帳號:guest(3.15.18.221)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曾德翔
作者(外文):Zeng, De-Xiang
論文名稱(中文):多鬆弛時間晶格波茲曼法於圖形顯示卡叢集模擬渠道與方管之週期性山坡流場
論文名稱(外文):The flows over periodic hills in channel and duct simulations with multiple-relaxation time lattice Boltzmann method on multi-GPU cluster
指導教授(中文):林昭安
指導教授(外文):Lin, Chao-An
口試委員(中文):陳慶耀
吳毓庭
口試委員(外文):Chen, Ching-Yao
Wu, Yu-Ting
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:108033514
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:70
中文關鍵詞:計算流體力學多鬆弛係數晶格波茲曼方法渠道之週期性山坡流場方管之週期性山坡流場曲面邊界層流紊流圖型顯示卡平行運算
外文關鍵詞:Computational Fluid Dynamicsmultiple relaxation time lattice Boltzmann methodperiodic hill in the channelperiodic hill in the ductcurve boundarylaminar flowturbulent flowGraphics Processing Unitparallel computing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:83
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究使用多鬆弛係數晶格波茲曼方法模擬層流與紊流於渠道與方管之週期性山坡流場,於渠道之週期性山坡流場,計算之雷諾數為25,50,75,100,2800與5600,而在方管之週期性山坡流場中,計算之雷諾數為25,50,75,100,2800。運用之模型方面,在渠道之週期性山坡流場中運用了D3Q19模型,而方管之週期性山坡流場中則使用了D3Q27模型。渠道與方管之週期性山坡流場的層流結果皆表現出了回流區之分離點隨著雷諾數上升而更早出現、回流區之重新附著點隨著雷諾數上升而更晚出現的現象,另外在雷諾數為75與100時,方管之週期性山坡流場出現了第二個回流區。而在紊流方面,渠道之週期性山坡流場在雷諾數為2800時與Brueuer等人所提供的結果相符,但在雷諾數為5600時則有些許不同。另外在方管之週期性山坡流場於雷諾數為2800的結果中表現出了比渠道之週期性山坡流場更快的主流場方向速度與更劇烈的震盪。而在方管之週期性山坡流場的結果中我們可以觀察到湍流動能雷諾應力之間的分佈與一些由牆面所帶來的現象。
在網格使用方面皆為直角座標下之均勻網格。於邊界之處理方式則根據不同的邊界條件採用了週期性邊界、Half-way反彈格式與根據反彈格式做線性內插的BFL格式。此外,本研究以高速圖形顯示卡運算並採用overlapping的方式,以達到加速運算的效果。

The multiple relaxation time lattice Boltzmann method is adopted in the present
work to simulate the laminar and turbulent flow over the periodic hill in the channel
(Reh =25,50,75,100,2800,5600) and duct (Reh =25,50,75,100,2800).The D3Q19 model is
adopted in the periodic hill in the channel, and for the periodic hill in the duct, the D3Q27
model is adopted. Both the laminar flow over the periodic hill in the channel and duct show
that separation locations appear early, and the reattachment locations appear later with the
Reynolds number increases in the range of present Reynolds numbers. Furthermore, the laminar
flow over the periodic hill in the duct has a second recirculation region when Reynolds numbers
= 75 and 100. The turbulent flow over the periodic hill in the channel shows good agreement
with the benchmark solution when Reh = 2800 but a slight difference in the case of Reh = 5600.
Moreover, the turbulent flow over the periodic hill in the duct shows the complex flow field,
which has a faster velocity in the streamwise direction and a more violent oscillation than the
case of the periodic hill in the channel in Reh = 2800. Moreover, we can observe the proportion
of turbulent kinetic energy between Reynolds stresses and some phenomena caused by the wall
in the cases of the periodic hill in the duct. The uniform mesh in the cartesian coordinates
system is used in the present work. The periodic boundary, the halfway bounce-back scheme,
and the BFL scheme are adopted to deal with different boundary conditions. Furthermore, the
multi-GPU cluster and overlapping strategies are used to accelerate the calculation.
1_Introduction-----------------------------------------------------1
1.1_Introduction-------------------------------------------------1
1.2_Literature survey--------------------------------------------2
1.2.1_Theroy of lattice Boltzmann method---------------------2
1.2.2_Flow over periodic hills-------------------------------2
1.2.3_Boundary conditions------------------------------------3
1.2.4_GPU implementation-------------------------------------5
1.3_Motivation---------------------------------------------------5
2_Methodology------------------------------------------------------7
2.1_The Boltzmann equation---------------------------------------7
2.1.1_Basic assumptions-------------------------------------7
2.1.2_The BGK approximation---------------------------------8
2.1.3_The low-Mach-number approximation--------------------10
2.2_Discretization of Boltzmann equation------------------------11
2.2.1_Discretization of time-------------------------------11
2.2.2_Discretization of phase space------------------------12
3_Numerical algorithm---------------------------------------------15
3.1_Multiple-relaxation-time lattice Boltzmann method-----------15
3.2_Forcing term------------------------------------------------20
3.3_Boundary conditions-----------------------------------------21
3.3.1_Halfway bounce-back boundary condition---------------21
3.3.2_BFL scheme-------------------------------------------22
3.4_GPU implementation------------------------------------------24
4_Numerical results and discussion--------------------------------27
4.1_The geometry of periodic hill-------------------------------27
4.2_The laminar flow over periodic hill in the channel----------29
4.3_The laminar flow over periodic hill in the duct-------------29
4.4_The turbulent flow over periodic hill in the channel--------33
4.4.1_Z plus----------------------------------------------33
4.4.2_Turbulence kinetic energy---------------------------34
4.4.3_Variables in main flow direction compare with
benchmark solution----------------------------------38
4.5_The turbulent flow over periodic hill in duct---------------45
4.5.1_Comparison of the periodic hill in channel and duct-45
4.5.2_Comparison of the periodic hill in duct with
difference location---------------------------------45
5_Conclusions-----------------------------------------------------62
Bibliography------------------------------------------------------63
Frisch, Uriel, Brosl Hasslacher, and Yves Pomeau. "Lattice-gas automata for the Navier-Stokes equation." Physical review letters 56.14 (1986): 1505.

Wolfram, Stephen. "Cellular automaton fluids 1: Basic theory." Journal of statistical physics 45.3 (1986): 471-526.

Bhatnagar, Prabhu Lal, Eugene P. Gross, and Max Krook. "A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems." Physical review 94.3 (1954): 511.

Almeida, G. P., D. F. G. Durao, and M. V. Heitor. "Wake flows behind two-dimensional model hills." Experimental Thermal and Fluid Science 7.1 (1993): 87-101.

Mellen, C. P., J. Fröhlich, and W. Rodi. "Large eddy simulation of the flow over periodic hills." 16th IMACS world congress. Lausanne, Switzerland, 2000.

Breuer, Michael, et al. "Flow over periodic hills–numerical and experimental study in a wide range of Reynolds numbers." Computers & Fluids 38.2 (2009): 433-457.

McNamara, Guy R., and Gianluigi Zanetti. "Use of the Boltzmann equation to simulate lattice-gas automata." Physical review letters 61.20 (1988): 2332.

Higuera, F. Jꎬ, and Javier Jiménez. "Boltzmann approach to lattice gas simulations." EPL (Europhysics Letters) 9.7 (1989): 663.

He, Xiaoyi, and Li-Shi Luo. "Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation." Physical Review E 56.6 (1997): 6811.

He, Xiaoyi, and Li-Shi Luo. "A priori derivation of the lattice Boltzmann equation." Physical Review E 55.6 (1997): R6333.

Kono, Koji, et al. "Application of lattice Boltzmann model to multiphase flows with phase transition." Computer physics communications 129.1-3 (2000): 110-120.

Hou, Shuling, et al. "Evaluation of two lattice Boltzmann models for multiphase flows." Journal of Computational Physics 138.2 (1997): 695-713.

He, Xiaoyi, Shiyi Chen, and Raoyang Zhang. "A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability." Journal of computational physics 152.2 (1999): 642-663.

Shih, Ching-Hsiang, et al. "Lattice Boltzmann simulations of incompressible liquid–gas systems on partial wetting surfaces." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369.1945 (2011): 2510-2518.

Hashimoto, Yasuhiro, and Hirotada Ohashi. "Droplet dynamics using the lattice-gas method." International Journal of Modern Physics C 8.04 (1997): 977-983.

Xi, Haowen, and Comer Duncan. "Lattice Boltzmann simulations of three-dimensional single droplet deformation and breakup under simple shear flow." Physical Review E 59.3 (1999): 3022.

Krafczyk, Manfred, Manuel Schulz, and Ernst Rank. "Lattice‐gas simulations of two‐phase flow in porous media." Communications in numerical methods in engineering 14.8 (1998): 709-717.

Bernsdorf, J., G. Brenner, and F. Durst. "Numerical analysis of the pressure drop in porous media flow with lattice Boltzmann (BGK) automata." Computer physics communications 129.1-3 (2000): 247-255.

Freed, David M. "Lattice-Boltzmann method for macroscopic porous media modeling." International Journal of Modern Physics C 9.08 (1998): 1491-1503.

Karlin, Iliya V., et al. "Maximum entropy principle for lattice kinetic equations." Physical Review Letters 81.1 (1998): 6.

Ansumali, Santosh, and Iliya V. Karlin. "Entropy function approach to the lattice Boltzmann method." Journal of Statistical Physics 107.1 (2002): 291-308.

d'Humières, Dominique. "Generalized lattice-Boltzmann equations." Rarefied gas dynamics (1992).

Lallemand, Pierre, and Li-Shi Luo. "Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability." Physical Review E 61.6 (2000): 6546.

Premnath, Kannan N., Martin J. Pattison, and Sanjoy Banerjee. "Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows." Physical Review E 79.2 (2009): 026703.

Suga, Kazuhiko, et al. "A D3Q27 multiple-relaxation-time lattice Boltzmann method for turbulent flows." Computers & Mathematics with Applications 69.6 (2015): 518-529.

Yu, Huidan, Sharath S. Girimaji, and Li-Shi Luo. "DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method." Journal of Computational Physics 209.2 (2005): 599-616.

Temmerman, Lionel, et al. "Investigation of wall-function approximations and subgrid-scale models in large eddy simulation of separated flow in a channel with streamwise periodic constrictions." International Journal of Heat and Fluid Flow 24.2 (2003): 157-180.

Fröhlich, Jochen, et al. "Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions." Journal of Fluid Mechanics 526 (2005): 19-66.

Rapp, Ch, and M. Manhart. "Flow over periodic hills: an experimental study." Experiments in fluids 51.1 (2011): 247-269.

Chang, Po-Hua, et al. "Simulations of laminar and turbulent flows over periodic hills with immersed boundary method." Computers & Fluids 92 (2014): 233-243.

Su, C. W. (2018). MRT-LBM simulations of turbulent flows over periodic hills at different Reynolds numbers(Unpublished master dissertation). National Tsing Hua University, Hsinchu, Taiwan.

Davidson, Lars, and Shia-Hui Peng. "Hybrid LES‐RANS modelling: a one‐equation SGS model combined with ak–ω model for predicting recirculating flows." International Journal for Numerical Methods in Fluids 43.9 (2003): 1003-1018.

von Terzi, D., et al. "LES with downstream RANS for flow over periodic hills and a model combustor flow." EUROMECH colloquium. Vol. 469. 2005.

Ziefle, Jörg, Steffen Stolz, and Leonhard Kleiser. "Large-eddy simulation of separated flow in a channel with streamwise-periodic constrictions." AIAA journal 46.7 (2008): 1705-1718.

Šarić, S., et al. "Evaluation of detached eddy simulations for predicting the flow over periodic hills." ESAIM: proceedings. Vol. 16. EDP Sciences, 2007.

Hickel, S., T. Kempe, and N. A. Adams. "Implicit large-eddy simulation applied to turbulent channel flow with periodic constrictions." Theoretical and Computational Fluid Dynamics 22.3 (2008): 227-242.

Xia, Zhenhua, et al. "Constrained large-eddy simulation of separated flow in a channel with streamwise-periodic constrictions." Journal of Turbulence 14.1 (2013): 1-21.

Chaouat, Bruno, and Roland Schiestel. "Hybrid RANS/LES simulations of the turbulent flow over periodic hills at high Reynolds number using the PITM method." Computers & Fluids 84 (2013): 279-300.

Diosady, Laslo T., and Scott M. Murman. "DNS of flows over periodic hills using a discontinuous galerkin spectral-element method." 44th AIAA Fluid Dynamics Conference. 2014.

Balakumar, P., G. I. Park, and B. Pierce. "DNS, LES, and wall-modeled LES of separating flow over periodic hills." Proceedings of the Summer Program. 2014.

Beck, Andrea D., et al. "High‐order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations." International Journal for Numerical Methods in Fluids 76.8 (2014): 522-548.

Gloerfelt, Xavier, and Paola Cinnella. "Large eddy simulation requirements for the flow over periodic hills." Flow, Turbulence and Combustion 103.1 (2019): 55-91.

Schröder, Andreas, et al. "Lagrangian and Eulerian dynamics of coherent structures in turbulent flow over periodic hills using time-resolved tomo PIV and 4D-PTV “Shake-the-box” 17th Int." Symp. on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal. 2014.

Schröder, Andreas, et al. "Advances of PIV and 4D-PTV” Shake-The-Box” for turbulent flow analysis–the flow over periodic hills." Flow, Turbulence and Combustion 95.2 (2015): 193-209.

Kähler, Christian J., Sven Scharnowski, and Christian Cierpka. "Highly resolved experimental results of the separated flow in a channel with streamwise periodic constrictions." Journal of Fluid Mechanics 796 (2016): 257-284.

Ladd, Anthony JC. "Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation." Journal of fluid mechanics 271 (1994): 285-309.

Skordos, P. A. "Initial and boundary conditions for the lattice Boltzmann method." Physical Review E 48.6 (1993): 4823.

Inamuro, Takaji, Masato Yoshino, and Fumimaru Ogino. "A non‐slip boundary condition for lattice Boltzmann simulations." Physics of fluids 7.12 (1995): 2928-2930.

Chen, Shiyi, Daniel Martinez, and Renwei Mei. "On boundary conditions in lattice Boltzmann methods." Physics of fluids 8.9 (1996): 2527-2536.

Zou, Qisu, and Xiaoyi He. "On pressure and velocity boundary conditions for the lattice Boltzmann BGK model." Physics of fluids 9.6 (1997): 1591-1598.

Filippova, O., and D. Hänel. "Lattice-Boltzmann simulation of gas-particle flow in filters." Computers & Fluids 26.7 (1997): 697-712.

Mei, Renwei, Li-Shi Luo, and Wei Shyy. "An accurate curved boundary treatment in the lattice Boltzmann method." Journal of computational physics 155.2 (1999): 307-330.

Bouzidi, M’hamed, Mouaouia Firdaouss, and Pierre Lallemand. "Momentum transfer of a Boltzmann-lattice fluid with boundaries." Physics of fluids 13.11 (2001): 3452-3459.

Sanjeevi, Sathish KP, Ahad Zarghami, and Johan T. Padding. "Choice of no-slip curved boundary condition for lattice Boltzmann simulations of high-Reynolds-number flows." Physical Review E 97.4 (2018): 043305.

Lin, Wei-Jie, et al. "Direct numerical simulations of turbulent periodic-hill flows with mass-conserving lattice Boltzmann method." Physics of Fluids 32.11 (2020): 115122.

Tölke, Jonas, and Manfred Krafczyk. "TeraFLOP computing on a desktop PC with GPUs for 3D CFD." International Journal of Computational Fluid Dynamics 22.7 (2008): 443-456.

Tölke, Jonas. "Implementation of a Lattice Boltzmann kernel using the Compute Unified Device Architecture developed by nVIDIA." Computing and Visualization in Science 13.1 (2010): 29.

Obrecht, Christian, et al. "Scalable lattice Boltzmann solvers for CUDA GPU clusters." Parallel Computing 39.6-7 (2013): 259-270.

Chang, Hung-Wen, et al. "Simulations of flow instability in three dimensional deep cavities with multi relaxation time lattice Boltzmann method on graphic processing units." Computers & Fluids 88 (2013): 866-871.

Lin, Li-Song, Hung-Wen Chang, and Chao-An Lin. "Multi relaxation time lattice Boltzmann simulations of transition in deep 2D lid driven cavity using GPU." Computers & Fluids 80 (2013): 381-387.

Xian, Wang, and Aoki Takayuki. "Multi-GPU performance of incompressible flow computation by lattice Boltzmann method on GPU cluster." Parallel Computing 37.9 (2011): 521-535.

Gombosi, Tamas I., and Atmo Gombosi. Gaskinetic theory. No. 9. Cambridge University Press, 1994.

d'Humières, Dominique. "Multiple–relaxation–time lattice Boltzmann models in three dimensions." Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 360.1792 (2002): 437-451.

Suga, Kazuhiko, et al. "A D3Q27 multiple-relaxation-time lattice Boltzmann method for turbulent flows." Computers & Mathematics with Applications 69.6 (2015): 518-529.

Luo, Li-Shi. "Theory of the lattice Boltzmann method: Lattice Boltzmann models for nonideal gases." Physical Review E 62.4 (2000): 4982.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *