|
[1] P. Dunn, D.A. Reay, Heat pipes, Pergamon Press, New York, 1978. [2] G.P. Peterson, An Introduction to Heat Pipes, Wiley, New York, 1994. [3] S.W. Chi, Heat Pipe Theory and Practice. McGraw-Hill, Washington, 1976. [4] B.R. Babin, G.P. Peterson, D. Wu, Steady-state modeling and testing of a micro heat pipe, ASME J. Heat Transfer 112 (1990) 595-601. [5] G.P. Peterson, H.B. Ma, Theoretical analysis of the maximum heat transport in triangular grooves: A study of idealized micro heat pipes, ASME J. Heat Transfer 118 (1996) 731-739. [6] R. Hopkins, A. Faghri, D. Khrustalev, Flat miniature heat pipes with micro capillary grooves, ASME J. Heat Transfer 121 (1999) 102-109. [7] S.J. Kim, J. K. Seo, K. H. Do, Analytical and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved wick structure, Int. J. Heat Mass Transfer 46 (2003) 2051-2063. [8] A.J. Jiao, R. Riegler, H.B. Ma, G.P. Peterson, Thin film evaporation effect on the heat transport capability in a groove heat pipe, Microfluid Nanofluid 1 (2005) 227-233. [9] A.J. Jiao, H.B. Ma, J.K. Critser, Evaporation heat transfer characteristics of a grooves heat pipe with micro-trapezoidal grooves, Int. J. Heat Mass Transfer 50 (2007) 2905-2911. [10] S.-C. Wong, C.-W. Chen, Visualization and evaporator resistance measurement for a groove-wicked flat-plate heat pipe, Int. J. Heat Mass Transfer 55 (2012) 2229-2234. [11] R.H. Nilson, S.W. Tchikanda, S.K. Griffiths, M.J. Martinez, Steady evaporating flow in rectangular microchannels, Int. J. Heat Mass Transfer 49 (2006) 1603-1618. [12] F. Yu, C. Yu, J. Cao, Y. Chen, Experimental analysis of the evaporation regimes of an axially grooved heat pipe at small tilt angles, Int. J. Heat Mass Transfer 126 (2018) 334-341. [13] S. Lips, F. Lefevre, J. Bonjour, Nucleate boiling in a flat grooved heat pipe, Int. J. Heat Mass Transfer 48 (2008) 1273-1278. [14] Y. Hu, J. Cheng, W. Zhang, R. Shirakashi, S. Wang, Thermal performance enhancement of grooved heat pipes with inner surface treatment, Int. J. Heat Mass Transfer 67 (2013) 416-419. [15] J.-S. Chen, J.-H. Chou, Cooling performance of flat plate heat pipes with different liquid filling ratios, Int. J. Heat Mass Transfer 77 (2014) 874-882. [16] S.-C. Wong, Y.-C. Lin, J.-H. Liou, Visualization and evaporator resistance measurement in heat pipes charged with water, methanol or acetone, Int. J. Therm. Sci. 52 (2012) 154-160. [17] F. Lefèvre, J.-B. Conrardy, M. Raynaud, J. Bonjour, Experimental investigations of flat plate heat pipes with screen meshes or grooves covered with screen meshes as capillary structure, Appl. Therm. Eng. 37 (2012) 95-102. [18] J.-H. Liou, C.-W. Chang, C. Chao, S.-C. Wong, Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer 53 (2010) 1498-1506. [19] S.-C. Wong, H.-H. Tseng, S.-H. Chen, Visualization experiments on the condensation process in heat pipe wicks, Int. J. Heat Mass Transfer 68 (2014) 625-632. [20] S.-C. Wong, H.-S. Cheng, C.-W. Tu, Visualization experiments on the performance of mesh-wick heat pipes with differing wick wettability, Int. J. Heat Mass Transfer 114 (2017) 1045-1053. [21] X. Dai, F. Yang, R. Yang, Y.-C. Lee, C. Li, Micromembrane-enhanced capillary evaporation, Int. J. Heat Mass Transfer 64 (2013) 1101-1108. [22] S.-C. Wong, W.-S. Liao, Visualization experiments on flat-plate heat pipes with composite mesh-groove wick at different tilt angles, Int. J. Heat Mass Transfer 123 (2018) 839-847. [23] S.-C. Wong, J.-H. Liou, C.-W. Chang, Evaporation resistance measurement with visualization for sintered copper-powder evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer 53 (2010) 3792-3798. [24] K.V. Paiva, M.B.H. Mantelli, Wire-plate and sintered hybrid heat pipes: Model and experiments, Int. J. Therm. Sci. 93 (2015) 36-51. [25] S.-C. Wong, C.-W. Chen, Visualization experiments for groove-wicked flat- plate heat pipes with various working fluids and powder-groove evaporator, Int. J. Heat Mass Transfer 66 (2013) 396-403. [26] J. Supowit, T. Heflinger, M. Stubblebine, I. Catton, Designer fluid performance and inclination angle effects in a flat grooved heat pipe, Appl. Therm. Eng. 101 (2016) 770-777. [27] D.R. Adkins, R.C. Dykhuizen, Procedures for measuring the properties of heat pipe wick materials, Intersociety Energy Conversion Engineering Conference, 1993. [28] A. Faghri, Heat Pipe Science and Technology, 2nd Ed. Global Digital Press, Columbia, 2016. [29] B. Holley, A. Faghri, Permeability and effective pore radius measurements for heat pipe and fuel cell application, Appl. Therm. Eng. 26 (2006) 448-462. [30] Y. Nam, S. Sharratt, C. Byon, S.J. Kim, Y.S. Ju, Fabrication and characterization of the capillary performance of superhydrophilic Cu micropost arrays, Journal of Microelectromechanical Systems 19 (2010) 581-588. [31] 廖偉翔,複合式溝槽/銅網毛細平板熱管之可視化實驗,國立清華大學碩士論文,2015。 [32] 劉旻杰,採用複合式溝槽/銅網毛細平板熱管在不同工作流體及傾角下之可視化實驗,國立清華大學碩士論文,2017。 [33] 鄭憲昇,毛細具縱向親水性變化之平板熱管可視化實驗,國立清華大學碩士論文,2013。 [34] S. Katzoff, Heat pipes and vapor chambers for thermal control of spacecraft, AIAA Thermophysics Specialists Conference, 1967. [35] E. C. Phillips, Low Temperature Heat Pipe Research Program, NASA CR-66792, 1974. [36] H. R. Kunz, L. S. Langston, B. H. Hilton, S. S. Wyde, G. H. Nasbick, Vapor Chamber Fin Studies - Transport Properties and Boiling Characteristics of Wicks, NASA CR-812, 1967. [37] D. Deng, Y. Tang, G. Huang, L. Lu, D. Yuan, Characterization of capillary performance of composite wicks for two-phase heat transfer devices, Int. J. Heat Mass Transfer 56 (2013) 283-293. [38] R. Singh, A. Akbarzadeh, M. Mochizuki, Effect of wick characteristics on the thermal performance of the miniature loop heat pipe, ASME J. Heat Transfer 131 (2009) 082601.1-082601.10. [39] Y.-J. Lin, K.-S. Hwang, Effects of particle size and particle size distribution on heat dissipation of heat pipes with sintered porous wicks, Metall Mater Trans A 40 (2009) 2071-2078. [40] F. A. D. Espinosa, T. B. Peters, J. G. Brisson, Effect of fabrication parameters on the thermophysical properties of sintered wicks for heat pipe applications, Int. J. Heat Mass Transfer 55 (2012) 7471-7486. [41] N. Albu, J Keese, G. Hwang, Bimodal, Thin wick structures for high heat flux two-phase thermal control systems, 49th International Conference on Environmental Systems, ICES-206, 2019 (8 pp).
|