|
[1] N. Mohan, T.M. Undeland, W.P. Robbins, Power Electronics: Converters, Applications, and Design, John wiley & sons, 2003. [2] R.G. Mertens, L. Chow, K.B. Sundaram, R.B. Cregger, D.P. Rini, L. Turek, B.A. Saarloos, Spray cooling of IGBT devices, Journal of Electronic Packaging 129 (2007) 316-323. [3] C. Qian, A.M. Gheitaghy, J. Fan, H. Tang, B. Sun, H. Ye, G. Zhang, Thermal management on IGBT power electronic devices and modules, IEEE Access 6 (2018) 12868-12884. [4] P. Wang, P. McCluskey, A. Bar-Cohen, Two-phase liquid cooling for thermal management of igbt power electronic module, Journal of Electronic Packaging 135 (2013) 021001(11 pp.). [5] S. Mehendale, A. Jacobi, R. Shah, Fluid flow and heat transfer at micro and meso-scales with application to heat exchanger design, Applied Mechanics Reviews 53 (2000) 175-193. [6] S.G. Kandlikar, W.J. Grande, Evolution of microchannel flow passages--thermohydraulic performance and fabrication technology, Heat Transfer Engineering 24 (2003) 3-17. [7] M. Suo, P. Griffith, Two-phase flow in capillary tubes, Journal of Basic Engineering 86 (1964) 576-582. [8] P. Kew, K. Cornwell, Correlations for the prediction of boiling heat transfer in small-diameter channels, Applied Thermal Engineering 17 (1997) 705-715. [9] N. Brauner, D.M. Maron, Identification of the range of ‘small diameters’ conduits, regarding two-phase flow pattern transitions, International Communications in Heat and Mass Transfer 19 (1992) 29-39. [10] P. Cheng, H.Y. Wu, Mesoscale and microscale phase-change heat transfer, in: G.A. Greene, J.P. Hartnett, A. Bar-Cohen, Y.I. Cho (Eds.) Advances in Heat Transfer, Elsevier, 2006, pp. 461-563. [11] W. Li, Z. Wu, A general criterion for evaporative heat transfer in micro/mini-channels, International Journal of Heat and Mass Transfer 53 (2010) 1967-1976. [12] D.B. Tuckerman, R.F.W. Pease, High-performance heat sinking for VLSI, IEEE Electron Device Letters 2 (1981) 126-129. [13] P.S. Lee, J. Ho, H. Xue, Experimental study on laminar heat transfer in microchannel heat sink, Inter Society Conference on Thermal Phenomena (ITHERM) 2002, pp. 379-386. [14] E.G. Colgan, B. Furman, A. Gaynes, W. Graham, N. LaBianca, J.H. Magerlein, R.J. Polastre, M.B. Rothwell, R.J. Bezama, R. Choudhary, K. Marston, H. Toy, J. Wakil, J. Zitz, A practical implementation of silicon microchannel coolers for high power chips, in: Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005, pp. 1-7. [15] R. Prasher, J.-Y. Chang, I. Sauciuc, S. Narasimhan, D. Chau, G. Chrysler, A. Myers, S. Prstic, C. Hu, Nano and micro technology-based next-generation package-level cooling solutions, Intel Technology Journal 9 (2005) 285-296. [16] L.D. Stevanovic, R.A. Beaupre, A.V. Gowda, A.G. Pautsch, S.A. Solovitz, Integral micro-channel liquid cooling for power electronics, 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2010, pp. 1591-1597. [17] N.R. Jankowski, L. Everhart, B. Morgan, B. Geil, P. McCluskey, Comparing Microchannel Technologies to Minimize the Thermal Stack and Improve Thermal Performance in Hybrid Electric Vehicles, 2007 IEEE Vehicle Power and Propulsion Conference, 2007, pp. 124-130. [18] C. Gillot, L. Meysenc, C. Schaeffer, A. Bricard, Integrated single and two-phase micro heat sinks under IGBT chips, IEEE Transactions on Components and Packaging Technologies, 22 (1999) 384-389. [19] B. Agostini, A. Bontemps, B. Watel, B. Thonon, Boiling heat transfer in mini-channels: influence of the hydraulic diameter, 21st International Congress of Refrigeration, Washington, United States, 2003. [20] S. Baduge, F. Kaminaga, K. Matsumura, Saturated flow boiling of water in a vertical small diameter tube, Experimental Thermal and Fluid Science, 27 (2003) 789-801. [21] K.H. Bang, W.H. Choo, Flow boiling in minichannels of copper, brass, and aluminum round tubes, ASME 2004 2nd International Conference on Microchannels and Minichannels, 2004, pp. 559-564. [22] W. Owhaib, C. Martı́n-Callizo, B. Palm, Evaporative heat transfer in vertical circular microchannels, Applied Thermal Engineering, 24 (2004),pp. 1241-1253. [23] Y.S. Muzychka, J.R. Culham, M.M. Yovanovich, Thermal spreading resistance of eccentric heat sources on rectangular flux channels, Journal of Electronic Packaging, 125 (2003) 178-185. [24] H. Tang, H. Ye, M. Wang, X. Fan, G. Zhang, Thermal analysis and optimization of IGBT power electronic module based on layout model, 2016 17th International Conference on Electronic Packaging Technology (ICEPT), 2016, pp. 180-185. [25] T. Steiner, R. Sittig, IGBT module setup with integrated micro-heat sinks, in: 12th International Symposium on Power Semiconductor Devices & ICs. Proceedings (Cat. No.00CH37094), 2000, pp. 209-212. [26] C. Gillot, C. Schaeffer, C. Massit, L. Meysenc, Double-sided cooling for high power IGBT modules using flip chip technology, IEEE Transactions on Components and Packaging Technologies 24 (2001) 698-704. [27] B. Agostini, M. Fabbri, J.E. Park, L. Wojtan, J.R. Thome, B. Michel, State of the art of high heat flux cooling technologies, Heat Transfer Engineering 28 (2007) 258-281. [28] J.C. Chen, Correlation for boiling heat transfer to saturated fluids in convective flow, Industrial & Engineering Chemistry Process Design and Development 5 (1966) 322-329. [29] M. Magnini, J.R. Thome, An updated three-zone heat transfer model for slug flow boiling in microchannels, International Journal of Multiphase Flow 91 (2017) 296-314. [30] W. Zhang, T. Hibiki, K. Mishima, Correlation for flow boiling heat transfer in mini-channels, International Journal of Heat and Mass Transfer, 47 (2004) 5749-5763. [31] H.K. Forster, N. Zuber, Dynamics of vapor bubbles and boiling heat transfer, AIChE Journal 1 (1955) 531-535. [32] M.M. Shah, S. MM, A new correlation for heat transfer during boiling flow through pipes, ASHRAE Transactions 82 (1976) 66-86. [33] M.M. Shah, Chart correlation for saturated boiling heat transfer: equations and further study, ASHRAE Transactions 88 (1982) 185-195. [34] K.E. Gungor, R. Winterton, A general correlation for flow boiling in tubes and annuli, International Journal of Heat and Mass Transfer 29 (1986) 351-358. [35] M.G. Cooper, Saturation nucleate pool boiling - a simple correlation, in: H.C. Simpson, G.F. Hewitt, D. Boland, T.R. Bott, B.N. Furber, W.B. Hall, P.J. Heggs, P.N. Rowe, E.A.D. Saunders, D.B. Spalding (Eds.) First U.K. National Conference on Heat Transfer, Pergamon, 1984, pp. 785-793. [36] Z. Liu, R. Winterton, A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation, International Journal of Heat and Mass Transfer 34 (1991) 2759-2766. [37] S.S. Kutateladze, Boiling heat transfer, International Journal of Heat and Mass Transfer 4 (1961) 31-45. [38] S.G. Kandlikar, A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes, ASME Journal of Heat Transfer 112 (1990) 219-228. [39] D. Steiner, J. Taborek, Flow boiling heat transfer in vertical tubes correlated by an asymptotic model, Heat Hransfer Engineering 13 (1992) 43-69. [40] S.S. Bertsch, E.A. Groll, S.V. Garimella, A composite heat transfer correlation for saturated flow boiling in small channels, International Journal of Heat and Mass Transfer, 52 (2009) 2110-2118. [41] H. Hausen, Darstellung des Warmeuberganges in Rohren durch verallgemeinerte Potenzbeziehungen, Z. VDI Beih. Verfahrenstech, 4 (1943). [42] J.G. Collier, J.R. Thome, Convective Boiling and Condensation, Oxford University Press, Oxford, UNITED KINGDOM, 1996. [43] S. Zivi, Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production, (1964). [44] H. Müller-Steinhagen, K. Heck, A simple friction pressure drop correlation for two-phase flow in pipes, Chemical Engineering and Processing: Process Intensification 20 (1986) 297-308. [45] R.W. Lockhart, R.C. Martinelli, Proposed correlation of data for isothermal two-phase, two-component flow in pipes, Chemical Engineering Progess 45 (1949) 39-48. [46] L. Friedel, Improved friction pressure drop correlation for horizontal and vertical two-phase pipe flow, Proc. of European Two-Phase Flow Group Meeting, Ispra, Italy, 1979. [47] M. Zhang, R.L. Webb, Correlation of two-phase friction for refrigerants in small-diameter tubes, Experimental Thermal and Fluid Science 25 (2001) 131-139. [48] C.B. Tibiriçá, J. Diniz da Silva, G. Ribatski, Experimental investigation of flow boiling pressure drop of R134A in a microscale horizontal smooth tube, Journal of Thermal Science and Engineering Applications 3 (2011) 61-68. [49] A. Cioncolini, J.R. Thome, C. Lombardi, Unified macro-to-microscale method to predict two-phase frictional pressure drops of annular flows, International Journal of Multiphase Flow 35 (2009) 1138-1148. [50] Y. Xu, X. Fang, A new correlation of two-phase frictional pressure drop for evaporating flow in pipes, International Journal of Refrigeration 35 (2012) 2039-2050. [51]Y. Xu, X. Fang, D. Li, G. Li, Y. Yuan, A. Xu, An experimental study of flow boiling frictional pressure drop of R134a and evaluation of existing correlations, International Journal of Heat and Mass Transfer 98 (2016) 150-163. [52] J.R. Thome, V. Dupont, A.M. Jacobi, Heat transfer model for evaporation in microchannels. Part I: presentation of the model, International Journal of Heat and Mass Transfer 47 (2004) 3375-3385. [53] M. Magnini, B. Pulvirenti, J.R. Thome, Numerical investigation of the influence of leading and sequential bubbles on slug flow boiling within a microchannel, International Journal of Thermal Sciences 71 (2013) 36-52. [54] M. Magnini, B. Pulvirenti, J.R. Thome, Numerical investigation of hydrodynamics and heat transfer of elongated bubbles during flow boiling in a microchannel, International Journal of Heat and Mass Transfer 59 (2013) 451-471. [55] H.L. Goldsmith, S.G. Mason, The flow of suspensions through tubes. II. Single large bubbles, Journal of Colloid Science 18 (1963) 237-261. [56] Y. Han, N. Shikazono, Measurement of the liquid film thickness in micro tube slug flow, International Journal of Heat and Fluid Flow 30 (2009) 842-853. [57] L. Consolini, J.R. Thome, A heat transfer model for evaporation of coalescing bubbles in micro-channel flow, International Journal of Heat and Fluid Flow 31 (2010) 115-125. [58] Y. Han, N. Shikazono, The effect of bubble acceleration on the liquid film thickness in micro tubes, International Journal of Heat and Fluid Flow 31 (2010) 630-639. [59] P. Aussillous, D. Quéré, Quick deposition of a fluid on the wall of a tube, Physics of Fluids 12 (2000) 2367-2371. [60] S. Churchill, R. Usagi, A general expression for the correlation of rates of transfer and other phenomena, AIChE Journal 18 (1972) 1121-1128. [61] P.A. Walsh, E.J. Walsh, Y.S. Muzychka, Heat transfer model for gas–liquid slug flows under constant flux, International Journal of Heat and Mass Transfer 53 (2010) 3193-3201. [62] G. Lazarek, S. Black, Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113, International Journal of Heat and Mass Transfer 25 (1982) 945-960. [63] W. Yu, D. France, M. Wambsganss, J. Hull, Two-phase pressure drop, boiling heat transfer, and critical heat flux to water in a small-diameter horizontal tube, International Journal of Multiphase Flow 28 (2002) 927-941. [64] B. Sumith, F. Kaminaga, K. Matsumura, Saturated flow boiling of water in a vertical small diameter tube, Experimental Thermal and Fluid Science 27 (2003) 789-801. [65] H. Nalbandian, Two-phase Heat Transfer of Refrigerants HFC-134a and HFO-1234yf in Small Channels, 博士論文, 國立中央大學, 2021.
|