帳號:guest(3.146.176.210)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):朱宜蘋
作者(外文):Chu, Yi-Pin
論文名稱(中文):應用雙相迷你/微流道熱沉於IGBT陣列冷卻之模擬
論文名稱(外文):Simulation of Two-Phase Mini/Micro-Channel Cooling on an IGBT Array
指導教授(中文):王訓忠
指導教授(外文):Wong, Shwin-Chung
口試委員(中文):許文震
楊建裕
口試委員(外文):SHEU, WEN-JENN
Yang, Chien-Yuh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:108033511
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:71
中文關鍵詞:雙相對流熱傳雙相流熱對流係數迷你流道微流道雙相流摩擦壓降
外文關鍵詞:two-phase heat convectiontwo-phase heat convection coefficientmini-channelmicro-channeltwo-phase frictional pressure drop
相關次數:
  • 推薦推薦:0
  • 點閱點閱:586
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究設計以微流道模型,模擬雙相微流道熱沉應用於IGBT陣列之冷卻,針對不同出口乾度進行模擬,使用的工作流體為R134a。微流道模型使用Thome機理式模型與Chen經驗式兩種模型取得非常數熱對流係數沿管長的h(z)分布,因Chen經驗式模型須由管壁與流體飽和溫度、壓力的溫差及壓差算得,可搭配考慮壓降的影響,分別得到忽略壓降與考慮壓降兩種h(z)分布。將以上獲得的三種h(z)應用於IGBT陣列的微流道熱沉數值模擬,但因實際熱傳面積並非底板底面面積,故需要將修正h(z)為heff(z),對各流量下Chen經驗式考慮壓降與忽略壓降之heff(z)獲得的溫度分佈結果互相比較,顯示IGBT模組最高溫度的差異皆在0.03 ℃以內;比較採用忽略壓降的Thome機理式模型與Chen經驗式忽略壓降的heff(z),顯示在各流量下兩者對IGBT模組數值模擬最高溫度的差異均在2.2 ℃以內;此外,將heff(z)取平均值h ̅_eff後用於計算熱沉底板溫度的解析解及IGBT陣列數值模擬,數值模擬採用Thome機理式模型及Chen經驗式個別的h ̅_eff時,兩者IGBT陣列的最高溫度在各流量下皆相差在1.5℃以內;採用h ̅_eff搭配Muzychka解析解所得到的IGBT陣列溫度分布與採用h ̅_eff搭配數值分析的溫度分布差異較大,最大差異可達約7.71 ℃。
This study uses different mini/micro-channel models to simulate a two-phase mini/micro-channel heat sink applied to the cooling of an IGBT array under different outlet qualities of the working fluid R134a. The mini/micro-channel models include the Thome’s mechanistic model and Chen’s empirical correlation, among others, to obtain the heat convection coefficients distribution h(z) along the channel. Because pressure can be varied in Chen’s correlation, pressure drop along the channel is also considered to obtain two h(z) distributions, with or without pressure drop, respectively. The three h(z)s obtained above are applied to the numerical simulation for the two-phase mini/micro-channel heat sink on the IGBT array. To account for the actual heat transfer area in place of the base plate area, the h(z)s are converted to heff(z)s. According to the two heff(z)s obtained from Chen's empirical correlations, considering pressure drop leads to differences within 0.03 ℃ in the maximum temperature of the IGBT module. While Thome’s mechanistic model reveals the effects of liquid film thickness on h(z), the predicted maximum temperatures of the IGBT module differ from those using Chen’s correlation by less than 2.2 ℃ at various flow rates. When the numerical simulation adopts the average h ̅_eff obtained from Thome’s mechanistic model and Chen's correlation, the maximum temperatures of the IGBT array differ within 1.5°C. The temperature distributions of the IGBT array obtained by Muzychka's analytical solution adopting the h ̅_effs differ from the results of numerical simulation by about 7.71 ℃.
摘要 I
Abstract II
目錄 III
圖表目錄 V
符號表 IX
第一章 緒論 1
1.1 研究背景 1
1.2 迷你/微流道區分規則 2
1.3 迷你/微流道熱沉(Mini/micro-channel heat sink)冷卻 3
1.3.1 單相(single-phase)對流傳熱 3
1.3.2 雙相(two-phase)對流傳熱 6
1.4 研究目的 11
第二章 迷你/微流道雙相流分析 13
2.1 Chen熱對流係數經驗式模型 13
2.2 壓降經驗式 20
2.3 Magnini and Thome [29]之蒸發模型 25
第三章 數值模型與理論方法 33
3.1 兩相迷你/微流道對IGBT陣列散熱之數值方法 35
3.2 受多熱源加熱之冷板(cold plate)底板內熱擴散過程的解析模式 40
第四章 結果與討論 45
4.1 單一迷你/微流道壓降 45
4.2 單一迷你/微流道之h(z) 46
4.2.1 忽略壓降影響 46
4.2.2 考慮壓降影響 52
4.3 IGBT陣列溫度分布 55
第五章 結論 65
參考文獻 66

[1] N. Mohan, T.M. Undeland, W.P. Robbins, Power Electronics: Converters, Applications, and Design, John wiley & sons, 2003.
[2] R.G. Mertens, L. Chow, K.B. Sundaram, R.B. Cregger, D.P. Rini, L. Turek, B.A. Saarloos, Spray cooling of IGBT devices, Journal of Electronic Packaging 129 (2007) 316-323.
[3] C. Qian, A.M. Gheitaghy, J. Fan, H. Tang, B. Sun, H. Ye, G. Zhang, Thermal management on IGBT power electronic devices and modules, IEEE Access 6 (2018) 12868-12884.
[4] P. Wang, P. McCluskey, A. Bar-Cohen, Two-phase liquid cooling for thermal management of igbt power electronic module, Journal of Electronic Packaging 135 (2013) 021001(11 pp.).
[5] S. Mehendale, A. Jacobi, R. Shah, Fluid flow and heat transfer at micro and meso-scales with application to heat exchanger design, Applied Mechanics Reviews 53 (2000) 175-193.
[6] S.G. Kandlikar, W.J. Grande, Evolution of microchannel flow passages--thermohydraulic performance and fabrication technology, Heat Transfer Engineering 24 (2003) 3-17.
[7] M. Suo, P. Griffith, Two-phase flow in capillary tubes, Journal of Basic Engineering 86 (1964) 576-582.
[8] P. Kew, K. Cornwell, Correlations for the prediction of boiling heat transfer in small-diameter channels, Applied Thermal Engineering 17 (1997) 705-715.
[9] N. Brauner, D.M. Maron, Identification of the range of ‘small diameters’ conduits, regarding two-phase flow pattern transitions, International Communications in Heat and Mass Transfer 19 (1992) 29-39.
[10] P. Cheng, H.Y. Wu, Mesoscale and microscale phase-change heat transfer, in: G.A. Greene, J.P. Hartnett, A. Bar-Cohen, Y.I. Cho (Eds.) Advances in Heat Transfer, Elsevier, 2006, pp. 461-563.
[11] W. Li, Z. Wu, A general criterion for evaporative heat transfer in micro/mini-channels, International Journal of Heat and Mass Transfer 53 (2010) 1967-1976.
[12] D.B. Tuckerman, R.F.W. Pease, High-performance heat sinking for VLSI, IEEE Electron Device Letters 2 (1981) 126-129.
[13] P.S. Lee, J. Ho, H. Xue, Experimental study on laminar heat transfer in microchannel heat sink, Inter Society Conference on Thermal Phenomena (ITHERM) 2002, pp. 379-386.
[14] E.G. Colgan, B. Furman, A. Gaynes, W. Graham, N. LaBianca, J.H. Magerlein, R.J. Polastre, M.B. Rothwell, R.J. Bezama, R. Choudhary, K. Marston, H. Toy, J. Wakil, J. Zitz, A practical implementation of silicon microchannel coolers for high power chips, in: Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005, pp. 1-7.
[15] R. Prasher, J.-Y. Chang, I. Sauciuc, S. Narasimhan, D. Chau, G. Chrysler, A. Myers, S. Prstic, C. Hu, Nano and micro technology-based next-generation package-level cooling solutions, Intel Technology Journal 9 (2005) 285-296.
[16] L.D. Stevanovic, R.A. Beaupre, A.V. Gowda, A.G. Pautsch, S.A. Solovitz, Integral micro-channel liquid cooling for power electronics, 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2010, pp. 1591-1597.
[17] N.R. Jankowski, L. Everhart, B. Morgan, B. Geil, P. McCluskey, Comparing Microchannel Technologies to Minimize the Thermal Stack and Improve Thermal Performance in Hybrid Electric Vehicles, 2007 IEEE Vehicle Power and Propulsion Conference, 2007, pp. 124-130.
[18] C. Gillot, L. Meysenc, C. Schaeffer, A. Bricard, Integrated single and two-phase micro heat sinks under IGBT chips, IEEE Transactions on Components and Packaging Technologies, 22 (1999) 384-389.
[19] B. Agostini, A. Bontemps, B. Watel, B. Thonon, Boiling heat transfer in mini-channels: influence of the hydraulic diameter, 21st International Congress of Refrigeration, Washington, United States, 2003.
[20] S. Baduge, F. Kaminaga, K. Matsumura, Saturated flow boiling of water in a vertical small diameter tube, Experimental Thermal and Fluid Science, 27 (2003) 789-801.
[21] K.H. Bang, W.H. Choo, Flow boiling in minichannels of copper, brass, and aluminum round tubes, ASME 2004 2nd International Conference on Microchannels and Minichannels, 2004, pp. 559-564.
[22] W. Owhaib, C. Martı́n-Callizo, B. Palm, Evaporative heat transfer in vertical circular microchannels, Applied Thermal Engineering, 24 (2004),pp. 1241-1253.
[23] Y.S. Muzychka, J.R. Culham, M.M. Yovanovich, Thermal spreading resistance of eccentric heat sources on rectangular flux channels, Journal of Electronic Packaging, 125 (2003) 178-185.
[24] H. Tang, H. Ye, M. Wang, X. Fan, G. Zhang, Thermal analysis and optimization of IGBT power electronic module based on layout model, 2016 17th International Conference on Electronic Packaging Technology (ICEPT), 2016, pp. 180-185.
[25] T. Steiner, R. Sittig, IGBT module setup with integrated micro-heat sinks, in: 12th International Symposium on Power Semiconductor Devices & ICs. Proceedings (Cat. No.00CH37094), 2000, pp. 209-212.
[26] C. Gillot, C. Schaeffer, C. Massit, L. Meysenc, Double-sided cooling for high power IGBT modules using flip chip technology, IEEE Transactions on Components and Packaging Technologies 24 (2001) 698-704.
[27] B. Agostini, M. Fabbri, J.E. Park, L. Wojtan, J.R. Thome, B. Michel, State of the art of high heat flux cooling technologies, Heat Transfer Engineering 28 (2007) 258-281.
[28] J.C. Chen, Correlation for boiling heat transfer to saturated fluids in convective flow, Industrial & Engineering Chemistry Process Design and Development 5 (1966) 322-329.
[29] M. Magnini, J.R. Thome, An updated three-zone heat transfer model for slug flow boiling in microchannels, International Journal of Multiphase Flow 91 (2017) 296-314.
[30] W. Zhang, T. Hibiki, K. Mishima, Correlation for flow boiling heat transfer in mini-channels, International Journal of Heat and Mass Transfer, 47 (2004) 5749-5763.
[31] H.K. Forster, N. Zuber, Dynamics of vapor bubbles and boiling heat transfer, AIChE Journal 1 (1955) 531-535.
[32] M.M. Shah, S. MM, A new correlation for heat transfer during boiling flow through pipes, ASHRAE Transactions 82 (1976) 66-86.
[33] M.M. Shah, Chart correlation for saturated boiling heat transfer: equations and further study, ASHRAE Transactions 88 (1982) 185-195.
[34] K.E. Gungor, R. Winterton, A general correlation for flow boiling in tubes and annuli, International Journal of Heat and Mass Transfer 29 (1986) 351-358.
[35] M.G. Cooper, Saturation nucleate pool boiling - a simple correlation, in: H.C. Simpson, G.F. Hewitt, D. Boland, T.R. Bott, B.N. Furber, W.B. Hall, P.J. Heggs, P.N. Rowe, E.A.D. Saunders, D.B. Spalding (Eds.) First U.K. National Conference on Heat Transfer, Pergamon, 1984, pp. 785-793.
[36] Z. Liu, R. Winterton, A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation, International Journal of Heat and Mass Transfer 34 (1991) 2759-2766.
[37] S.S. Kutateladze, Boiling heat transfer, International Journal of Heat and Mass Transfer 4 (1961) 31-45.
[38] S.G. Kandlikar, A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes, ASME Journal of Heat Transfer 112 (1990) 219-228.
[39] D. Steiner, J. Taborek, Flow boiling heat transfer in vertical tubes correlated by an asymptotic model, Heat Hransfer Engineering 13 (1992) 43-69.
[40] S.S. Bertsch, E.A. Groll, S.V. Garimella, A composite heat transfer correlation for saturated flow boiling in small channels, International Journal of Heat and Mass Transfer, 52 (2009) 2110-2118.
[41] H. Hausen, Darstellung des Warmeuberganges in Rohren durch verallgemeinerte Potenzbeziehungen, Z. VDI Beih. Verfahrenstech, 4 (1943).
[42] J.G. Collier, J.R. Thome, Convective Boiling and Condensation, Oxford University Press, Oxford, UNITED KINGDOM, 1996.
[43] S. Zivi, Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production, (1964).
[44] H. Müller-Steinhagen, K. Heck, A simple friction pressure drop correlation for two-phase flow in pipes, Chemical Engineering and Processing: Process Intensification 20 (1986) 297-308.
[45] R.W. Lockhart, R.C. Martinelli, Proposed correlation of data for isothermal two-phase, two-component flow in pipes, Chemical Engineering Progess 45 (1949) 39-48.
[46] L. Friedel, Improved friction pressure drop correlation for horizontal and vertical two-phase pipe flow, Proc. of European Two-Phase Flow Group Meeting, Ispra, Italy, 1979.
[47] M. Zhang, R.L. Webb, Correlation of two-phase friction for refrigerants in small-diameter tubes, Experimental Thermal and Fluid Science 25 (2001) 131-139.
[48] C.B. Tibiriçá, J. Diniz da Silva, G. Ribatski, Experimental investigation of flow boiling pressure drop of R134A in a microscale horizontal smooth tube, Journal of Thermal Science and Engineering Applications 3 (2011) 61-68.
[49] A. Cioncolini, J.R. Thome, C. Lombardi, Unified macro-to-microscale method to predict two-phase frictional pressure drops of annular flows, International Journal of Multiphase Flow 35 (2009) 1138-1148.
[50] Y. Xu, X. Fang, A new correlation of two-phase frictional pressure drop for evaporating flow in pipes, International Journal of Refrigeration 35 (2012) 2039-2050.
[51]Y. Xu, X. Fang, D. Li, G. Li, Y. Yuan, A. Xu, An experimental study of flow boiling frictional pressure drop of R134a and evaluation of existing correlations, International Journal of Heat and Mass Transfer 98 (2016) 150-163.
[52] J.R. Thome, V. Dupont, A.M. Jacobi, Heat transfer model for evaporation in microchannels. Part I: presentation of the model, International Journal of Heat and Mass Transfer 47 (2004) 3375-3385.
[53] M. Magnini, B. Pulvirenti, J.R. Thome, Numerical investigation of the influence of leading and sequential bubbles on slug flow boiling within a microchannel, International Journal of Thermal Sciences 71 (2013) 36-52.
[54] M. Magnini, B. Pulvirenti, J.R. Thome, Numerical investigation of hydrodynamics and heat transfer of elongated bubbles during flow boiling in a microchannel, International Journal of Heat and Mass Transfer 59 (2013) 451-471.
[55] H.L. Goldsmith, S.G. Mason, The flow of suspensions through tubes. II. Single large bubbles, Journal of Colloid Science 18 (1963) 237-261.
[56] Y. Han, N. Shikazono, Measurement of the liquid film thickness in micro tube slug flow, International Journal of Heat and Fluid Flow 30 (2009) 842-853.
[57] L. Consolini, J.R. Thome, A heat transfer model for evaporation of coalescing bubbles in micro-channel flow, International Journal of Heat and Fluid Flow 31 (2010) 115-125.
[58] Y. Han, N. Shikazono, The effect of bubble acceleration on the liquid film thickness in micro tubes, International Journal of Heat and Fluid Flow 31 (2010) 630-639.
[59] P. Aussillous, D. Quéré, Quick deposition of a fluid on the wall of a tube, Physics of Fluids 12 (2000) 2367-2371.
[60] S. Churchill, R. Usagi, A general expression for the correlation of rates of transfer and other phenomena, AIChE Journal 18 (1972) 1121-1128.
[61] P.A. Walsh, E.J. Walsh, Y.S. Muzychka, Heat transfer model for gas–liquid slug flows under constant flux, International Journal of Heat and Mass Transfer 53 (2010) 3193-3201.
[62] G. Lazarek, S. Black, Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113, International Journal of Heat and Mass Transfer 25 (1982) 945-960.
[63] W. Yu, D. France, M. Wambsganss, J. Hull, Two-phase pressure drop, boiling heat transfer, and critical heat flux to water in a small-diameter horizontal tube, International Journal of Multiphase Flow 28 (2002) 927-941.
[64] B. Sumith, F. Kaminaga, K. Matsumura, Saturated flow boiling of water in a vertical small diameter tube, Experimental Thermal and Fluid Science 27 (2003) 789-801.
[65] H. Nalbandian, Two-phase Heat Transfer of Refrigerants HFC-134a and HFO-1234yf in Small Channels, 博士論文, 國立中央大學, 2021.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *