on photomasks: a simple technique. Applied optics, 1992. 31(10): p. 1377-1384.
[13] Yamaguchi, Y., et al., Method of fabricating a wafer level chip size package utilizing a maskless exposure. 2004, Google Patents.
[14] Chan, K.F., et al., High-resolution maskless lithography. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2003. 2(4): p. 331-340.
[15] Mincuzzi, G., et al., Pulse to pulse control for highly precise and efficient micromachining with femtosecond lasers. Optics Express, 2020. 28(12): p. 17209-17218.
[16] Wu, M.-C., et al., Activating neurons by light in free-moving adult flies. International Seminar on Photonics, Optics, and Applications 2014. Vol. 9444. 2015: SPIE.
[17] Liu, W., et al., Three-dimensional super-resolution imaging of live whole cells using galvanometer-based structured illumination microscopy. Optics Express, 2019. 27(5): p. 7237-7248.
[18] Dowling, K.J., et al. Position observer based galvanometer scanner and XY stage synchronization for large area processing. in Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXV. 2020. International Society for Optics and Photonics.
[19] Zhou, X., Y. Hou, and J. Lin, A review on the processing accuracy of two-photon polymerization. AIP Advances, 2015. 5(3): p. 030701.
[20] Pearre, B.W., et al., Fast micron-scale 3D printing with a resonant-scanning two-photon microscope. Additive manufacturing, 2019. 30: p. 100887.
[21] Malinauskas, M., et al. Two-photon polymerization for fabrication of three-dimensional micro-and nanostructures over a large area. in Micromachining and Microfabrication Process Technology XIV. 2009. International Society for Optics and Photonics.
[22] Nanoscribe. Available from: https://www.nanoscribe.com/en/.
[23] Yeh, C.H., Research and Development of Two Photons Polymerization Scanning System, in NTHU, Master Thesis. 2020.
[24] Chen, C.H., Research and Development of Two-Photon Polymerization 3D Nano/Micro-Machining System, in NTHU, Master Thesis. 2015.
[25] Yeh, C.W., Automatic Large Area Fabrication for Nano 3D Lithography, in NTHU, Master Thesis. 2017.
[26] Liao, W.C., Micro-cone Structure Fabrication by Nano 3D Lithography, in NTHU, Master Thesis. 2016.
[27] Zou, J., F. Zhao, and R.T. Chen. High-performance dense wavelength division multiplexer based on blazed grating and ion-exchanged glass wave guide technique. in Photonic Integrated Systems. 2003. International Society for Optics and Photonics.
(此全文20260713後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *