帳號:guest(18.223.206.144)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):魏德銘
作者(外文):Wei, De-Ming
論文名稱(中文):使用多圖形處理器與晶格波茲曼法模擬萊利-泰勒不穩定性問題
論文名稱(外文):Simulations of Rayleigh-Taylor instability problems with Lattice Boltzmann Method on Multi-GPU Cluster
指導教授(中文):林昭安
指導教授(外文):Lin, Chao-An
口試委員(中文):牛仰堯
陳慶耀
口試委員(外文):Niu, Yang-Yao
Chen, Ching-Yao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:108033522
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:70
中文關鍵詞:晶格波茲曼法多相流模型萊利-泰勒不穩定性圖形顯示卡
外文關鍵詞:Lattice Boltzmann methodMultiphase flowRayleigh-Taylor instabilityGPU
相關次數:
  • 推薦推薦:1
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在此研究中,我們採用了 Fakhari所提出的三維兩相流晶格波茲曼模型,但
不同的是此研究使用的為單鬆弛時間而非多鬆弛時間的晶格波茲曼模型,利用
多圖形顯示卡叢集來進行數值模擬。為了展示此研究所提出方法的能力,
我們進行了一些數值模擬來驗證此晶格波茲曼法的可行性。這些模擬包含由重力驅
動之方管流、一靜止水滴的壓力分佈(即拉普拉斯定理 )、一中間有矩形空間之
空氣的水滴放置在一旋轉流場、萊利-泰勒不穩定性與一液滴撞擊液體薄膜之模
擬。重力驅動方管流用來測試此方法是否可運行在較極端之情形且與解析解之
結果吻合,拉普拉斯定理之模擬結果符合理論上之結果,矩形槽之旋轉水滴驗證了此研究採用之兩相流介面捕捉模型 Allen-Cahn較為準確與穩定。在萊利 -泰
勒不穩定性之模擬中泡泡與尖刺之位置與He之結果完美符合,但在介面之速
度相較於Zhang之結果有些震盪產生。最終液滴撞擊液體薄膜之模擬似乎因單
鬆弛時間晶格波茲曼法在雷諾數的限制,無法完全與Fakhari所採用的多鬆弛時
間晶格波茲曼法吻合。
In this thesis, we adopted the three-dimensional lattice Boltzmann model for two-phase flow from Fakhari [22] but we used the single-relaxation time LBM model (SRT-LBM) instead of using the multiple-relaxation time LBM model (MRT-LBM) on the graphic processing
units (GPUs) cluster platform. To demonstrate the capability of the proposed method, several numerical simulations were done for the validation of the present lattice Boltzmann equation (LBE) method. These simulations included square duct flow driven by gravity, the
pressure distribution of a stationary droplet (Laplace Law), the evolution of the interface of a slotted sphere droplet in rotational
flow fi eld, Rayleigh-Taylor instability (RTI) and fi nally a droplet hitting a thin liquid layer. Square duct flow driven by gravity was tested to prove the validation of the presented method under extreme situations and was in a good agreement with the analytical solutions. The results for stationary droplets at different pressures at the droplet interface for various surface tensions were good compared with the theoretical solution based
on Laplace law. The results of Zalesak's disk showed that the interface capturing equation of the Allen-Cahn model was more accurate and more stable, thus the focus of this thesis was
about Allen-Cahn model. In the simulations of RTI, the results of the positon of bubble and spike were in a good agreement with He et al. [42], but there were some oscillation in velocity compared with Zhang et al. [43]. Finally, the results of milk crown problem seemed to face the limitation of the Raynold's number for SRT-LBM model. The results failed to meet the same as Fakhari [50].
1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Lattice Boltzmann method . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Multiphase fluid systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Graphics processing unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Literature survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Lattice Boltzmann multiphase model . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Rayleigh Taylor Instability . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Milk Crown Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.4 GPU implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Objective and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Theory and governing equations 10
2.1 The Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 The BGK approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 The low-Mach-number approximation . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Discretization of the Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Discretization of space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Discretization of time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 The free-energy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Lattice Boltzmann model for multiphase flow . . . . . . . . . . . . . . . . . . . . 16
2.6.1 The governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6.2 Discrete Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6.3 Interface capturing equation . . . . . . . . . . . . . . . . . . . . . . . . . 18
3 Numerical algorithm 23
3.1 Simulation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.1 Distribution function of Allen-Cahn model . . . . . . . . . . . . . . . . . 24
3.1.2 Distribution functions of Cahn-Hilliard model . . . . . . . . . . . . . . . 24
3.2 Gradient treatments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 GPU implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.1 Memory access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.2 Multi-GPU implementation . . . . . . . . . . . . . . . . . . . . . . . . . 29
4 Numerical results 33
4.1 Duct
ow driven by gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Laplace law of a stationary drop . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Rigid-body rotation of Zalesak's disk . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Rayleigh-Taylor instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5 Droplet impact on a thin liquid film . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5.2 Evolution of the droplet . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5.3 Crown radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5 Future works 61
[1] U. Frisch, B. Hasslacher, and Y. Pomeau, \Lattice-gas automata for the Navier-Stokes
equation," Phys. Rev. Lett. 56, 1505, (1986).
[2] S. Wolfram, \Cellular autoton
fluids 1: Basic theory," J. Stat. Phys. 45, 471, (1986).
[3] F. J. Higuera, S. Sussi, and R. Benzi, \3-dimensional
flows in complex geometries with
the lattice Boltzmann method," Europhys. Lett. 9, 345, (1989).
[4] F. J. Higuera, and J. Jemenez, \Boltzmann approach to lattice gas simulations,"
Europhys. Lett. 9, 663, (1989).
[5] P. L. Bhatnagar, E. P. Gross, and M. Grook, \A model for collision processes in gases. I.
small amplitude processes in charged and neutral one-component systems," Phys. Rev.
E 94, 511, (1954).
[6] S. Harris, \An introduction to the theory of the Boltzmann equation," Holt, Rinehart
and Winston, New York, (1971).
[7] U. Frisch, D. d'Humieres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J. P. Rivet,
\Lattice gas hydrodynamics in two and three dimensions," Complex Syst. 1, 649, (1987).
[8] D. O. Martinez, W. H. Matthaeus, S. Chen, and D. C. Montgomery, \Comparison of
spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics,"
Phys. Fluids. 6, 1285, (1994).
[9] R. Scardovelli, and S. Zaleski, \Direct numerical simulation of free-surface and inter cal
flow," Annu.Rev. Fluid Mech. 31, 567, (1999).
[10] S. Osher, and R. P. Fedkiw, \Level set method: An overview and some recent results,"
J. Comput. Phys. 169, 463, (2001).
[11] D. M. Anderson,G. B. McFadden, and A. A. Wheeler,\Di use-interface methods in
uid
mechanics," Annu. Rev. Fluid Mech. 30, 139-65, (1998).
[12] T. Y. Hou, J. S. Lowengrub, and M. J. Shelley, \Boundary integral methods for
multicomponent
fluids and multiphase materials," J. Comput.Phys. 169, 302, (2001).
[13] P. Y. Hong, L. M. Huang, L. S. Lin, and C.A. Lin, \Scalable multi-relaxation-time lattice
Boltzmann simulations on multi-GPU cluster," Computers & Fluids. 110, 1-8, (2015).
[14] H. Liang, B. C. Shi, Z.L. Guo, Z. H. Chai, \Free energy of a nonuniform system. i.
interfacial free energy," Phys.Rev. E 89, 053320, (2014).
[15] H. Ding, P. D. M. Spelt, and C. Shu,\Di use interface model for incompressible two-phase

ows with large density ratios," J. Comput. Phys. 226, 2078,(2007).
[16] Y. Q. Zu, and S. He,\Phase-fi eld-based lattice Boltzmann model for incompressible binary

uid systems with density and viscosity contrasts," Phys.Rev. E 87, 043301, (2013).
[17] J. W. Cahn, J. E. Hilliard, \Free energy of a nonuniform system. i. interfacial free energy,"
J. Comput. Phys. 28, 258, (1958).
[18] S. M. Allen, J. W. Cahn, \Mechanisms of phase transformations within the miscibility
gap of Fe-Rich Fe-Al alloys," Acta Metall. 24, 425, (1976).
[19] L. Zheng, T. Lee, Z. Guo and D. Rumschitzki, \Shrinkage of bubbles and drops in the
lattice Boltzmann equation method for nonideal gases," Phys. Rev. E. 89, 033302, (2014).
[20] Y. Sun, C. Beckermann, \Sharp interface tracking using the phase-fi eld equation," J.
Comput. Phys. 220, 626-653,(2007).
[21] P.-H. Chiu, Y.-T. Lin, \A conservative phase eld method for solving incompressible
two-phase
flows," J. Comput. Phys. 230, 185-204, (2011).
[22] Abbas Fakhari, Martin Geier, and Taehun Lee, \A mass-conserving lattice Boltzmann
method with dynamic grid re nement for immiscible two-phase
flows," J. Comput. Phys.
315, 434-457,(2016)
[23] Martin Geier, Abbas Fakhari, and Taehun Lee, `Conservative phase-fi eld lattice
Boltzmann model for interface tracking equation," Phys.Rev. E 91, 063309,(2015)
[24] Andrew K. Gunstensen and Daniel H. Rothman, \Lattice Boltzmann model of immiscible fluids," Phys. Rev. 43, 4320-4327, (1991).
[25] Daniel H. Rothman and Je rey M. Keller, \Immiscible cellular-automaton fluids," J. Stat.
Phys. 52(3), 1119-1127, (1988).
[26] D. Grunau, S. Y. Chen, and K. Eggert, \A lattice Boltzmann model for multiphase fluid flows," Phys. Fluids A 5, 2557, (1993).
[27] X. Shan and H. Chen, \Lattice Boltzmann model for simulating
flows with multiple
phases and components," Phys. Rev. E. 47, 1815-1819, (1993).
[28] X. Shan and H. Chen, \Simulation of Nonideal Gases and Liquid-Gas Phase Transitions
by the Lattice Boltzmann Equation," Phys. Rev. E. 49, 2941-2948, (1994).
[29] X. Shan, and G. D. Doolen, \Multicomponent Lattice-Boltzmann Model With Interparticle Interaction," J. Stat. Phys. 52, 379-393, (1995).
[30] M. R. Swift, W. R. Osborn, J. M. Yeomans \Lattice Boltzmann simulation of nonideal fluids," Phys. Rev. Lett. 75(5), 830-833, (1995).
[31] M. R. Swift, W. R. Osborn, J. M. Yeomans \Lattice Boltzmann simulations of liquid-gas
and binary-fluid systems," Phys. Rev. E,54, 5041-5052, (1996).
[32] X. He, S. Chen, R. Zhang, \ A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability," J. Comput. Phys.
152, 642,(1999).
[33] P. Yuan, L. Schaefer, \Equations of state in a lattice Boltzmann model," Phys. Fluids
18, 042101,(2006).
[34] T. Lee, \E ffects of incompressibility on the elimination of parasitic currents in the lattice
Boltzmann equation method for binary
fluids ," Comput. Math. Appl.58, 987-994, (2010).
[35] T. Lee, and P. F. Fischer, \Eliminating parasitic currents in the lattice Boltzmann
equation method for nonideal gases," Phys. Rev.E. 74, 046709, (2006).
[36] D. Jacqmin, \Calculation of two-phase Navier-Stokes
flows using phase- eld modeling,"
J. Comput. Phys. 155, 96-127, (1999).
[37] T. Lee, and C. L. Lin, \A stable discretization of the lattice Boltzmann equation for
simulation of incompressible two-phase
flows at high density ratio," J. Comput. Phys.
206, 16-47, (2005).
[38] T. Lee, and C. L. Lin, \Lattice Boltzmann simulations of micron-scale drop impact on
dry surfaces," J. Comput. Phys. 229, 8045-8063, (2010).
[39] A.A. Donaldson, D.M. Kirpalani, A. Macchi, \Di use interface tracking of immiscible fluids: Improving phase continuity through free energy density selection," Int. J. Multi.
Flow 37, 777-787, (2011)
[40] T. Inamuro, T. Ogata, S. Tajima, N. Konishi, \A lattice Boltzmann method for
incompressible two-phase
flows with large density di erences," J. Comput. Phys. 198,
628-644, (2004).
[41] Y. Wang, C. Shu, L. M. Yang, \An Improved Multiphase Lattice Boltzmann Flux Solver
for Three-dimensional Flows with Large Density Ratio and High Reynolds Number," J.
Comput. Phys.(2015)
[42] Xiaoyi He, Raoyang Zhang, Shiyi Chen, and Gary D. Doolen, \On the three-dimensional
Rayleigh{Taylor instability," Phys. Fluids. 11, 1143 (1999).
[43] Tongwei Zhang, Jie Wu, Xingjian Lin, \ An improved di use interface method for threedimensional
multiphase
ows with complex interface deformation," Int J Numer Meth
Fluids. 92, 976{991 ,(2020).
[44] Bart J. Daly, \Numerical Study of Two Fluid Rayleigh-Taylor Instability," Phys. Fluids.
(1967).
[45] David L. YOUNGS, \NUMERICAL SIMULATION OF TURBULENT MIXING BY
RAYLEIGH-TAYLOR INSTABILITY," Physica 12D 32-44 (1984)
[46] H.J. KULL, \THEORY OF THE RAYLEIGH-TAYLOR INSTABILITY," Phys. Rep. 5,
197-325, (1991)
[47] Tongwei Zhang, JieWu, Xingjian Lin, \An improved di use interface method for three dimensional
multiphase flows with complex interface deformation," Int J Numer Meth
Fluids. 92, 976{991, (2020)
[48] H. Liang, Q. X. Li, B. C. Shi, and Z. H. Chai, \Lattice Boltzmann simulation of threedimensional
Rayleigh-Taylor instability," Phys. Rev. 93, 033113 (2016)
[49] Seyed Ali Hosseini, Hesameddin Safari and Dominique Thevenin, \Lattice Boltzmann
Solver for Multiphase Flows: Application to High Weber and Reynolds Numbers,"
Entropy ,23, 166, (2021)
[50] Abbas Fakhari, Diogo Bolster, Li-Shi Luo, \A weighted multiple-relaxation-time lattice
Boltzmann method for multiphase
flows and its application to partial coalescence
cascades," J. Comput. Phys. (2017),
[51] A. L. Yarin and D. A. Weiss, \Impact of drops on solid surfaces: self-similar capillary
waves, and splashing as a new type of kinematic discontinuity," J. Fluid Mech. 283, 141,
(1995).
[52] M. F. Trujillo and C. F. Lee, \Impact of a drop onto a wetted wall: description of crown
formation and propagation," J. Fluid Mech. 472, 373, (2002).
[53] G. E. Cossali, M. Marengo, M. A. Coghe, and S. Zhdanov, \The role of time in single
drop splash on thin lm," Exp. Fluids 36, 888, (2004).
[54] S. Mukherjee and J. Abraham, \Crown behavior in drop impact on wet walls," Phys.
Fluids 19, 052103, (2007).
[55] Christophe Josserand, Pascal Ray, and Stephane Zaleski, \Droplet impact on a thin liquid
lm: anatomy of the splash," J. Fluid Mech. 802, 775 805. (2016)
[56] Martin Rieber, Arnold Frohn, \A numerical study on the mechanism of splashing,"
International Journal of Heat and Fluid Flow 20 (1999) 455 461
[57] Christophe Josserand and Stephane Zaleski, \Droplet splashing on a thin liquid lm,"
Phys. Fluids 15, 1650 (2003)
[58] S. T. THORODDSEN, \The ejecta sheet generated by the impact of a drop," J. Fluid
Mech. (2002), vol. 451, pp. 373 381
[59] Peter D. Hicks, and Richard Purvis, \Air cushioning in droplet impacts with liquid layers
and other droplets," PHYSICS OF FLUIDS 23, 062104 (2011)
[60] Li V. Zhang, Philippe Brunet, Jens Eggers, and Robert D. Deegan, \Wavelength selection
in the crown splash," PHYSICS OF FLUIDS 22, 122105 (2010)
[61] G. Agbaglah and R. D. Deegan, \Growth and instability of the liquid rim in the crown
splash regime," J. Fluid Mech. (2014), vol. 752, pp. 485 496.
[62] Yisen Guo, Yongsheng Lian, and Mark Sussman, \Investigation of drop impact on dry and
wet surfaces with consideration of surrounding air," PHYSICS OF FLUIDS 28, 073303
(2016)
[63] Dave Steinkraus, Ian Buck, Patrice Y. Simard, \Using GPUs for Machine Learning
Algorithms," (ICDAR'05)
[64] J. Bolz, I. Farmer, E. Grinspun, and P. Schroder, \Sparse matrix solvers on the GPU:
Conjugate gradients and multigrid," ACM Trans. Graph. (SIGGRAPH) 22, 917, (2003).
[65] F. A. Kuo, M. R. Smith, C. W. Hsieh, C. Y. Chou, and J. S. Wu, \GPU acceleration
for general conservation equations and its application to several engineering problems,"
Comput. Fluids 45, 147, (2011).
[66] J. Tolke, \Implementation of a lattice Boltzmann kernel using the compute uni ed device
architecture developed by nVIDIA," Comput. Visual Sci. 13, 29, (2008).
[67] J. Tolke, and M. Krafczyk, \TeraFLOP computing on a desktop PC with GPUs for 3D
CFD," Int. J. Comput. Fluid D. 22, 443, (2008).
[68] C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, \A new approach to the lattice
Boltzmann method for graphics processing units," Comput. Math. Appl. 61, 3628, (2011).
[69] X. Wang, T. Aoki, \Multi-GPU performance of incompressible
ow computation by
lattice Boltzmann method on GPU cluster," Parallel. Computing. 37, 521, (2011).
[70] J. Myre, S. D. C. Walsh, D. Lilja and M. O. Saar, \Performance analysis of singlephase,
multiphase, and multicomponent lattice-Boltzmann
uid
ow simulations on GPU
clusters," Concurrency Comput.: Pract. and Exper. 23, 332-350, (2010).
[71] E. Ezzatneshan, \Comparative study of the lattice Boltzmann collision models for
simulation of incompressible
uid
ows," Math. Comput. Simulation (2018)
[72] Li-Shi Luo,Wei Liao, Xingwang Chen, Yan Peng, andWei Zhang, \Numerics of the lattice
Boltzmann method: E ects of collision models on the lattice Boltzmann simulations",
Phys. Rev. E83, 056710 (2011)
[73] Y. H. Qian, D. D'Humieres and P. Lalleman, \Lattice BGK Models for Navier-Stokes
Equation", Europhys. Lett., 17 (6), pp. 479-484 (1992)
[74] Xiaoyi He and Li-Shi Luo, \Lattice Boltzmann Model for the Incompressible Navier-
Stokes Equation," Journal of Statistical Physics, Vol. 88, Nos. 3/4, (1997)
[75] Junseok Kim, \A continuous surface tension force formulation for di use-interface
models", J. Comput. Phys. 204, 784-804, 2004
[76] X. He, and L. S. Luo, \Theory of the lattice Boltzmann method: From the Boltzmann
equation to the lattice Boltzmann equation," Phys. Rev. E 56, 6811-6817, (1997).
[77] D. A. Wolf-Gladrow, \Lattice-gas cellular automata and lattice Boltzmann models - an
introduction," Springer, Lecture Notes in Mathematics, p.159, (2000).
[78] D. Jamet, O. Lebaigue, N. Coutris, J. M. Delhaye, \The second gradient method for the
direct numerical simulation of liquid-vapor
ows with phase change," J. Comput. Phys.
169, 624-651, (2001).
[79] J. S. Rowlinson and B. Widom, \Molecular Theory of Capillarity, Clarendon," Oxford,
(1989).
[80] V. M. Kendon, M. E. Cates, I. Pagonabarraga, J.C. Desplat, P. Bladon, \Inertial e ects in
three-dimensional spinodal decomposition of a symmetric binary
uid mixture: a lattice
Boltzmann study," J. Fluid Mech. 440, 147-203, (2001).
[81] H. W. Chang, P .Y. Hong, L. S. Lin and C. A. Lin, \Simulations of
ow instability in
three dimensional deep cavities with multi relaxation time lattice Boltzmann method on
graphic processing units," Comput. & Fluids. 88, 866-871, (2013).
[82] J. Myre, S. D. C. Walsh, D. Lilja and M. O. Saar, \Performance analysis of singlephase,
multiphase, and multicomponent lattice-Boltzmann
uid
ow simulations on GPU
clusters," Concurrency Comput.: Pract. and Exper. 23, 332-350, (2010).
[83] P. Yue,C. Zhou,and J. J. Feng, \Spontaneous shrinkage of drops and mass conservation
in phase- eld simulations," J. Comput. Phys. 223, (2007).
[84] P. Yue,C. Zhou,and J. J. Feng, \Shrinkage of bubbles and drops in the lattice Boltzmann
equation method for nonideal gases," Phys. Rev.E. 89,033-302, (2014).
[85] Frank M.White, \Viscous Fluid Flow,"third edition, (2006)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *