帳號:guest(3.16.203.220)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝孟霖
作者(外文):Hsieh, Meng-Lin
論文名稱(中文):陣列式垂直整合感測電極之CMOS-MEMS電容式觸覺感測器
論文名稱(外文):Array-type Vertically Integrated Electrode Design for CMOS-MEMS Capacitive Tactile Force Sensor
指導教授(中文):方維倫
指導教授(外文):Fang, Wei-leun
口試委員(中文):羅丞曜
李俊宏
口試委員(外文):Lo, Cheng-Yao
Li, Chung-Hung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:108033549
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:119
中文關鍵詞:CMOS-MEMS電容式感測觸覺感測器垂直整合電極
外文關鍵詞:CMOS-MEMScapacitivetactile sensorvertical integration
相關次數:
  • 推薦推薦:0
  • 點閱點閱:321
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
觸覺感測器的應用十分廣泛,於電子產業、機器人產業、與醫療產業中皆有龐大的應用商機。從目前觸覺感測器的文獻回顧中可見,廣泛使用的電容式觸覺感測器於設計時,許多團隊之研究使用各類方式,試圖提升元件的感測靈敏度。因此,本研究希望利用半導體的商用標準製程平台 (TSMC 0.18µm 1P6M) 的多重優勢,包括彈性的結構設計、多層的薄膜堆疊、次微米的線寬、強大的電性串聯能力,並透過結構設計來提升電容式觸覺感測器的靈敏度。在本研究中,垂直堆疊感測的電極在將間隙填入polydimethylsiloxane (PDMS) 後,可在相同的面積使用量下提升觸覺感測器的靈敏度。並且,故透過減小薄膜並陣列化之設計,可以大幅減少翹曲量所造成之問題。本研究將以陣列化之兩層電極堆疊之比較組以及三層電極堆疊之設計組,證實垂直整合感測電極對於元件性能之提升,約30% 的靈敏度提升 (4.28至5.46 fF/N)。另外,將對於陣列化後的電極進行翹曲以及受力之量測,來證實對翹曲之抑制。最後,由於研究中所使用的高分子材料所可能受溫度的影響,故元件亦在不同溫度下進行定量的性能分析。
Tactile sensors have a wide range of commercial applications, which include uses in the consumer electronics, robotics, and medical industry and many research is focused on improving sensitivity performance. Similarly, this study aims to leverage many benefits of the standard commercial semiconductor fabricating platform (TSMC 0.18µm 1P6M), to develop a capacitive tactile sensor for the enhancement of sensitivity through structural designs. In this research, the vertically integrated electrodes combined with the molded polydimethylsiloxane (PDMS) can enhance the sensitivity of the tactile sensor. However, the tactile sensor fabricated by the CMOS platform may suffer from problems arising for the warpage introduced by residual stress, therefore sensing membranes are reduced in size and arrayed to effectively reduce warpage issues. In this research, a reference type with two layers of sensing electrodes, and a design type with three vertically integrated electrodes were fabricated, and the sensitivity was enhanced by approximately 30% (from 4.28 to 5.46 fF/N). Furthermore, warpage by residual stress was inhibited by the reduction in sensor size. Lastly, due to the employment of polymer, quantitative analysis for the sensor under different working temperatures were conducted.
摘要 I
Abstract II
致謝 III
目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-2-1 觸覺感測器感測機制 4
1-2-2 觸覺感測器的製作 8
1-2-3 觸覺感測器設計考量 10
1-3 研究動機 14
1-4 全文架構 15
第二章 元件設計與分析 32
2-1 電容感測原理 32
2-2 TSMC CMOS製程平台 35
2-3 元件設計 36
2-3-1 垂直整合多層電極/高分子力傳 37
2-3-2 陣列設計 42
2-3-3 整體元件設計 43
2-4 模擬分析 44
第三章 製程規劃與結果 61
3-1 製程流程 61
3-2 製程細節討論 62
3-2-1 金屬濕蝕刻 62
3-2-2 雷射與打線 64
3-2-3 高分子模造 64
3-3 製程結果 65
3-4 問題與討論 66
3-4-1 金屬濕蝕刻 67
3-4-2 高分子模造 70
第四章 量測結果與討論 83
4-1 表面形貌量測 83
4-2 受力性能表現 85
4-3 溫度表現 87
第五章 結論與未來工作 102
5-1 結論 102
5-2 未來工作 104
5-2-1 有限單元模擬模型 104
5-2-2 高分子材料參數萃取 106
5-2-3 高分子膜厚探討 108

[1] Apple Inc, “Earbuds with capacitive touch sensor”, United States Patent 10 003 881, June 19, 2018.
[2] M.H. Lee, “Tactile Sensing: New Directions, New Challenges,” The International Journal of Robotics Research, vol. 19, no.7 pp. 636-643, 2000.
[3] R.S. Dahiya and Maurizio Valle, Robotic Tactile Sensing, New York, Springer, 2013, pp. 9.
[4] Credence Research, Tactile Sensor Market Size, Share, Trend and Forecast to 2026, March 2019. Accessed on: November 11, 2019. [Online]. Available: http://www.credenceresearch.com/report/tactile-sensor-market.
[5] IndustryArc Analysis, Tactile Sensor Market – Forecast (2019-2014), July 10, 2018. Accessed on: November 11, 2019. [Online]. Available: http://industryarc.com/Report/16968/tactile-sensor-market.html.
[6] Z. Chu, P. Sarro, and S. Middelhoek, "Silicon three-axial tactile sensor," Sensors and Actuators A: Physical, vol. 54, no. 1-3, pp. 505-510, 1996.
[7] Y.-C. Liu, C.-M. Sun, L.-Y. Lin, M.-H. Tsai, and W. Fang, "Development of a CMOS-based capacitive tactile sensor with adjustable sensing range and sensitivity using polymer fill-in," Journal of Microelectromechanical Systems, vol. 20, no. 1, pp. 119-127, 2011.
[8] H.-K. Lee, J. Chung, S.-I. Chang, and E. Yoon, "Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors," Journal of Microelectromechanical Systems, vol. 17, no. 4, pp. 934-942, 2008.
[9] Y.-H. Gao, Y.-H. Jen, R. Chen, K. Aw, D. Yamane, and C.-Y. Lo, "Five-fold sensitivity enhancement in a capacitive tactile sensor by reducing material and structural rigidity," Sensors and Actuators A: Physical, vol. 293, pp. 167-177, 2019.
[10] Y. Huang, H. Yuan, W. Kan, X. Guo, C. Liu, and P. Liu, "A flexible three-axial capacitive tactile sensor with multilayered dielectric for artificial skin applications," Microsystem Technologies, vol. 23, no. 6, pp. 1847-1852, 2017.
[11] H. Takao, K. Sawada, and M. Ishida, "Silicon smart tactile image sensor with pneumatically swollen single diaphragm structure," in IEEE MEMS, pp. 846-849, 2004.
[12] T. Kan, H. Takahashi, N. Binh-Khiem, Y. Aoyama, Y. Takei, K. Noda, K. Matsumoto, I. Shimoyama, "Design of a piezoresistive triaxial force sensor probe using the sidewall doping method," Journal of Micromechanics and Microengineering, vol. 23, no. 3, p. 035027, 2013.
[13] J.-H. Lee, S.-K. Yeh, and W. Fang, "Monolithic/vertical integration of piezo-resistive tactile sensor and inductive proximity sensor using CMOS-MEMS technology," in IEEE MEMS, pp. 826-829, 2019.
[14] S. Wattanasarn, K. Noda, K. Matsumoto, and I. Shimoyama, "3D flexible tactile sensor using electromagnetic induction coils," in IEEE MEMS, pp. 488-491, 2012.
[15] S.-K. Yeh, H.-C. Chang, and W. Fang, "Development of CMOS MEMS inductive type tactile sensor with the integration of chrome steel ball force interface," Journal of Micromechanics and Microengineering, vol. 28, no. 4, p. 044005, 2018.
[16] X. Liu, I. I. Iordachita, X. He, R. H. Taylor, and J. U. Kang, "Miniature fiber-optic force sensor based on low-coherence Fabry-Pérot interferometry for vitreoretinal microsurgery," Biomedical optics express, vol. 3, no. 5, pp. 1062-1076, 2012.
[17] H. Xie, H. Liu, S. Luo, L. D. Seneviratne, and K. Althoefer, "Fiber optics tactile array probe for tissue palpation during minimally invasive surgery," in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2539-2544, 2013.
[18] G. M. Krishna and K. Rajanna, "Tactile sensor based on piezoelectric resonance," IEEE Sensors Journal, vol. 4, no. 5, pp. 691-697, 2004.
[19] E. S. Kolesar and C. S. Dyson, "Object imaging with a piezoelectric robotic tactile sensor," Journal of Microelectromechanical Systems, vol. 4, no. 2, pp. 87-96, 1995.
[20] J. Engel, J. Chen, and C. Liu, "Development of polyimide flexible tactile sensor skin," Journal of Micromechanics and Microengineering, vol. 13, no. 3, p. 359, 2003.
[21] C.-L. Cheng, M.-H. Tsai, and W. Fang, "Determining the thermal expansion coefficient of thin films for a CMOS MEMS process using test cantilevers," Journal of Micromechanics and Microengineering, vol. 25, no. 2, p. 025014, 2015.
[22] C.-L. Cheng, H.-C. Chang, C.-I. Chang, and W. Fang, "Development of a CMOS MEMS pressure sensor with a mechanical force-displacement transduction structure," Journal of Micromechanics and Microengineering, vol. 25, no. 12, p. 125024, 2015.
[23] G. Liang, Y. Wang, D. Mei, K. Xi, and Z. Chen, "Flexible capacitive tactile sensor array with truncated pyramids as dielectric layer for three-axis force measurement," Journal of Microelectromechanical Systems, vol. 24, no. 5, pp. 1510-1519, 2015.
[24] N. Thanh-Vinh, N. Binh-Khiem, H. Takahashi, K. Matsumoto, and I. Shimoyama, "High-sensitivity triaxial tactile sensor with elastic microstructures pressing on piezoresistive cantilevers," Sensors and Actuators A: Physical, vol. 215, pp. 167-175, 2014.
[25] S.-Y. Tu, W.-C. Lai, and W. Fang, "Vertical integration of capacitive and piezo-resistive sensing units to enlarge the sensing range of CMOS-MEMS tactile sensor," in IEEE MEMS, pp. 1048-1051, 2017.
[26] S. C. Mannsfeld et al., "Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers," Nature Materials, vol. 9, no. 10, pp. 859-864, 2010.
[27] J. Kim, T. Nga Ng, and W. Soo Kim, "Highly sensitive tactile sensors integrated with organic transistors," Applied Physics Letters, vol. 101, no. 10, p. 103308, 2012.
[28] M. Shimojo, A. Namiki, M. Ishikawa, R. Makino, and K. Mabuchi, "A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method," IEEE Sensors Journal, vol. 4, no. 5, pp. 589-596, 2004.
[29] H.-K. Lee, S.-I. Chang, and E. Yoon, "A flexible polymer tactile sensor: Fabrication and modular expandability for large area deployment," Journal of Microelectromechanical Systems, vol. 15, no. 6, pp. 1681-1686, 2006.
[30] H.-K. Lee, J. Chung, S.-I. Chang, and E. Yoon, "Real-time measurement of the three-axis contact force distribution using a flexible capacitive polymer tactile sensor," Journal of Micromechanics and Microengineering, vol. 21, no. 3, p. 035010, 2011.
[31] J.-H. Lee, S.-K. Yeh, and W. Fang, "CMOS-MEMS Tri-Axial Piezo-Resistive Tactile Sensor with Monolithically/Vertically Integrated Inductive Proximity Sensor," in Transducers & Eurosensors, pp. 1835-1838, 2019.
[32] H. Takahashi, A. Nakai, N. Thanh-Vinh, K. Matsumoto, and I. Shimoyama, "A triaxial tactile sensor without crosstalk using pairs of piezoresistive beams with sidewall doping," Sensors and Actuators A: Physical, vol. 199, pp. 43-48, 2013.
[33] M.-H. Bao, “Handbook of Sensors and Actuators”, 1st ed., vol. 8. S. Middelhoek: Elsevier Science, 2000, ch. 1.
[34] S.-K. Yeh, J.-H. Lee, and W. Fang, "On the detection interfaces for inductive type tactile sensors," Sensors and Actuators A: Physical, vol. 297, p. 111545, 2019.
[35] G. K. Fedder, "CMOS-based sensors," IEEE SENSORS, 2005.
[36] T. K. Kim, J. K. Kim, and O. C. Jeong, "Measurement of nonlinear mechanical properties of PDMS elastomer," Microelectronic Engineering, vol. 88, no. 8, pp. 1982-1985, 2011.
[37] J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, "The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications," Journal of Micromechanics and Microengineering, vol. 7, no. 3, p. 145, 1997.
[38] I. Johnston, D. McCluskey, C. Tan, and M. Tracey, "Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering," Journal of Micromechanics and Microengineering, vol. 24, no. 3, p. 035017, 2014.
[39] M. Liu, J. Sun, Y. Sun, C. Bock, and Q. Chen, "Thickness-dependent mechanical properties of polydimethylsiloxane membranes," Journal of Micromechanics and Microengineering, vol. 19, no. 3, p. 035028, 2009.



(此全文20250819後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *