帳號:guest(3.133.126.199)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡旭剛
作者(外文):Tsai, Hsu-Kang
論文名稱(中文):鈀膜反應器內甲烷蒸汽重組製氫之數值分析
論文名稱(外文):Numerical analysis of hydrogen production via steam methane reforming in a Pd-based membrane reactor
指導教授(中文):許文震
指導教授(外文):Sheu, Wen-Jenn
口試委員(中文):陳炎洲
陳維新
口試委員(外文):Chen, Yen-Cho
Chen, Wei-Hsin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:108033513
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:114
中文關鍵詞:甲烷蒸汽重組掃氣參數條件氫氣回收率甲烷轉化率
外文關鍵詞:methane steam reformingsweep gasparameter conditionshydrogen recoverymethane conversion
相關次數:
  • 推薦推薦:0
  • 點閱點閱:42
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究採用COMSOL Multiphysics 5.5 套裝軟體,利用數值模擬探討鈀膜助效式甲烷蒸汽重組反應器在不同參數條件下對於反應器的效率影響。本研究使用Ni-Pt/CeZnLa觸媒,觸媒添加量為0.232kg,探討反應器內管(滲透端)半徑為6.25mm、外管(反應端)半徑為20.625mm,整體觸媒床長度為400mm,前後各有50mm的未反應區,總長為500mm。入口甲烷流率為0.208~1.66×10^-5(m^3/s)、壁溫為673~873K、入口溫度為673~773K、水碳比為2~4、掃氣量為1.6×10^-5~ 2.56×10^-4 (m^3/s)。
透過數值模擬結果,甲烷流率的增加導致觸媒床入口冷區擴大,降低重組效率,流率的增加亦降低進料停留在觸媒床的反應時間,並影響氫氣擴散到薄膜的效率,降低整體甲烷轉化率與氫氣回收率(99.5→45.3%、95.2→47%)。壁溫的提升將整體反應器的甲烷轉化率提高(40.4→99.2%),並增加薄膜的穿透率(3.6×10^-7→3.8×10^-7kgm^-2^s-1),但穿透率的提升幅度不如重組速率的提升幅度(0.017→0.034molm^-3^s-1),使氫氣會累積在反應器壁面,反應器分壓上升,滲透性透過穿透率上升與反應端分壓的上升而快速上升。進料溫度上升影響不如壁溫,但對整體反應器達到均溫的效果,在反應端薄膜側的重組速率提高,使氫氣產生後能夠快速地滲透到薄膜側,提高滲透效應,甲烷轉化率與氫氣回收率上升(77.9→92.6%、75.8→92.3%)。水碳比的上升(2→4)將降低反應端氫氣分壓,降低甲烷轉化率(87.3→81.6%),並提高成本,因此水碳比建議為化學莫耳當量(甲烷為2)。掃氣量的上升[1.6×10^-5~ 2.56×10^-4 (m^3/s)]能夠提高甲烷轉化率與氫氣回收率(58.1→97.8%、58.2%→97.5%),但掃氣較高時提升較不明顯。甲烷轉化率的提升與掃氣倍率呈線性關係,直到甲烷轉化率達到85%以上,此後的掃氣量提升的甲烷轉化率逐漸降低。
為了使薄膜滲透效應明顯,在整體反應器的壁溫應達到773K以上以維持足夠的氫氣產出,透過適當的提高入口溫度,能夠將整體重組效率的高峰由壁面變成薄膜側,並將整體反應區的冷區向觸媒床尾端移動,增加觸媒床入口附近的效率。
In this study, the COMSOL Multiphysics 5.5 software package was used to investigate the effect of the palladium membrane-assisted methane steam reforming reactor on the efficiency of the reactor under different parameter conditions by numerical simulation. In this study, Ni-Pt/CeZnLa catalyst has been used. The catalyst addition amount was 0.232kg. The radius of the inner tube (permeate side) of the reactor is 6.25mm, the radius of the outer tube (reactant side) is 20.625mm, and the overall catalyst bed length was 400mm, there are 50mm unreacted areas at the front and back, and the total length is 500mm. The inlet methane flow rate is 0.208~1.66×10^-5(m^3/s), the wall temperature is 673~873K, the inlet temperature is 673~773K, the water to carbon ratio is 2~4, sweep flow rate is 1.6×10^-5~ 2.56×10^-4 (m^3/s).
Through numerical simulation results, the increase in methane flow rate leads to the expansion of the cold zone at the inlet of the catalyst bed, which reduces the reforming efficiency. The increase in flow rate also reduces the reaction time of the feed staying in the catalyst bed, and affects the efficiency of hydrogen diffuse to the membrane. The overall methane conversion and hydrogen recovery decrease(99.5→45.3%、95.2→47%). The increase in wall temperature increasing the methane conversion of the overall reactor(40.4→99.2%) and increasing the permeate rate of the membrane(3.6×10^-7→3.8×10^-7kgm^-2^s-1), but the increase in permeate rate is not as good as reforming rate(0.017→0.034molm^-3^s-1), so that hydrogen will accumulate on the wall of the reactor and the partial pressure of the reactor will increase. The permeance rises rapidly through the increase in the permeate rate and the increase in the partial pressure of the reaction side. The increase in feed temperature is not as good as the wall temperature, but it makes the temperature of the entire reactor uniform . The reforming rate at the membrane side of the reaction side is improved, so that the hydrogen can quickly permeate to the membrane side after generation, and the permeation effect is improved. Methane conversion and hydrogen recovery increase(77.9→92.6%、75.8→92.3%). An increase in the water to carbon ratio(2→4) will reduce the hydrogen partial pressure at the reaction side, reduce the methane conversion (87.3→81.6%), and increase the cost. Therefore, the water to carbon ratio is recommended to be chemical molar equivalent (methane is 2). The increase of sweep flow rate[1.6×10^-5~ 2.56×10^-4 (m^3/s)]can increase the methane conversion and the hydrogen recovery rate(58.1→97.8%、58.2%→97.5%) , but the improvement is not obvious when the sweep flow rate is higher. The increase of the methane conversion has a linear relationship with the sweep flow rate magnification until the methane conversion reaches over 85%, after which the methane conversion of the sweep flow rate increase gradually decreases.
In order to make the membrane permeation effect obvious, the wall temperature of the overall reactor should be above 773K to maintain sufficient hydrogen production. By appropriately increasing the inlet temperature, the peak of the overall reforming efficiency can be changed from the wall surface to membrane side, making the cold zone move form the inlet of the catalyst bed to the end of the catalyst bed to increase the efficiency near the entrance of the catalyst bed.
摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 xi
符號說明 xii
第一章 緒論 1
1.1 前言 1
1.2 燃料電池 5
1.2.1 燃料電池原理 5
1.2.2 燃料電池元件 6
1.2.3 市面燃料電池 8
1.3 化石燃料重組產氫 11
1.3.1 蒸汽重組(Steam reforming、SR) 11
1.3.2部分氧化(Partial oxidation , POX) 15
1.3.3自熱重組(Autothermal reforming , ATR) 16
1.3.4煤炭氣化 (Coal Gasification , CG) 17
1.3.5電漿重組 (Plasma Reformer , PR) 19
1.4 研究目的 20
第二章 文獻回顧 21
2.1 薄膜材料 22
2.2 氣體滲透程序 24
2.3 薄膜滲透性 26
2.4 薄膜相關文獻 27
第三章 數值方法 31
3.1 反應器 31
3.2 假設 33
3.3 統御方程式(Continuity equation) 34
3.3.1 質量守恆方程式(穩態) (Continuity equation) 34
3.3.2 動量方程式(Momentum equation) 34
3.3.3 能量方程式(Energy equation) 34
3.3.4 成分方程式(Species equation) 35
3.4 甲烷蒸汽重組反應方程式 36
3.5 初始與邊界條件 39
3.5.1 邊界條件(Boundary condition) 39
3.5.2 初始條件(Initial condition) 40
3.6 參數選擇 41
3.7 網格測試 42
3.8 模型驗證 43
第四章 結果與討論 45
4.1 反應器內部反應 46
4.2 甲烷入口流率影響 54
4.3 反應端壁溫影響 67
4.4 進料溫度影響 81
4.5 水碳比影響 88
4.6 掃氣量影響 94
第五章 結論與未來建議 102
5.1 結論 102
5.2 未來建議 104
參考文獻 105

[1] Chen, W.-H., & Lin, S.-C. (2015). Reaction phenomena of catalytic partial oxidation of methane under the impact of carbon dioxide addition and heat recirculation. Energy, 82, 206–217.
[2] Hydrogen Production: Electrolysis. Office of ENERGY & RENEWABLE ENERGY (https://www.energy.gov/eere/fuelcells/hydrogen-production-electrolysis)
[3] Hemmes, K., de Groot, A., & den Uil, H. (2003). Bio-H2 Application potential of biomass related hydrogen production technologies to the Dutch energy infrastructure of 2020-2050. Energieonderzoek Centrum Nederland (ECN).
[4] Basile, A., Paturzo, L., & Laganà, F. (2001). The partial oxidation of methane to syngas in a palladium membrane reactor: simulation and experimental studies. Catalysis Today, 67(1–3), 65–75.
[5] Sorensen, B. (2004). Readiness of hydrogen technologies. Hydrogen and Fuel Cell Futures Conference.
[6] MIURA, N., YAMAZOE, N., & SEIYAMA, T. (1979). Sb/I/Ca process for thermochemical hydrogen production. International Journal of Hydrogen Energy, 4(4), 279–286.
[7] Charvin, P., Stéphane, A., Florent, L., & Gilles, F. (2008). Analysis of solar chemical processes for hydrogen production from water splitting thermochemical cycles. Energy Conversion and Management, 49(6), 1547–1556.
[8] Barbir, F. (2005). Main Cell Components, Materials Properties and Processes. In PEM Fuel Cells (pp. 73–113). Elsevier.
[9] Wang, Y., Wang, C.-Y., & Chen, K. S. (2007). Elucidating differences between carbon paper and carbon cloth in polymer electrolyte fuel cells. Electrochimica Acta, 52(12), 3965–3975.
[10] Solid oxide fuel cell.
(https://en.wikipedia.org/wiki/Solid_oxide_fuel_cell)
[11] Electrical effects accompanying the decomposition of organic compounds. (1911). Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 84(571), 260–276.
[12] Oh, Y. (2003). A highly active catalyst, Ni/Ce–ZrO2/θ-Al2O3, for on-site H2 generation by steam methane reforming: pretreatment effect. International Journal of Hydrogen Energy, 28(12), 1387–1392.
[13] Ferreira‐Aparicio, P., Benito, M. J., & Sanz, J. L. (2005). New Trends in Reforming Technologies: from Hydrogen Industrial Plants to Multifuel Microreformers. Catalysis Reviews, 47(4), 491–588.
[14] Knox, K. (1985). Le Châtelier’s Principle. Journal of Chemical Education, 62(10), 863.
[15] Udengaard, N.R. (1992). Sulfur passivated reforming process lowers syngas H2/CO ratio. Oil and Gas Journal, 62~67.
[16] Rostrupnielsen, J. R., & Hansen, J. H. B. (1993). CO2-Reforming of Methane over Transition Metals. Journal of Catalysis, 144(1), 38–49.
[17] Matsumura, Y., & Nakamori, T. (2004). Steam reforming of methane over nickel catalysts at low reaction temperature. Applied Catalysis A: General, 258(1), 107–114.
[18] Wang, S., & Lu, G. Q. (Max). (1998). Catalytic Activities and Coking Characteristics of Oxides-Supported Ni Catalysts for CH4Reforming with Carbon Dioxide. Energy & Fuels, 12(2), 248–256.
[19] Nieva, M. A., Villaverde, M. M., Monzón, A., Garetto, T. F., & Marchi, A. J. (2014). Steam-methane reforming at low temperature on nickel-based catalysts. Chemical Engineering Journal, 235, 158–166.
[20] Hydrogen produced by methane steam reforming
(https://blogcastle.lib.fcu.edu.tw/archives/454)
[21] Grashoff, G.J., Pilkington , C.E., & Corti , C.W.(1983). A Review of the Technology Emphasising the Current Status of Palladium Membrane Diffusion. Platinum Metals Rev,27,(4),157.
[22] Pearce, E. M. (1978). Kirk-Othmer encyclopedia of chemical technology, 3rd ed., Vol. I, Wiley-Interscience, New York, 1978. Journal of Polymer Science: Polymer Letters Edition, 16(5), 248–248.
[23] Kao, Y. K., Yan, Z., Li, L., & Fan, H. (1991). A pressure swing membrane separation process. Gas Separation & Purification, 5(3), 151–160.
[24] Kaplan, L J. (1982). Cost-saving process recovers CO/sub 2/ from power-plant flue gas. United States.
[25] SEDLAK, J., AUSTIN, J., & LACONTI, A. (1981). Hydrogen recovery and purification using the solid polymer electrolyte electrolysis cell. International Journal of Hydrogen Energy, 6(1), 45–51.
[26] Mehra, Y.R. (1979). Refrigerant Properties for Propane.Chem., Eng.(N.Y.) 86, (26), 90.
[27] Xu, J., & Froment, G. F. (1989). Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics. AIChE Journal, 35(1), 88–96.
[28] Chen, W.-H. (2014). CO2 conversion for syngas production in methane catalytic partial oxidation. Journal of CO2 Utilization, 5, 1–9.
[29] Parcial oxidation. Linde Engineering.
(https://www.linde-engineering.com/en/process-plants/hydrogen_and_synthesis_gas_plants/gas_generation/partial_oxidation/index.html)
[30] Speight, J. G. (2014). The Fischer−Tropsch Process. In Gasification of Unconventional Feedstocks (pp. 118–134). Elsevier.
[31] Brett, D. J. L., Agante, E., Brandon, N. P., Brightman, E., Brown, R. J. C., Manage, M., & Staffell, I. (2012). The role of the fuel in the operation, performance and degradation of fuel cells. In Functional Materials for Sustainable Energy Applications (pp. 249–278). Elsevier.
[32] Wayne Harper, H.(2003). Hydrogen from Natural Gas and Coal:The road to a Sustainable Energy Future. Hydrogen Coordination Group,Office of Fossil Energy,USA.
[33] Application of Hydrogen Combustion for Electrical and Motive Power Generation. (2019). In Science and Engineering of Hydrogen-Based Energy Technologies (pp. 259–278). Elsevier.
[34] Yan, J.-H., Du, C.-M.(2017).Mechanism for the Plasma Reforming of Ethanol. Hydrogen Generation from Ethanol using Plasma Reforming Technology(pp. 57~97).
[35] Bromberg, L., Crane, S., Rabinovich, A., Kong, Y., Cohn, D., Heywood, J., Alexeev, N., & Samokhin, A.(2003). HYDROGEN GENERATION FROM PLASMATRON REFORMERS: A PROMISING TECHNOLOGY FOR NOX ADSORBER REGENERATION AND OTHER AUTOMOTIVE APPLICATIONS. United States.
[36] Kabbabi, A., Faure, R., Durand, R., Beden, B., Hahn, F., Leger, J.-M., & Lamy, C. (1998). In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum–ruthenium bulk alloy electrodes. Journal of Electroanalytical Chemistry, 444(1), 41–53.
[37] Kluiters, S C.A. (2004). Status review on membrane systems for hydrogen separation. Netherlands.
[38] Koros, W. J., & Fleming, G. K. (1993). Membrane-based gas separation. Journal of Membrane Science, 83(1), 1–80.
[39] Atsonios, K., Panopoulos, K. D., Doukelis, A., Koumanakos, A. K., Kakaras, E., Peters, T. A., & van Delft, Y. C. (2015). Introduction to palladium membrane technology. In Palladium Membrane Technology for Hydrogen Production, Carbon Capture and Other Applications (pp. 1–21). Elsevier.
[40] Ockwig, N. W., & Nenoff, T. M. (2007). Membranes for Hydrogen Separation. Chemical Reviews, 107(10), 4078–4110.
[41] Siverts, A., Danz, W.(1936). Solubilites of D2 and H2 in palladium. Z Phys Chem AbtB, Vol. 34, pp. 158~159.
[42] Ward, T. L., & Dao, T. (1999). Model of hydrogen permeation behavior in palladium membranes. Journal of Membrane Science, 153(2), 211–231.
[43] Shu, J., Grandjean, B. P. A., & Kaliaguine, S. (1994). Methane steam reforming in asymmetric Pd- and Pd-Ag/porous SS membrane reactors. Applied Catalysis A: General, 119(2), 305–325.
[44] Nam, S. W., Yoon, S. P., Ha, H. Y., Hong, S.-A., & Maganyuk, A. P. (2000). Methane steam reforming in a Pd-Ru membrane reactor. Korean Journal of Chemical Engineering, 17(3), 288–291.
[45] Sarić, M., van Delft, Y. C., Sumbharaju, R., Meyer, D. F., & de Groot, A. (2012). Steam reforming of methane in a bench-scale membrane reactor at realistic working conditions. Catalysis Today, 193(1), 74–80.
[46] Kim, C.-H., Han, J.-Y., Lim, H., Kim, D.-W., & Ryi, S.-K. (2017). Methane steam reforming in a membrane reactor using high-permeable and low-selective Pd-Ru membrane. Korean Journal of Chemical Engineering, 34(4), 1260–1265.
[47] Chompupun, T., Limtrakul, S., Vatanatham, T., Kanhari, C., & Ramachandran, P. A. (2018). Experiments, modeling and scaling-up of membrane reactors for hydrogen production via steam methane reforming. Chemical Engineering and Processing - Process Intensification, 134, 124–140.
[48] Chen, W.-H., Hsia, M.-H., Lin, Y.-L., Chi, Y.-H., & Yang, C.-C. (2013). Hydrogen permeation and recovery from H2–N2 gas mixtures by Pd membranes with high permeance. International Journal of Hydrogen Energy, 38(34), 14730–14742.
[49] Tsai, C.-W., Chen, W.-H.(2016). Investigation of hydrogen permeation across a palladium membrane:multichannel membrane system and water gas shift reaction. Department of Aeronautics and Astronautics, National Cheng Kung University.
[50] Lin, Y.-S., Chen, Y.-C., Sheu, W.-J.(2020). Effect of Diffuser Flow on the Performance of Water-Gas Shift Membrane Reactors. Journal of the Chinese Society of Mechanical Engineers, Vol.41, No.3, pp. 265~274
[51] Coulter, K. E., Way, J. D., Gade, S. K., Chaudhari, S., Alptekin, G. O., DeVoss, S. J., Paglieri, S. N., & Pledger, B. (2012). Sulfur tolerant PdAu and PdAuPt alloy hydrogen separation membranes. Journal of Membrane Science, 405–406, 11–19.
[52] Pacheco Tanaka, D. A., Llosa Tanco, M. A., Nagase, T., Okazaki, J., Wakui, Y., Mizukami, F., & Suzuki, T. M. (2006). Fabrication of Hydrogen-Permeable Composite Membranes Packed with Palladium Nanoparticles. Advanced Materials, 18(5), 630–632.
[53] Peters, T. A., Stange, M., & Bredesen, R. (2011). On the high pressure performance of thin supported Pd–23%Ag membranes-Evidence of ultrahigh hydrogen flux after air treatment. Journal of Membrane Science, 378(1–2), 28–34.
[54] Nair, B. K. R., Choi, J., & Harold, M. P. (2007). Electroless plating and permeation features of Pd and Pd/Ag hollow fiber composite membranes. Journal of Membrane Science, 288(1–2), 67–84.
[55] Gade, S. K., Thoen, P. M., & Way, J. D. (2008). Unsupported palladium alloy foil membranes fabricated by electroless plating. Journal of Membrane Science, 316(1–2), 112–118.
[56] Zhang, K., Gade, S. K., & Way, J. D. (2012). Effects of heat treatment in air on hydrogen sorption over Pd–Ag and Pd–Au membrane surfaces. Journal of Membrane Science, 403–404, 78–83.
[57] Chen, W.-H., & Hsu, P.-C. (2011). Hydrogen permeation measurements of Pd and Pd–Cu membranes using dynamic pressure difference method. International Journal of Hydrogen Energy, 36(15), 9355–9366.
[58] Lewis, A. E., Kershner, D. C., Paglieri, S. N., Slepicka, M. J., & Way, J. D. (2013). Pd–Pt/YSZ composite membranes for hydrogen separation from synthetic water–gas shift streams. Journal of Membrane Science, 437, 257–264.
[59] Pinacci, P., Broglia, M., Valli, C., Capannelli, G., & Comite, A. (2010). Evaluation of the water gas shift reaction in a palladium membrane reactor. Catalysis Today, 156(3–4), 165–172.
[60] Gharibi, H., Saadatinasab, M., & Zolfaghari, A. (2013). Hydrogen permeability and sulfur tolerance of a novel dual membrane of PdAg/PdCu layers deposited on porous stainless steel. Journal of Membrane Science, 447, 355–361.
[61] Pomerantz, N., & Ma, Y. H. (2009). Effect of H2S on the Performance and Long-Term Stability of Pd/Cu Membranes. Industrial & Engineering Chemistry Research, 48(8), 4030–4039.
[62] Kyriakides, A.-S., Voutetakis, S., Papadopoulou, S., & Seferlis, P. (2016). Optimization of an experimental membrane reactor for low-temperature methane steam reforming. Clean Technologies and Environmental Policy, 18(7), 2065–2075.
[63] Ding, Y., & Alpay, E. (2000). Adsorption-enhanced steam–methane reforming. Chemical Engineering Science, 55(18), 3929–3940.
[64] Kyriakides, A.-S., Rodríguez-García, L., Voutetakis, S., Ipsakis, D., Seferlis, P., & Papadopoulou, S. (2014). Enhancement of pure hydrogen production through the use of a membrane reactor. International Journal of Hydrogen Energy, 39(9), 4749–4760.
[65] Phanikumar, M. S., & Mahajan, R. L. (2002). Non-Darcy natural convection in high porosity metal foams. International Journal of Heat and Mass Transfer, 45(18), 3781–3793.
[66] Francesconi, J. A., Mussati, M. C., & Aguirre, P. A. (2007). Analysis of design variables for water-gas-shift reactors by model-based optimization. Journal of Power Sources, 173(1), 467–477.
[67] Cox, K. R., & Chapman, W. G. (2001). The Properties of Gases and Liquids, 5th Edition By Bruce E. Poling (University of Toledo), John M. Prausnitz (University of California at Berkeley), and John P. O’Connell (University of Virginia). McGraw-Hill:  New York. 2001. 768 pp. $115.00. ISBN 0-07-011682-2. Journal of the American Chemical Society, 123(27), 6745–6745.
[68] Transport phenomena, R. B. Bird, W. E. Stewart, and E. N. Lightfoot, John Wiley and Sons, Inc., New York(1960). 780 pages.$11.50. (1961). AIChE Journal, 7(2), 5J-6J.
[69] Lee, H., Kim, A., Lee, B., & Lim, H. (2020). Comparative numerical analysis for an efficient hydrogen production via a steam methane reforming with a packed-bed reactor, a membrane reactor, and a sorption-enhanced membrane reactor. Energy Conversion and Management, 213, 112839.
[70] Ma, R., Castro-Dominguez, B., Dixon, A. G., & Ma, Y. H. (2018). CFD study of heat and mass transfer in ethanol steam reforming in a catalytic membrane reactor. International Journal of Hydrogen Energy, 43(15), 7662–7674.
[71] Darling, A.S., Yorke, J.M. The ruthenium–palladium system.(1960). Platinum Met. Rev. 4 (3), pp. 104–110.
[72] Polyakova, V. P., Roshan, N. R., & Parfenova, N. I. (1980). Recrystallization of palladium alloyed with ruthenium. Metal Science and Heat Treatment, 22(2), 154–156.
[73] Gade, S. K., Keeling, M. K., Davidson, A. P., Hatlevik, O., & Way, J. D. (2009). Palladium–ruthenium membranes for hydrogen separation fabricated by electroless co-deposition. International Journal of Hydrogen Energy, 34(15), 6484–6491.
[74] Gryaznov, V. (2000). METAL CONTAINING MEMBRANES FOR THE PRODUCTION OF ULTRAPURE HYDROGEN AND THE RECOVERY OF HYDROGEN ISOTOPES. Separation and Purification Methods, 29(2), 171–187.
[75] Cabrera, A. L., Morales-Leal, E., Hasen, J., & Schuller, I. K. (1995). Changes in crystallographic orientation of thin foils of palladium and palladium alloys after the absorption of hydrogen. Catalysis Letters, 30(1–4), 11–23.
[76] Wang, L., Yoshiie, R., & Uemiya, S. (2007). Fabrication of novel Pd–Ag–Ru/Al2O3 ternary alloy composite membrane with remarkably enhanced H2 permeability. Journal of Membrane Science, 306(1–2), 1–7.
[77] Iulianelli, A., Longo, T., Liguori, S., & Basile, A. (2010). Production of hydrogen via glycerol steam reforming in a Pd-Ag membrane reactor over Co-Al2O3catalyst. Asia-Pacific Journal of Chemical Engineering, 5(1), 138–145.
[78] Matsumura, Y., & Tong, J. (2008). Methane Steam Reforming in Hydrogen-permeable Membrane Reactor for Pure Hydrogen Production. Topics in Catalysis, 51(1–4), 123–132.
[79] Iulianelli, A., Manzolini, G., De Falco, M., Campanari, S., Longo, T., Liguori, S., & Basile, A. (2010). H2 production by low pressure methane steam reforming in a Pd–Ag membrane reactor over a Ni-based catalyst: Experimental and modeling. International Journal of Hydrogen Energy, 35(20), 11514–11524.
[80] Uemiya, S., Sato, N., Ando, H., Matsuda, T., & Kikuchi, E. (1990). Steam reforming of methane in a hydrogen-permeable membrane reactor. Applied Catalysis, 67(1), 223–230.
[81] Oklany, J. S., Hou, K., & Hughes, R. (1998). A simulative comparison of dense and microporous membrane reactors for the steam reforming of methane. Applied Catalysis A: General, 170(1), 13–22.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *