帳號:guest(3.142.36.101)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳昱瑋
作者(外文):Chen, Yu-Wei
論文名稱(中文):應用晶格波茲曼方法探討滑移與脈動效應對肋條微通道熱傳增益之影響
論文名稱(外文):Effects of flow slip and pulsation on heat transfer enhancement in a ribbed microchannel using lattice Boltzmann method
指導教授(中文):劉通敏
王春生
指導教授(外文):Liou, Tong-Miin
Wang, Chun-Sheng
口試委員(中文):林洸銓
黃柏文
口試委員(外文):Lin, Kuang C.
Hwang, Po-Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:108033517
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:100
中文關鍵詞:微流道滑移流脈動流微結構耦合熱傳晶格波茲曼方法
外文關鍵詞:MicrochannelSlip FlowPulsatile FlowMicrostructureConjugate Heat TransferLattice Boltzmann Method
相關次數:
  • 推薦推薦:0
  • 點閱點閱:229
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來隨著電子元件的高速發展,其總功率不斷增大,但尺寸卻越來越小,熱流密度因而持續增加,因此如何解決散熱來保持產品壽命成為一個重要的問題。但當電子元件尺寸小到微米或亞微米時,一些在常規大尺度流動中可以被忽略的因素如滑移邊界都可能在流力與熱傳中佔據主導地位,從而導致較為特殊的微尺度熱流現象,如滑移速度(Slip Velocity)、溫度跳躍(Temperature Jump)等。這些現象的出現通常會對熱傳有較大的影響,因而揭示其影響機制並改善熱傳增益變得非常必要,尤其當流體為脈動流時,更值得探討。本文使用晶格波茲曼法(Lattice Boltzmann Method,簡稱LBM)探討滑移與脈動效應對以空氣為工作流體之肋條微通道(高0.68-34μm) 熱傳增益之影響,由於變化參數較多,本文內文分為穩態流和脈動流兩部分。
穩態流部分,在固定肋條高度(〖H_r〗^*=0.25)等條件下,改變截距比(PR)、努森數(Kn)和雷諾數(Re)來觀察其熱傳增益( )與壓力損失( )的變化。模擬結果顯示, 會隨著PR增加而增加, 則隨著PR增加而減少; 和 均會隨著Kn增加而減少; 會隨著Re增加而減少, 隨著Re增加而增加。其中在PR=3,Kn=0.001,Re=0.1時擁有最佳的熱性能係數(Thermal Performance Factor, 簡稱TPF),其為文獻中全展平滑管道與具肋條管道最佳值的2倍。此外為方便工程應用,本研究還提出 和 對PR、Kn、Re經驗關係式。
脈動流部分,為了進一步提升熱傳效果而將管道的穩態流入口改為三角形脈動入口並改變斯特勞哈爾數(St),在低Re下(1≤Re≤10),因軸向熱傳導效應大於熱對流效應,其 和 隨St都沒有太大的變化。而在固定Kn=0.005,〖H_r〗^*=0.5,增加Re至80時, 和 均先隨著St增加而增加,且在St=1.0時為峰值((Nu) ̅⁄〖Nu〗_0 =1.67,f ̅⁄f_0 =19.69),之後再下降, 在St=1.0時較穩態流(St=0.0)增加了30%。綜合前人文獻平滑管道與具肋條管道之滑移穩態流 - 數據,本研究以LBM模擬具肋條管道之脈動流未見先前文獻報導,其熱傳增益在f ̅⁄f_0 =3-20區間內最大值可達1.67。先前文獻及本文皆發現穩態流時,溫度滑移與速度滑移對熱傳壓損影響一致,然而本文於脈動流首度發現有相同趨勢。
With the rapid development of electronic devices in recent years, there is an increasing trend in their power consumption and decreasing trend in their sizes, which results in increasingly large heat flux generation. To maintain an acceptable product life, it becomes imperative to dissipate the heat efficiently. As the dimension of electronic devices approaches micrometer or sub-micrometer, some phenomena that can generally be neglected in the macroscale continuum flow, such as the slip boundary condition, may play a pivotal role in the microscale thermal flow. The typical impacts include considerable slip velocities and temperature jumps on the boundary wall which may significantly affect the heat transfer. This necessitates a thorough understanding of the heat transfer mechanism and heat transfer enhancement, especially in pulsatile flows. In this study, the lattice Boltzmann method (LBM) is used to investigate the effects of flow slip and pulsation on heat transfer enhancement in a ribbed microchannel (channel height from 0.68-34 μm) with air as the working fluid. Considering the various parameters examined, the main content of this work is divided into two parts: steady-state flow and pulsating flow.
For the steady-state flows in the microchannel with a fixed rib height (〖H_r〗^*=0.25), the heat transfer enhancement ( ) is observed to increase with increasing pitch ratio (PR) and Reynold number (Re) and decrease with increasing Knudsen number (Kn). In contrast, the pressure loss ( ) is found to decrease with increasing PR and Kn and increase with increasing Re. The highest thermal performance factor (TPF) occurs at PR=3, Kn=0.001 and Re=0.1, which is two times that of the best value for smooth and ribbed channels. In addition, for the convenience of engineering application, the empirical correlations of and versus PR, Kn and Re are proposed.
For the pulsating flows, the original steady flow inlet is changed to a pulsating velocity inlet with triangular waveform and the corresponding Strouhal number (St) is varied. At relatively low Re (1≤Re≤10), and are found insensitive to St since the axial heat transfer effect is much greater than that of the heat convection. However, as Re is increased to 80, and at Kn=0.005 and 〖H_r〗^*=0.5 both rise and fall with ascending St, with peak values 1.67 and 19.69 appearing at St=1.0. The peak is 30% higher than that of the steady-state flow (St = 0). Finally, compared with previous - data for steady slip flows in smooth and ribbed channels, the pulsating slip flows in present ribbed channels by LBM simulation have not been reported in the open literature, and improve to the highest value 1.67 for f ̅⁄f_0 =3-20. Furthermore, it is found for the first time that the effects of velocity slip and temperature jump on heat transfer and pressure loss in pulsating flows are similar to those reported in steady flows.
Keywords: Microchannel, Slip Flow, Pulsatile Flow, Microstructure, Conjugate Heat Transfer, Lattice Boltzmann Method
摘要 I
目錄 Ⅱ
表目錄 Ⅳ
圖目錄 Ⅵ
符號表 Ⅶ
第一章、前言 1
1.1研究動機 1
1.2研究背景 2
1.3文獻回顧 3
1.3.1壁面微結構增益熱傳回顧 3
1.3.2脈動流熱傳回顧 5
1.3.3滑移區熱傳回顧 6
1.3.4 LBM模擬方法回顧 9
1.4研究目的 11
1.4.1 LBM驗證 11
1.4.2穩態流 11
1.4.3脈動流 11
第二章、數值方法 20
2.1波茲曼方程式 20
2.2晶格波茲曼方法 21
2.2.1單鬆弛速度場模型 21
2.2.2熱流體動力學模型 22
2.3 邊界條件 24
2.3.1週期性邊界處理格式 24
2.3.2入口速度邊界處理格式 24
2.3.3外差邊界處理格式 25
2.3.4壓力邊界處理格式 26
2.3.5滑移邊界處理格式 26
2.3.6等溫邊界處理格式 28
2.4收斂標準 29
2.5 LBM計算步驟與程序結構圖 30
2.6模型驗證 31
2.6.1無滑移光滑微流道 31
2.6.2無滑移雙側微結構之流道 32
2.6.3滑移光滑微流道 32
2.6.4無滑移脈動微流道 33
第三章、滑移微結構管道穩態流 45
3.1模擬問題 45
3.1.1計算座標系統 45
3.1.2邊界條件 45
3.1.3計算參數 46
3.2網格獨立測試 47
3.3穩態流數據分析與比較 48
3.3.1滑移下PR對熱傳壓損的影響 48
3.3.2滑移下Kn對熱傳壓損的影響 50
3.3.3滑移下Re對熱傳壓損的影響 51
3.4熱傳關係式 52
3.5壓損關係式 53
3.6總體熱性能與前人數據比較 53
第四章、滑移微結構管道脈動流 64
4.1問題描述 64
4.1.1計算區域與座標系統 64
4.1.2邊界條件 64
4.1.3計算參數 65
4.2脈動流於低Re下的結果 66
4.3 Re於脈動下的影響與分析 68
4.4脈動下的速度場與溫度場 68
4.4.1速度場 68
4.4.2溫度場 69
4.5脈動下H_r^*和St對熱傳壓損的影響 69
4.6熱傳關係式 71
4.7壓損關係式 72
4.8總體熱性能與前人數據比較 72
第五章、結論與未來建議 86
5.1結論 86
5.1.1 LBM驗證 86
5.1.2 穩態流 86
5.1.3脈動流 87
5.2本研究重要成果 89
5.3未來工作 89
附錄A論文口試之補充答辯 91
參考文獻 95
[1] D. Sulyok, A. Foydl, “Zuverlässige leistungselektronik designen durch die kombination von test und thermischer simulation,” Online-Seminar.
[2] Z. Guo, C. G. Zheng, “Theory and applications of Lattice Boltzmann Method,” Applied Mechanics and Materials Vol. 79.
[3] D. Raabe, “Overview of the lattice Boltzmann method for nano- and microscale fluid dynamics in materials science and engineering,” 2004 Modelling Simul. Mater. Sci. Eng. 12 R13.
[4] W. C. Hung, Y. Ru, “A numerical study for slip flow heat transfer,” Applied Mathematics and Computation 173 (2006) pp. 1246–1264
[5] Q. Liao, and T. C. Jen, “Numerical simulation of fluid flow and heat transfer in a curved square duct by using the lattice Boltzmann method,” Numerical Heat Transfer, Part A: Applications, 54(5), (2008) pp. 451-480.
[6] Y. Liu, J. Cui, Y. X. Jiang , W. Z. Li ,“A numerical study on heat transfer performance of microchannels with different surface microstructures,” Applied Thermal Engineering 31 (2011) pp. 921-931.
[7] H. Ghaedamini, P. S. Lee, and C. J. Teo, “Developing forced convection in converging–diverging microchannels,” International Journal of Heat and Mass Transfer 65 (2013) pp. 491-499.
[8] L. Chai, G. D. Xia, H. S. Wang, “Numerical study of laminar flow and heat transfer in microchannel heat sink with offset ribs on sidewalls,” Applied Thermal Engineering 92 (2016) pp. 32-41.
[9] G. Xie, A. Karimipour, B. Sundén, “LBM modeling and analysis on microchannel slip flow and heat transfer under different heating conditions,” An International Journal of Computation and Methodology
[10] J. Zhuang, C. Huang , G. Zhou , Z. Liu , H. Xu, D. Wu, Y. Fan, Y. Zhang, “Influence of factors on heat dissipation performance of composite metal–polymer heat exchanger with rectangular microstructure,” Applied Thermal Engineering 102 (2016) pp. 1473–1480.
[11] B. W. Webb, and S. Ramadhyani, “Conjugate heat transfer in a channel with staggered ribs,” International Journal of Heat and Mass Transfer, 28(9), (1985) pp. 1679-1687.
[12] L. Gong, K. Kota, W. Tao, and Y. Joshi, “Parametric numerical study of flow and heat transfer in microchannels with wavy walls,” Journal of Heat Transfer, 133(5), (2011) pp. 051702-051702-10.
[13] C. S. Wang, P. Y. Shen, “Evaluation of porous rib and flow pulsation on microchannel thermal performance using a novel thermal lattice Boltzmann method,” International Journal of Thermal Sciences 172 (2022) 107345.
[14] M. Rahgoshay, A. A. Ranjbar, A. Ramiar, “Laminar pulsating flow of nanofluids in a circular tube with isothermal wall,” International Communications in Heat and Mass Transfer.
[15] F. Selimefendigil, H. F. Öztop, “Identification of forced convection in pulsating flow at a backward facing step with a stationary cylinder subjected to nanofluid,” International Communications in Heat and Mass Transfer 45 (2013) pp.111–121.
[16] M. Jafari, M. Farhadi, K. Sedighi, “Pulsating flow effects on convection heat transfer in a corrugated channel: A LBM approach. International Communications in Heat and Mass Transfer,” International Communications in Heat and Mass Transfer 45 (2013) pp. 146-154.
[17] T. Fukue, W. Hiratsuka, H. Shirakawa, K. Hirose, J. Suzuki, “Numerical investigation of effects of pulsating wave pattern on heat transfer enhancement around square ribs by pulsating flow,” International Symposium on Transport Phenomena, (2017) .
[18] F. Selimefendigil, H. F. Öztop, “Forced convection and thermal predictions of pulsating nanofluid flow over a backward facing step with a corrugated bottom wall,” International Journal of Heat and Mass Transfer 110 (2017) pp. 231–247
[19] T. M. Liou, T. C. Wei, C. S. Wang, “Investigation of nanofluids on heat transfer enhancement in a louvered microchannel with lattice Boltzmann method,” Journal of Thermal Analysis and Calorimetry, https://doi.org/10.1007/s10973-018-7299-3, (2018) pp. 1-12.
[20] A. Karimipour, “New correlation for Nusselt number of nanofluid with Ag / Al2O3 / Cu nanoparticles in a microchannel considering slip velocity and temperature jump by using lattice Boltzmann method,” International Journal of Thermal Sciences 91 (2015) pp. 146-156.
[21] A. Behnampour, O. A. Akbari, M. R. Safaei, M. Ghavami, A. Marzban, G. A. S. Shabani, M. zarringhalam, R. Mashayekhi, “Analysis of heat transfer and nanofluid fluid flow in microchannels with trapezoidal, rectangular and triangular shaped ribs,” Physical E: Low-dimensional Systems and Nanostructures.
[22] F. Xie, Y. Lia, X. Wang, Y. Wang, G. Lei, K. Xing, “Numerical study on flow and heat transfer characteristics of low pressure gas in slip flow regime,” International Journal of Thermal Sciences 124 (2018) pp. 131–145.
[23] Z. Liu, Z. Mu, H. Wu, “A new curved boundary treatment for LBM modeling of thermal gaseous microflow in the slip regime,” Microfluidics and Nanofluidics (2019) pp. 23-27.
[24] Z. Liu, J. Zhou, “New correlations for slip flow and heat transfer over a micro spherical particle in gaseous fluid,” Powder Technology 338 (2018) 129–139.
[25] A. Tariq, Z. Liu, “Heat transfer and friction factor correlations for slip gaseous fluid flow in confined porous medium with pore-scale LBM modelling,” International Journal of Thermal Sciences 173 (2022) 107382.
[26] M. Renksizbulut, H. Niazmand, G. Tercan, “Slip-flow and heat transfer in rectangular microchannels with constant wall temperature,” International Journal of Thermal Sciences 45 (2006) pp. 870–881.
[27] C. H. Chen, “Slip-flow heat transfer in a microchannel with viscous dissipation,” Heat Mass Transfer 42 (2006) pp. 853–860.
[28] D. Bahrami, S. A. Naghneh, “Efficacy of injectable rib height on the heat transfer and entropy generation in the microchannel by affecting slip flow,” Math Meth Appl Sci. 2020 pp. 1–17.
[29] Q. Liao, and T. C. Jen, “Numerical simulation of fluid flow and heat transfer in a curved square duct by using the lattice Boltzmann method,” Numerical Heat Transfer, Part A: Applications, 54(5), (2008) pp. 451-480.
[30] A. A. Darhuber and S. M. Troian, “Principles of microfluidic actuation by modulation of surface stresses,” Annual Review of Fluid Mechanics pp. 37, 425-455.
[31] G. E. Karniadakis, A. Beskok, “Micro Flows,” Springer-Verlag, New York.
[32] J. C. Maxwell, A treatise on electricity and magnetism (Vol. 1). Clarendon press, pp. 1881.
[33] R. Siegel, and M. Perlmutter, “Heat transfer for pulsating laminar duct flow,” Journal of Heat Transfer, 84(2), (1962) pp. 111-122.
[34] S. Y. Kim, B. H. Kang, and J. M. Hyun, “Heat transfer in the thermally developing region of a pulsating channel flow,” International journal of heat and mass transfer, 36(17), (1993) pp. 4257-4266.
[35] A. A. Valencia, and L. Hinojosa, “Numerical solutions of pulsating flow and heat transfer characteristics in a channel with a backward-facing step,” International journal Heat and mass transfer, 32(3), (1997) pp. 143-148.
[36] Y. Zhang, G. Xie, A. Karimipour, “Comprehensive analysis on the effect of asymmetric heat fluxes on microchannel slip flow and heat transfer via a lattice Boltzmann method,” International Communications in Heat and Mass Transfer 118 (2020) 104856.
[37] P. L. Bhatnagar, E. P. Gross, and M. Krook, “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems,” Physical review, 94(3), (1954) pp. 511-525.
[38] Y. H. Qian, D. D'Humières, and P. Lallemand, “Lattice BGK models for Navier-Stokes equation,” Euro physics Letters, 17(6), (1992) pp. 479-484.
[39] A. Bartoloni, C. Battista, S. Cabasino, P. S. Paolucci, J. Pech, R. Sarno, and R. Benzi, “LBE simulations of Rayleigh-Bernard convection on the APE100 parallel processor,” International Journal of Modern Physics C, 4(5), (1993) pp. 993-1006.
[40] Q. Zou, X. He, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model,” Physics of Fluids, 9(6), (1997) pp. 1591-1598.
[41] A. A. Mohamad, “Lattice Boltzmann Method-Fundamentals and Engineering Applications with Computer Codes,” DOI:10.1007/978-0-85729-455-5.
[42] C. E. Zhen, Z. C. Hong, Y. J. Lin, N. T. Hong, “Comparison of 3-D and 2-D DSMC heat transfer calculations of low-speed short microchannel flows,” DOI: 10.1080/10407780601149888.
[43] Z. Duan, Y. S. Muzychka, “Slip flow heat transfer in annular microchannels with constant heat flux,” Journal of Heat Transfer, copyright 2008 by ASME.
[44] M. Renksizbulut, H. Niazmand, G. Tercan, “Slip-flow and heat transfer in rectangular microchannels with constant wall temperature,” International Journal of Thermal Sciences 45 (2006) pp. 870–881.
[45] S. Whitaker, “Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles,” AlChE Journal (Vol. 18, No. 2), March, 1972.
[46] B. A. Finlayson and J. W. Olson, “Heat transfer to spheres at low to intermediate Reynolds numbers,” Chem. Eng. Comm. vol58, 1987, pp. 431-447.
[47] Z. G. Feng, E. E. Michaelides, “A numerical study on the transient heat transfer from a sphere at high Reynolds and Peclet numbers,” International Journal of Heat and Mass Transfer 43 (2000) pp. 219-229.
[48] N. Kishore, R. R. Ramteke, “Forced convective heat transfer from spheres to Newtonian fluids in steady axisymmetric flow regime with velocity slip at fluid solid interface,” International Journal of Thermal Sciences 105 (2016) pp. 206-217.
[49] Z. Liu, J. Zhou, H. Wu, “New correlations for slip flow and heat transfer over a micro spherical particle in gaseous fluid,” Powder Technology 338 (2018) pp. 129–139.
[50] F. Xie, Y. Li, “A forced convection heat transfer correlation of rarefied gases cross-flowing over a circular cylinder,” Experimental Thermal and Fluid Science 80 (2017) pp. 327–336.
[51] C. H. Tai, S. K. Hsiung, C. Y. Chen, “Automatic microfluidic platform for cell separation and nucleus collection,” DOI :10.1007/s10544-007-9061-7.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *