帳號:guest(3.141.12.254)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李偉瑄
作者(外文):Lee, Wei-Shiuan
論文名稱(中文):以紅外線測溫與質點影像測速技術研究平行與交錯翼型擾流器於雙通道之紊性熱傳增益
論文名稱(外文):IRT and PIV Investigations of Turbulent Heat Transfer Enhancement in a Two Pass Channel with Inline and Staggered Wing-Shaped Turbulators
指導教授(中文):劉通敏
王春生
指導教授(外文):Liou, Tong-Miin
Wang, Chun-Sheng
口試委員(中文):田維欣
張淵仁
口試委員(外文):Tien, Wei-Hsin
Chang, Yuan-Jen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:108033506
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:95
中文關鍵詞:翼型擾流器正方形雙通道熱流相關性紅外線熱像儀質點影像測速儀
外文關鍵詞:Wing-ShapedTurbulatorsTwo-PassSquareChannelThemalFluidRelationshipsIRTPIV
相關次數:
  • 推薦推薦:0
  • 點閱點閱:454
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,隨著全球能源需求不斷的增加以及化石能源儲備的日漸枯竭,如何更有效率地運用有限化石能源是全球面臨的共同課題。目前使用的燃料大多都通過熱能轉換供社會或工業使用,因此提升熱交換器的熱傳性能是提升能源利用效率的重要方式之一。本研究在前人最佳設計之具翼型擾流器之蛇形方管熱交換器基礎上,進一步優化擾流器擺放方式以增益其熱傳,並使用紅外線熱像儀(Infrared Thermography,簡稱IRT)、壓力傳感器以及質點影像測速儀(Particle Image Velocimetry,簡稱PIV)量測方管中局部溫度分布、壓力損失以及流場結構,以便探討流場結構如何影響熱傳增益與壓力損失。
本研究使用之翼形擾流器皆為3D列印所印製,按照與管道壁面貼合方式可分為I (側壁貼合)、II (上下壁面貼合)、III (下壁面貼合)三種類型,擺放方式為平行(Inline)或交錯(Staggered)。IRT熱傳與壓損量測實驗於雷諾數(𝑅𝑒)範圍5000 ≤ 𝑅𝑒 ≤ 20000內進行,PIV流場實驗於𝑅𝑒 =10000進行。由PIV與IRT實驗可以發現,於通道中轉彎區擺放三翼形擾流器I以及在出彎處擺放兩翼形擾流器II將使主流流體加速,讓第一通道的高熱傳得以延續到的二通道,通道整體紐塞數比((Nu) ̅/〖Nu〗_0)相較於前人提升6.4%。而雙排交錯擺放之翼形擾流器III,能大幅增強通道中二次流強度,增進冷熱流體混合。本研究使用雙排交錯擺放的翼形擾流器III,(Nu) ̅/〖Nu〗_0較前人提升46%,在壓損(f ̅/f0)區間45≤ f ̅/f0 ≤200內,雙排平行擺放的翼形擾流器III有最佳熱性能係數(Thermal Performance Factor,簡稱TPF)為1.45,優於先前文獻。而進一步探討平均流力因子與側向平均紐塞數比¯((Nu/〖Nu〗_0))_sp皮爾森相關性(Pearson Correlation)發現縱向速度¯((|V|/U_b))_CS、側向速度¯((|W|/U_b))_sp與無因次渦度¯((|ω|D_H/U_b))_CS三流力因子與其有較高的相關程度,相關係數(R)分別為0.85、0.84與0.83。最後本研究整合前人平滑管道與機翼型擾流器及本研究實驗數據,提出兩個較前人適用範圍更為廣泛之¯((Nu/〖Nu〗_0))_sp經驗公式,此公式亦將為未來熱傳機器學習提供數據基礎。
In recent years, due to the growing demand for energy and depletion of fossil fuels, the efficient use of the limited fossil fuels becomes a challenge facing our planet. As most fuels for residential and industrial applications nowadays are utilized in the way of thermal energy, increasing the thermal performance of heat exchangers is one of the most important methods to improve the efficiency of energy use. This research aims to enhance the thermal performance of previous wing-shaped turbulators in a square serpentine channel with different turbulator arrangements. To explore the effects of turbulent flow structures on heat transfer and pressure loss, the Infrared Thermography (IRT), pressure sensors, and Particle Image Velocimetry (PIV) are applied to measure the local temperature distributions, pressure loss and flow fields, respectively.
In this study, according to the wall attachment methods the adopted turbulators fabricated by the 3D printing technology can be categorized into three types: I (attached to the sidewalls), II (attached to the top and bottom walls) and III (attached to the bottom wall). The arrangement of the turbulators inside the channel is either inline or staggered. In the IRT and pressure loss experiments, the Reynolds Number (𝑅𝑒) is in the range of 5000 ≤ 𝑅𝑒 ≤ 20000 whereas in the PIV experiments it is fixed at 𝑅𝑒 =10000. From the IRT and PIV experiments, it is observed that the installation of three type I and two type II wing-shaped turbulators in the turn region of the two pass channel accelerates the main flow, leading to the continuation of high heat transfer regions from the first pass to the second pass. Compared with previous data, the overall Nusselt number ratio ((Nu) ̅/〖Nu〗_0) increases 6.4%. In addition, the two-row staggered arrangement of type III wing-shaped turbulators significantly augments the strength of secondary flows in the channel, thus promoting the mixing of cold and hot fluids. The (Nu) ̅/〖Nu〗_0 in the two-row staggered arrangement is 46% higher than that of previous single-row arrangement. In the range of 45≤ f ̅/f0 (friction factor ratio) ≤200, the two-row inline arrangement exhbits the best Thermal Performance Factor (TPF) of 1.45 superior to the previous highest value. Furthermore, the correlations between the mean flow parameters and spanwise-averaged local Nusselt number¯((Nu/〖Nu〗_0))_sp are explored by the Pearson correlation. The spanwise-averaged mean transverse velocity¯((|V|/U_b))_CS, spanwise velocity ¯((|W|/U_b))_sp, and the cross-sectional averaged mean vorticity ¯((|ω|D_H/U_b))_CS are discovered to have a high correlation with ¯((Nu/〖Nu〗_0))_sp, with the respective correlation coefficient R equal to 0.85, 0.84, 0.83. Lastly, by combing the thermal-fluidic data of the present and previous designs including the smooth channel and channel with wing-shaped turbulators, two empirical heat transfer formulas with a wider applicable range are proposed, which provides database for using the machine learning program of heat transfer in the future work.
摘要 i
Abstract iii
致謝 v
目錄 vi
表目錄 viii
圖目錄 ix
符號說明 xii
第一章 緒論 1
1-1前言 1
1-2文獻回顧 2
1-2-1擾流器類型 2
1-2-2導葉 9
1-2-3擾流器擺放 12
1-3研究目的 13
第二章 實驗系統與方法 27
2-1 實驗管道與擾流器模型 27
2-2流場量測系統 28
2-2-1視蹤粒子產生裝置 28
2-2-2雷射光學照明系統 29
2-2-3影像擷取系統 29
2-2-4影像分析程序 30
2-3熱傳量測系統 30
2-3-1紅外線熱像儀 30
2-3-2電阻溫度感測器系統 31
2-4實驗條件 31
2-5熱傳實驗數據處理 31
2-6實驗誤差分析 33
第三章 實驗結果與討論 44
3-1實驗技術驗證 44
3-2轉彎區擾流器擺放方式之影響 44
3-2-1流場實驗結果 44
3-2-2熱傳實驗結果 46
3-3直通道擾流器擺放方式之影響 49
3-3-1 流場實驗結果 49
3-3-2 熱傳實驗結果 51
3-3-3 紐塞數與流力因子相關性分析 53
3-3-4 迴歸分析 56
第四章 結論與未來建議 81
4-1結論 81
4-2重要研究成果 82
4-3未來建議 82
附錄A 熱傳上下壁面對稱性(翼形擾流器III) 84
附錄B 論文口試之補充答辯 85
參考文獻 88
A.Dewan, P.Mahanta, K.S.Raju, P.S.Kumar, “Review of Passive Heat Transfer Augmentation Techniques,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, pp. 509-527, 2004.
C.C.Chen, Experimental Study on Heat Transfer Enhancement in a Two-Pass Square Channel with Novel Wing-Shaped Turbulators Using Passive and Active Methods. Master Thesis., National Tsing-Hua University, 2020.
M.H.Liu, Experimental Study of Airfoil-Shaped Turbulators on Turbulent Thermal Fluid Relationships in a Twin-Pass Square Channel, National Tsing-Hua University, 2021.
S.W.Chang, T.L.Yang, C.C.Huang, K.F.Chiang, “Endwall Heat Transfer and Pressure Drop in Rectangular Channels with Attached and Detached Circular Pin-Fin Array,” International Journal of Heat and Mass Transfer 51, p. 5247–5259, 2008.
S.C.Siw, M.K.Chyu, T.I.P.Shih, M.A.Alvin, “Effects of Pin Detached Space on Heat Transfer and Pin-Fin Arrays,” Journal of Heat Transfer, Vol. 134, 2012.
L.C.Demartini, H.A.Vielmo, S.V.Möller, “Numeric and Experimental Analysis of the Turbulent Flow through a Channel with Baffle Plates,” Journal of the Brazilian Society of Mechanical Sciences and Engineering Vol. XXVI, No. 2, pp. 153-159, 2004.
R.Saim, H.Benzenine, H.F.Oztop, K.Al-Salem, “Turbulent Flow and Heat Transfer Enhancement of Forced Convection Over Heated Baffles in a Channel: Effect of Pitch of Baffles,” International Journal of Numerical Methods for Heat & Fluid Flow, 2013.
S.W.Chang, T.W.Chen, Y.W.Chen, “Detailed Heat Transfer and Friction Factor Measurements for Square Channel Enhanced by Plate Insert with Inclined Baffles and Perforated Slots,” Applied Thermal Engineering 159, 2019.
M.K.Chyu, C.H.Yen, S.Siw, “Comparison of Heat Transfer from Staggered Pin Fin Arrays with Circular, Cubic and Diamond Shaped Elements,” ASME Turbo Expo: Power for Land, Sea and Air GT2007-28306, 2007.
L.Luo, H.Yan, W.Du, S.T.Wang, C.H.Li, X.H.Zhang, “Flow Structure and Heat Transfer Characteristics of a Rectangular Channel with Pin Fins and Dimples with Different Shapes,” Journal of Thermal Science and Engineering Applications, Vol. 11, 2019.
G.Liao, X.Wang, X.Bai, D.Zhu, J.Yao, “Numerical Investigation on the Flow and Heat Transfer Characteristics of the Superheated Steam in the Wedge Duct with Pin-Fins,” Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition GT2013-94205, 2013.
S.Caliskan, A.Dogan, I.Kotcioglu, “Experimental Investigation of Heat Transfer from Different Pin Fin in a Rectangular Channel,” Experimental Heat Transfer, 2018.
P.Dutta, S.Dutta, “Effect of Baffle Size, Perforation, and Orientation on Internal Heat Transfer Enhancement,” International Journal of Heat and Mass Transfer 41, 1998.
Nasiruddin, M.H.Kamran Siddiqui, “Heat Transfer Augmentation in a Heat Exchanger Tube Using a Baffle,” International Journal of Heat and Fluid Flow 28, 2007.
P.Promvonge, “Heat Transfer and Pressure Drop in a Channel with Multiple 60° V-baffles,” International Communications in Heat and Mass Transfer 37, 2010.
H. Ameur, “Effect of Corrugated Baffles on the Flow and Thermal Fields in a Channel Heat Exchanger,” Journal of Applied and Computational Mechanics, 2019.
M.A.Sharafeldeen, N.S.Berbish, M.A.Moawed, R.K.Ali, “Experimental Investigation of Heat Transfer and Pressure Drop of Turbulent Flow Inside Tube with Inserted Helical Coils,” Journal of Heat Mass Transfer, 2016.
W.Dang, L.B.Wang, “Convective Heat Transfer Enhancement Mechanisms in a Circular Tube Inserted with a Type of Twined Coil,” International Journal of Heat and Mass Transfer, 2021.
C.Vashistha, A.K.Patil, M.Kumar, “Experimental Investigation of Heat Transfer and Pressure Drop in a Circular Tube with Multiple Inserts,” Applied Thermal Engineering, 2015.
P.Promvonge, S.Eiamsa-ard, “Heat Transfer Behaviors in a Tube with Combined Conical-Ring and Twisted-Tape Insert,” International Communications in Heat and Mass Transfer 34, 2007.
S.K.Saha, “Thermal and Friction Characteristics of Turbulent Flow Through Rectangular and Square Ducts with Transverse Ribs and Wire-Coil Inserts,” Experimental Thermal and Fluid Science 34, 2010.
S.C.Siw, M.K.Chyu, M.A.Alvin, “Heat Transfer Enhancement of Internal Cooling Passage with Triangular and Semi-Circular Shaped Pin-Fin Arrays,” ASME Turbo Expo GT2012-69266, 2012.
O.Uzol, C.Camci, “Pressure Loss and Flow Field Measurements Downstream of Staggered Two-Row Circular and Elliptical Pin Fin Arrays,” Journal of Heat Transfer 127(5), pp. 458-471, 2005.
J.Xu, J.Yao, P.Su, J.Lei, J.Wu, T.Gao, “Heat Transfer and Pressure Loss Characteristics of Pin-Fins with Different Shapes in a Wide Channel,” Proceedings of ASME Turbo Expo: Turbomachinery Technical Conference and Exposition GT2017-63761, 2017.
I.Kotcioglu, S.Caliskan, S.Baskaya, “Experimental Study on the Heat Transfer and Pressure Drop of a Cross-Flow Heat Exchanger with Different Pin-Fin Arrays,” Heat Mass Transfer, pp. 1133-1142, 2011.
F.M.Wang, J.Z.Zhang, S.F.Wang, “Investigation on Flow and Heat Transfer Characteristics in Rectangular Channel with Drop-Shaped Pin Fins,” Propulsion and Power Research, 2012.
M.Effendy, Y.F.Yao, J.Yao, D.R.Marchant, “Pin-Fin Shape and Orientation Effects on Wall Heat Transfer Predictions of Gas Turbine Blade,” AIP Conference Proceedings 2114, 020008, 2019.
W.Du, L.Luo, S.Wang, J.Liu, B.Sunden, “Heat Transfer and Flow Structure in a Rotating Duct with Detached Pin Fins,” Numerical Heat Transfer, Part A: Applications An International Journal of Computation and Methodology, 75:4, 2019.
W.Algawair, H.Iacovides, D.Kounadis, Z.Xu., “Experimental Assessment of the Effects of Prandtl Number and of a Guide Vane on the Thermal Development in a Ribbed Square-Ended U-Bend,” Experimental Thermal and Fluid Science 32, 2007.
M.U.Rehman, W.Siddique, I.Haq, N.Ali, Z.Faqooqi, “CFD analysis of the influence of guide ribs/vanes on the heat transfer enhancement of a trapezoidal channel,” Applied Thermal Engineering 102, 2016.
M.Schüler, F.Zehnder, B.Weigand, J.von Wolfersdorf, S.O.Neumann, “The Effect of Turning Vanes on Pressure Loss and Heat Transfer of a Ribbed Rectangular Two-Pass Internal Cooling Channel,” Journal of Turbomachinery, Vol. 133, 2011.
G.Xie, W.Zhang, B.Sunden, “Computational Analysis of the Influences of Guide Ribs/Vanes on Enhanced Heat Transfer of a Turbine Blade Tip-Wall,” International Journal of Thermal Sciences 51, 2012.
W.Chen, J.Ren, H.Jiang, “Effect of Turning Vane Configurations on Heat Transfer and Pressure Drop in a Ribbed Internal Cooling System,” Journal of Turbomachinery Vol. 133, 2011.
B.Wu, X.Yang, Z.Liu, Z.Feng, “Effects of Novel Turning Vanes on Pressure Loss and TIp-Wall Heat Transfer in an Idealized U-Bend Channel,” International Communications in Heat and Mass Transfer, 2021.
J.Luo, E.H.Razinsky, “Analysis of Turbulent Flow in 180 deg Turning Ducts With and Without Guide Vanes,” Journal of Turbomachinery Vol.131, 2009.
A.F.Chen, H.W.Wu, N.Wang, J.C.Han, “Heat Transfer in a Rotating Cooling Channel (AR=2:1) With Rib Turbulators and a Tip Turning Vane,” Journal of Heat Transfer, 2018.
R.Reghunathan Valsala, S.W.Son, A.Suryan, H.D.Kim, “Study on Reduction in Pressure Losses in Pipe Bends Using Guide Vanes,” Journal of Visualization, 2019.
M.S.Saravani, R.S.Amaro, N.J.DiPasquale, J.W.Halmo, “Turning Guide Vane Effect on Internal Cooling of Two-Passage Channel With Parallel Ribs,” Journal of Energy Resources Technology Vol.142, 2020.
H.M.Tekale, R.S.Pawar, “Experimental Investigation of Heat Transfer Enhancement in Solid Cylindrical & Perforated Cylindrical fins in Staggered & in Inline Arrangement,” International Journal of Engineering Research & Technology (IJERT) Vol. 8 Issue 09, 2019.
S.E.Gilani, H.H. Al-Kayiem, D.E.Woldemicheal, “Effect of Conical Pin Arrangement on Heat Transfer Efficiency of a Free Convective Solar Air Heater,” Journal of Mechanical Engineering and Sciences Volume 10, Issue 2, 2016.
M.K.Chyu, R.J.Goldstein, “Influence of an Array of Wall-Mounted Cylinders on the Mass Transfer from a Flat Surface,” International Journal of Heat and Mass Transfer Vol.34 No. 9, 1991.
E.M.Sparrow, J.W.Ramsey, C.A.C.Altemani, “Experiments on In-line Pin Fin Arrays and Performance Comparisons with Staggered Arrays,” Journal of Heat Transfer Vol.102, 1980.
O.N.Sara, “Performance Analysis of Rectangular Ducts with Staggered Square Pin Fins,” Energy Conversion and Management 44, 2003.
S.C.Huang, C.C.Wang, Y.H.Liu, “Heat Transfer Measurement in a Rotating Cooling Channel with Staggered and Inline Pin-Fin Arrays Using Liquid Crystal and Stroboscopy,” International Journal of Heat and Mass Transfer, 2017.
V.Aga, Experimental Investigation of the Influence of Flow Structure on Compound Angled Film Cooling Performance. Doctoral Thesis., Swiss Federal Institute of Technology, 2009.
S.P.Chan, Experimental Study on Influence of Core Flow and Boundary Layer Flow Induced by Perturbators and Channel Cross-Sectional Geometry on Heat Transfer Performance in Heat Exchangers. Doctoral Thesis, National Tsing-Hua University, 2017.
S.W.Churchill, H.H.S.Chu, “Correlating Equations for Laminar and Turbulent Free Convection from a Vertical Plate,” International Journal of Heat and Mass Transfer 18(11), 1975.
R.D.Keane, R.J.Adrian, “Optimization of Particle Image Velocimeters: II. Multiple Pulsed Systems,” Measurement Science and Technology 2(10), 1991.
J.C.Tseng, Influences of Slat Attack Angle and Pitch Ratio on Turbulent Hydrothermal Characteristics in a Louvered Two-Pass Square Channel, National Tsing-Hua Univeristy, 2018.
W.C.Chang, Experimental Studies of 180-Deg Sharp Turn Effect on Turbulence Statistics and Thermal-Fluidic Correlations in a Smooth Square Duct, National Tsing-Hua University, 2018.
J.Issa, N.Saliba, A.El Cheikh, "A Numerical Study of Heat Transfer and Fluid Flow in a Channel with an Array of Pin Fins in Aligned and Staggered Configurations," IEEE ITHERM 17th, 2018.
T.M.Liou, C.C.Chen, T.W.Tsai, “Heat Transfer and Fluid Flow in a Square Duct with 12 Different Shaped Vortex Generators,” Journal of Heat Transfer Vol. 122, 2000.
T.M.Liou, C.S.Wang, J.C.Tseng, I.M.Hsieh, C.C.Chen, “Influence of Slat Attack Angle and Pitch Ratio on Turbulent Hydrothermal Characteristics in a Louvered Two-Pass Square Channel,” International Journal of Heat and Mass Transfer, 143, 118527, 2019.
P.H.Chen, IRT and PIV Study on Pulsatile Turbulent Channel Flow and Heat Transfer Enhancement with Louvered Turbulators, National Tsing-Hua University, 2019.
I.M.Hsieh, Turbulent Flow Measurement and Thermal Fluid Analysis in a Louvered Two-Pass Square Channel with Different Slat Numbers, National Tsing-Hua University, 2018.
E.S.Wang, Experiment Study of Heat Transfer Enhancement and Flow Features in a 180-Deg Sharp-Turning Square Channel with Detached Curved Ribs, National Tsing-Hua University, 2021.
(此全文20250123後開放外部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *