帳號:guest(3.17.156.51)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王威智
作者(外文):Wang, Wei-Zhih
論文名稱(中文):輻條式永磁同步電機之設計與分析
論文名稱(外文):Design and Analysis of Spoke-Type Permanent Magnet Synchronous Motor
指導教授(中文):王培仁
指導教授(外文):Wang, Pei-Jen
口試委員(中文):茆尚勳
廖聰明
口試委員(外文):Mao, Shang-Hsun
Liao, Tsung-Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:108033540
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:89
中文關鍵詞:優化分析電動方程式賽車驅動電機輻條式轉子
外文關鍵詞:Optimization AnalysisFormula ESpoke-Type Traction Motor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:175
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著全球暖化意識高漲及綠能產業需求,尋找替代石化燃油引擎之方案勢在必行,油電混合動力、插電式混合動力及純電動力車輛逐一成為解決方案。於2010年,許多內燃機車廠已推出量產之電動車,以驅動電機取代傳統燃油引擎做為車廠核心技術,而內置式永磁電機(Interior Permanent Magnet Machine)以功率、效率及高可靠度特性成為現今之驅動馬達首選,隨著追求性能趨勢,一般型電動車無法完全滿足市場需求,從電動方程式(Formula E)賽車崛起,更於2020年日內瓦線上車展亮點,顯然高性能電動跑車已成為最新研發之趨勢,故高功率密度之驅動電機設計成為新的研究重心。
本論文針對輻條式永磁同步電機進行探討,對於內置式永磁驅動馬達,轉子上的永磁置放位置及方法是影響電機性能的關鍵核心,習知商用電動車均以徑向排列搭配角度為設計主軸,但輻條狀排列可增加氣隙磁密暨增加輸出轉矩,成為次世代高性能驅動馬達之設計方向。本論文從基本電機設計公式進行理論探討,選取商用範例規格為設計範例,找出關鍵設計參數,定採用美商公司ANSYS軟體建立馬達模型,進行電腦輔助之靜磁場與暫態磁場分析計算出馬達動態性能,建立輻條式永磁同步馬達之設計流程,先由應力分析得出設計參數邊界值,再配合ANSYS Optislang®優化軟體進行參數優化過程,由靈敏度分析建立參數響應曲面,選擇重要設計參數進行最終優化設計,以功率密度為指標進行優化,根據分析案例結果歸納出設計經驗公式,提供高功率密度輻條型驅動電機之設計參考用途。
With the rising awareness of global warming and the demand from the green energy industry, it is imperative to seek for alternatives to replace petrochemical fuel engines. Hence, hybrid, plug-in hybrid and battery electric vehicles have gradually become available in the market. In 2010, many IC engine car manufacturers have been mass-produced electric vehicles. The use of electric motors in replacing conventional IC engines has been the core technology of the car manufacturers; therefore, the interior permanent magnet motor has been so popular due to its high power, efficiency and high reliability. The debut of Formula E and highlights in the 2020 Geneva Motor Show indicated performance EV is still in demand. It is obviously that high-performance sports EVs have become the latest R/D topics and initiated the study of high-power density driving motors.
This thesis studies the spoke-type PMSM with permanent magnet embedded in the rotor to enhance the performance of the motor. Contrast to conventional design with a radial arrangement of PM, the spoke-type design increases the air gap flux density and output torque. First, the basic design formula is applied to design examples given by specifications for key design parameters identification. Commercial software is adopted for geometric model and magnetostatic and transient magnetic field simulations. After design parameter boundaries are determined via stress analysis, ANSYS Optislang® is used for conducting design parameters optimization. The power density is chosen for the principal index plus the empirical formulae blended in the designs process, the high power density spoke-type traction motor is finalized.
It is ultimate to illustrate the process in optimization such that the optimal design cases of the spoke-type IPM motor can be concluded for future references in the high-power density driving motors for electric vehicles.
摘要 I
ABSTRACT II
目錄 III
圖目錄 V
表目錄 X
符號文字對照表 XII
第一章 序論 1
1-1 研究背景 1
1-2 研究目的 3
1-3 文獻回顧 4
1-3-1 槽極數搭配 5
1-3-2 分數槽集中繞阻 7
1-3-3 高轉矩密度應用 8
第二章 基礎理論介紹 20
2-1 前言 20
2-2 基礎電磁學理論 20
2-3 永磁電機磁性材料 22
2-3-1 電磁鋼片 23
2-3-2 永久磁石 24
2-4 電機設計理論 25
2-4-1 伊森法則(Essen’s Rule) 28
2-4-2 卡特係數(Carter’s Coefficient) 30
第三章 模型建模與初步設計 37
3-1 前言 37
3-2 範例規格 37
3-3 馬達設計及分析 40
3-3-1 靜磁場磁路分析 40
3-3-2 暫態磁場分析及驗證 42
3-4 電機控制 44
3-4-1 控制法則 45
3-4-2 弱磁控制 45
第四章 設計分析最佳化 64
4-1 前言 64
4-2 優化模型與方法 64
4-3 優化目標與電磁驗證 67
4-4 優化設計 70
第五章 結論與未來工作 83
5-1 結論 83
5-2 未來研究方向與發展 85
參考文獻 86
[1] Emmanuel A., Jouanne A. V., and Yokochi. A., An Overview of Electric Machine Trends in Modern Electric Vehicles.Vol.8, Issue 2, Machines (2020)
[2] 徐銘懋、張朝信、林正軒, 「電動車馬達樣式與繞線方式選用概要」, 機械工業雜誌, 2019
[3] http://www.controleng.com/articles/understanding-permanent-magnet-motors/ Control Engineering 網頁
[4] Hwang, M. H., Han, J. H., Kim, D. H., and Cha, H. R., Design and analysis of rotor shapes for IPM motors in EV power traction platforms. Vol. 10, Issue 10, Energies (2018)
[5] Lee, B. K., Kang, G. H., Hur, J., and You, D. W., Design of spoke type BLDC motors with high power density for traction applications. Vol. 2, In Conference Record of the IEEE Industry Applications Conference, 39th IAS Annual Meeting.IEEE., Seattle, WA, USA (2004)
[6] 何冠德, 「永磁對沖式轉子用於高轉矩密度馬達之分析」, 國立成功大學馬達科技研究中心, 2017
[7] 丁家敏, “國立清華大學108度令機械系, PME 525300「交流電機設計與控制」課程講義”, 2019
[8] Fornasiero, E., Alberti, L., Bianchi, N., and Bolognani, S., Considerations on selecting fractional—slot windings., IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA (2010)
[9] 王琳, 「少稀土輪輻式組合永磁型同步電機的設計與分析」, 江蘇大學碩士學位論文, 2016
[10] Zhu, Z. Q., Xia, Z. P., Wu, L. J., and Jewell, G. W., Influence of slot and pole number combination on radial force and vibration modes in fractional slot PM brushless machines having single-and double-layer windings., IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA (2009)
[11] Aslan, B., Semail, E., Korecki, J., and Legranger, J., Slot/pole combinations choice for concentrated multiphase machines dedicated to mild-hybrid applications., IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, VIC, Australia (2011)
[12] Carraro, E., Bianchi, N., Zhang, S., and Koch, M. (2018) “Design and performance comparison of fractional slot concentrated winding spoke type synchronous motors with different slot-pole combinations.” IEEE Transactions on Industry Applications, Vol. 54, No. 3, May.
[13] El-Refaie, A. M. (2009) “Fractional-slot concentrated-windings synchronous permanent magnet machines: Opportunities and challenges.” IEEE Transactions on industrial Electronics, Vol. 57, No. 1, January.
[14] El-Refaie, A. M., and Jahns, T. M. (2008) “Impact of winding layer number and magnet type on synchronous surface PM machines designed for wide constant-power speed range operation.” IEEE Transactions on Energy Conversion, Vol. 28, No. 3, March.
[15] Popescu, M., Foley, I., Staton, D. A., and Goss, J. E. (2015) “Multi-physics analysis of a high torque density motor for electric racing cars.” IEEE Energy Conversion Congress and Exposition (ECCE) (pp. 6537-6544). IEEE., September.
[16] Fatemi, A., Ionel, D. M., Popescu, M., Chong, Y. C., and Demerdash, N. A. (2018) “Design optimization of a high torque density spoke-type PM motor for a formula E race drive cycle.” IEEE Trans. on Industry Applications, Vol. 54, No. 5, October.
[17] Bhagubai, P. P., Sarrico, J. G., Fernandes, J. F., and Branco, P. J. (2020) “Design, Multi-Objective Optimization, and Prototyping of a 20 kW 8000 rpm Permanent Magnet Synchronous Motor for a Competition Electric Vehicle.” Energies, Vol.13, Issue 10, May.
[18] Cathy J. J., Electric machine: analysis and design applying Matlab, McGraw-Hill College,First Edition,ISBN 978-0072423709,2000
[19] Chapman S.J., Electric Machinery Fundamentals 4th,McGraw-Hill Education, Fourth Edition,ISBN 978-986-157-006-8,2003
[20] 茆尚勳,「直驅式跑步機用直流無刷馬達設計」,國立成功大學機械工程學系碩士論文,2002
[21] 余守龍、楊錞忠、王建昌, 「旋轉電機使用低損失導磁材料之比較」, 冷凍空調與能源科技雜誌,2012
[22] 中國鋼鐵, “電磁鋼捲電磁特性曲線”, 中國鋼鐵股份有限公司
[23] 唐任遠, 「現代永磁電機理論與設計」, 機械工業出版社 電工電子分社, 民國100年第一版, ISBN 978-7-111-06010-9。
[24] “永磁交流伺服電動機-通用技術條件”, 中華人民共和國國家標準, 2014
[25] Pyrhönen J.、Jokinen T.、Hrabovcová V., Design of Rotating Electrical Machines,John Wiley & Sons, Inc., second edition, ISBN 978-1-118-58157-5, 2013
[26] 松本茂雄、真田雅之, 省エネモ一タの原理と設計法 〜永久磁石同期モ一タの基礎から設計・制御まで〜, 科学情報出版, 初版發行, ISBN 978-4-904774-09-0 C2054, 2013
[27] Gieras J.F., Permanent Magnet Motor Technology: Design and Applications3rd, CRC Press Taylor & Francis Group, Third Edition, ISBN 978-1-4200-6440-7, 2009
[28] Lipo, T. A., Introduction To AC Machine Design, John Wiley & Sons, Inc., Second Edition, ISBN 978-1-119-35216-7, 2017
[29] Zhu, Z. Q., Ruangsinchaiwanich, S., Schofield, N., and Howe, D. “Reduction of cogging torque in interior-magnet brushless machines.” IEEE Transactions on Magnetics, 39(5), 3238-3240., 2003
[30] Nam K. H., AC Motor Control and Electrical Vehicle Applications, Taylor & Francis Group, Second Edition, ISBN 978-1-138-71249-2, 2019
[31] 吳尚青,「電動車驅動馬達之磁路優化設計及控制分析」,國立清華大學動力機械碩士論文, 2020
[32] JFE鋼鐵, “無取向性電磁鋼種類及規格”, JFE鋼鐵株式會社,2003
[33] 信越化學, “N42SH-R磁滯曲線與標準特性”, 信越化學工業株式會社, 2019
[34] Rivière N., Stokmaier M., and Goss J., An Innovative Multi-Objective optimization Approach for the Multiphysics Design of Electrical Machines., IEEE Transportation Electrification Conference & Expo (ITEC). Chicago, IL, USA (2020)
(此全文限內部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *