帳號:guest(18.217.120.254)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄧茂燊
作者(外文):Deng, Mao-Shen
論文名稱(中文):採用三重複合式銅網/溝槽/銅粉毛細之平板熱管在不同傾角及工作流體下之可視化實驗
論文名稱(外文):Visualization Experiments on the Flat-Plate Heat Pipe with a Triple Composite Mesh/Groove/Powder Wick for Different Inclination Angles and Working Fluids
指導教授(中文):王訓忠
指導教授(外文):Wong, Shwin-Chung
口試委員(中文):許文震
楊建裕
口試委員(外文):Sheu, Wen-Jenn
Yang, Chien-Yuh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:108033505
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:152
中文關鍵詞:平板熱管複合式毛細可視化蒸發熱阻傾角
外文關鍵詞:Flat-Plate Heat PipeComposite WickVisualizationEvaporator ResistanceTilt Angle
相關次數:
  • 推薦推薦:0
  • 點閱點閱:79
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究採用可視化實驗於平板熱管,毛細種類包括二重銅網/溝槽複合式毛細、2×200目銅網毛細、及兩種三重銅網/溝槽/銅粉複合式毛細(Triple A, Triple B),兩種三重複合式毛細均以二重銅網/溝槽毛細為基礎,在蒸發區填入球型銅粉以增加蒸發區毛細力,差異在Triple A為直接在銅網/溝槽毛細中填粉,Triple B為移除蒸發區的溝槽後在蒸發區填滿銅粉。分別搭配去離子水和甲醇作為工作流體並於不同傾角環境下操作。二重複合式毛細由單層200目銅網燒結於0.18 mm (寬) x 0.075mm (深)的近半圓溝槽,三重毛細分別採用粒徑53 um-75 um及粒徑53 um-90 um銅粉。此外,亦進行毛細爬升率法分別針對數種銅網毛細、二重銅網/溝槽複合式毛細、Triple A複合式毛細及Triple B中的銅粉毛細量測滲透性(K)與等效半徑(reff),並以此毛細特性理論估算可視化的最大熱傳量(Qmax)。在水平下水與甲醇的可視化實驗,二重毛細的液膜分別於41.2 W與9.1 W開始逐步式退離蒸發區產生部分乾化,蒸發熱阻(Re)逐漸上升,Qmax分別為50.7 W及11.3 W;三重毛細Triple A,乾化機制為整體液膜退離方式,Re較為平穩,Qmax分別為46.2 W及11.2 W,相對於二重毛細較無性能提升趨勢;三重毛細Triple B,液膜分別於40.3 W與11.2 W開始漸進式退離蒸發區產生部分乾化,Re緩慢上升,Qmax分別為60.0 W及15.6 W,有效提升二重毛細的性能。在水45度及甲醇15度傾角下,三重毛細Triple B對二重毛細的性能提升差距縮小,並在水90度及甲醇30度傾角下,此兩類型三重毛細皆與二重毛細性能相似,無有效提升趨勢。理論估算之Qmax,於二重毛細實驗的結果有一致趨勢,於三重毛細Triple A,因銅粉散佈不均勻有較大誤差,於三重毛細Triple B,具傾角下皆有一致趨勢但水平下略為低估。而2x200毛細,性能皆大幅低於二重及三重毛細性能,顯示與毛細K/reff的比值有關,其與二重毛細的K/reff及Qmax皆呈現約四倍的差距。另外,僅有在甲醇於水平狀況及接近13 W下,在二重毛細的溝槽壁面上之銅網上觀察到微弱核沸騰現象。
This study presents the results of visualization experiments on flat-plate heat pipes with double composite mesh/groove wick (CMG), 2x200 copper mesh wick, or one of the two types of triple composite wick (Triple A, Triple B). Triple A is directly filled with powder in the evaporation zone of the CMG wick, and Triple B is filled with powder in the evaporation zone after removing the groove walls of the CMG wick. Deionized water or methanol is used as the working fluid, and the performance is measured and visualized under different inclinations. The permeability (K) and the effective radius (reff) of several copper mesh wicks, the CMG wick, the Triple A wick, and the powder wick of the Triple B wick are also measured by using the rate-of-rise method. The maximum heat loads (Qmaxs) measured from the visualization experiments are compared with the theoretical values based on the K and reff measurements. At the horizontal orientation, the liquid film (water or methanol) in the CMG wick gradually retreats from the evaporation zone at 41.2 W and 9.1 W, respectively, exhibiting partial dryout. The evaporator resistances (Res) gradually and slightly rise up to the Qmax of 50.7 W and 11.3 W, respectively, followed by drastic rise of Re when the liquid film exits the evaporator completely. For Triple A, the dryout mechanism is the overall liquid film retreat in the evaporation zone, and the Re is relatively stable. The Qmaxs are 46.2 W and 11.2 W, respectively. For Triple B, the liquid film slowly and gradually retreats from the evaporation zone at 40.3 W and 11.2 W, respectively, with slow rise in Re up to the Qmax of 60.0 W and 15.6 W, respectively. The Triple B wick displays a higher Qmax than for the CMG wick under the horizontal orientation. At 90 degree inclination of water and 30 degree inclination of methanol, the performances of these two triple wicks are similar to the CMG wick. The theoretical Qmaxs are consistent with the measurements for the CMG wick and the Triple B wick, but larger errors exist for Triple A due to nonuniform copper powder distribution in the test samples. For the 2x200 wick, the Qmaxs are about four times lower than the CMG wick and the triple wicks, as its K /reff ratio is four times smaller than the CMG wick. In addition, weak nucleate boiling is only observed for methanol at about 13 W in the CMG wick at the horizontal orientation.
摘要 I
Abstract II
誌謝辭 III
目錄 IV
圖表目錄 IX
符號表 XVII
第一章 緒論 1
1.1 研究背景 1
1.2 熱管的結構與工作原理 1
1.3 文獻回顧 4
1.3.1 純溝槽毛細結構 5
1.3.2 金屬網毛細結構 12
1.3.3 複合式毛細結構 15
1.3.4 毛細滲透性與等效半徑 20
1.4 研究動機與目的 26
第二章 實驗設備與方法 28
2.1 毛細滲透性K與等效半徑reff之量測實驗 28
2.1.1 實驗目的 28
2.1.2 實驗設備與架構 28
2.1.2.1 毛細銅板 28
2.1.2.2 透明玻璃缸 28
2.1.2.3 攝影機與尺 28
2.1.3 實驗步驟 29
2.1.3.1 清洗及還原作業 29
2.1.3.2 預備工作液體 29
2.1.3.3 實驗流程 30
2.2 可視化平板熱管實驗 30
2.2.1 實驗目的 30
2.2.2 實驗設備與架構 30
2.2.2.1 平板熱管本體 31
2.2.2.2 平板熱管系統腔體 35
2.2.2.3 溫度量測配置 37
2.2.2.4 加熱與冷凝裝置 37
2.2.2.5 絕熱方式 38
2.2.2.6 真空及注水設備 38
2.2.2.7 高倍率攝影裝置 39
2.2.3 實驗步驟 40
2.2.3.1 清洗流程 40
2.2.3.2 燒結與還原過程流程 40
2.2.3.3 注水流程 41
2.2.3.4 實驗流程 42
2.2.4 實驗參數 43
2.2.4.1 加熱量 43
2.2.4.2 側向熱損失百分率(percentage of plate heat loss, PPHL) 44
2.2.4.3 蒸發區與冷凝區銅板熱阻值Rcu 44
2.2.4.4 蒸發熱阻Re與冷凝熱阻Rc 44
2.2.4.5 最大熱傳量Qmax 45
2.2.5 實驗誤差分析 45
2.2.5.1 電源供應器輸入功率誤差 45
2.2.5.2 加熱塊輸入熱量Qp誤差 46
2.2.5.3 銅板側向熱損失誤差 47
2.2.5.4 實際散熱量誤差 48
2.2.5.5 蒸發熱阻之誤差 48
第三章 毛細性質實驗結果與Qmax理論分析 50
3.1 燒結200目銅網毛細 50
3.1.1 輕壓燒結單層200目及2×200目銅網毛細 50
3.1.2 加壓燒結之2×200目銅網 53
3.2 加壓燒結二重銅網/溝槽複合式毛細 54
3.3 加壓燒結三重銅網/溝槽/銅粉複合式毛細 55
3.4 燒結53~90 um銅粉毛細 57
3.5 最大熱傳量Qmax之理論分析 58
3.5.1 二重銅網/溝槽複合式毛細 59
3.5.2 三重複合式毛細Triple A 60
3.5.3 三重複合式毛細Triple B 61
3.5.4 加壓燒結2×200目銅網毛細 62
第四章 可視化實驗結果與討論 63
4.1 注液量 63
4.2 工作流體為水 64
4.2.1 二重銅網/溝槽複合式毛細 64
4.2.1.1 水平方位 64
4.2.1.2 蒸發區朝上之45度及90度傾角 73
4.2.1.3 最大熱傳量Qmax之實驗值與理論值比較 77
4.2.2 三重複合式毛細Triple A 77
4.2.2.1 水平方位 77
4.2.2.2 蒸發區朝上之45度及90度傾角 85
4.2.2.3 最大熱傳量Qmax之實驗值與理論值比較 89
4.2.3 三重複合式毛細Triple B 89
4.2.3.1 水平方位 89
4.2.3.2 蒸發區朝上之45度及90度傾角 97
4.2.3.3 最大熱傳量Qmax之實驗值與理論值比較 101
4.2.4 加壓燒結2x200目銅網毛細 101
4.2.4.1 水平及15度傾角 101
4.2.4.2 最大熱傳量Qmax之實驗值與理論值比較 106
4.2.5 不同毛細於同傾角下之性能比較 107
4.2.5.1 水平方位 107
4.2.5.2 45度傾角 108
4.2.5.3 90度傾角 109
4.3 工作流體甲醇 110
4.3.1 二重銅網/溝槽複合式毛細 110
4.3.1.1 水平方位 110
4.3.1.2 蒸發區朝上之15度及30度傾角 119
4.3.1.3 最大熱傳量Qmax之實驗值與理論值比較 121
4.3.2 三重複合式毛細Triple A 122
4.3.2.1 水平方位 122
4.3.2.2 蒸發區朝上之15度及30度傾角 128
4.3.2.3 最大熱傳量Qmax之實驗值與理論值比較 130
4.3.3 三重複合式毛細Triple B 131
4.3.3.1 水平方位 131
4.3.3.2 蒸發區朝上之15度及30度傾角 138
4.3.3.3 最大熱傳量Qmax之實驗值與理論值比較 140
4.3.4 加壓燒結2x200目銅網毛細 141
4.3.5 不同毛細於同傾角下之性能比較 142
4.3.5.1 水平方位 142
4.3.5.2 15度傾角 143
4.3.5.3 30度傾角 144
第五章 結論 146
參考文獻 148
[1] P. Dunn, D.A. Reay, Heat pipes, Pergamon Press, New York, 1978.
[2] G.P. Peterson, An Introduction to Heat Pipes, Wiley, New York, 1994.
[3] S.W. Chi, Heat Pipe Theory and Practice. McGraw-Hill, Washington, 1976.
[4] B.R. Babin, G.P. Peterson, D. Wu, Steady-state modeling and testing of a micro heat pipe, ASME J. Heat Transfer 112 (1990) 595-601.
[5] G.P. Peterson, H.B. Ma, Theoretical analysis of the maximum heat transport in triangular grooves: A study of idealized micro heat pipes, ASME J. Heat Transfer 118 (1996) 731-739.
[6] R. Hopkins, A. Faghri, D. Khrustalev, Flat miniature heat pipes with micro capillary grooves, ASME J. Heat Transfer 121 (1999) 102-109.
[7] S.J. Kim, J. K. Seo, K. H. Do, Analytical and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved wick structure, Int. J. Heat Mass Transfer 46 (2003) 2051-2063.
[8] A.J. Jiao, R. Riegler, H.B. Ma, G.P. Peterson, Thin film evaporation effect on the heat transport capability in a groove heat pipe, Microfluid Nanofluid 1 (2005) 227-233.
[9] A.J. Jiao, H.B. Ma, J.K. Critser, Evaporation heat transfer characteristics of a grooves heat pipe with micro-trapezoidal grooves, Int. J. Heat Mass Transfer 50 (2007) 2905-2911.
[10] S.-C. Wong, C.-W. Chen, Visualization and evaporator resistance measurement for a groove-wicked flat-plate heat pipe, Int. J. Heat Mass Transfer 55 (2012) 2229-2234.
[11] R.H. Nilson, S.W. Tchikanda, S.K. Griffiths, M.J. Martinez, Steady evaporating flow in rectangular microchannels, Int. J. Heat Mass Transfer 49 (2006) 1603-1618.
[12] F. Yu, C. Yu, J. Cao, Y. Chen, Experimental analysis of the evaporation regimes of an axially grooved heat pipe at small tilt angles, Int. J. Heat Mass Transfer 126 (2018) 334-341.
[13] S. Lips, F. Lefevre, J. Bonjour, Nucleate boiling in a flat grooved heat pipe, Int. J. Heat Mass Transfer 48 (2008) 1273-1278.
[14] Y. Hu, J. Cheng, W. Zhang, R. Shirakashi, S. Wang, Thermal performance enhancement of grooved heat pipes with inner surface treatment, Int. J. Heat Mass Transfer 67 (2013) 416-419.
[15] J.-S. Chen, J.-H. Chou, Cooling performance of flat plate heat pipes with different liquid filling ratios, Int. J. Heat Mass Transfer 77 (2014) 874-882.
[16] S.-C. Wong, Y.-C. Lin, J.-H. Liou, Visualization and evaporator resistance measurement in heat pipes charged with water, methanol or acetone, Int. J. Therm. Sci. 52 (2012) 154-160.
[17] F. Lefèvre, J.-B. Conrardy, M. Raynaud, J. Bonjour, Experimental investigations of flat plate heat pipes with screen meshes or grooves covered with screen meshes as capillary structure, Appl. Therm. Eng. 37 (2012) 95-102.
[18] J.-H. Liou, C.-W. Chang, C. Chao, S.-C. Wong, Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer 53 (2010) 1498-1506.
[19] S.-C. Wong, H.-H. Tseng, S.-H. Chen, Visualization experiments on the condensation process in heat pipe wicks, Int. J. Heat Mass Transfer 68 (2014) 625-632.
[20] S.-C. Wong, H.-S. Cheng, C.-W. Tu, Visualization experiments on the performance of mesh-wick heat pipes with differing wick wettability, Int. J. Heat Mass Transfer 114 (2017) 1045-1053.
[21] X. Dai, F. Yang, R. Yang, Y.-C. Lee, C. Li, Micromembrane-enhanced capillary evaporation, Int. J. Heat Mass Transfer 64 (2013) 1101-1108.
[22] S.-C. Wong, W.-S. Liao, Visualization experiments on flat-plate heat pipes with composite mesh-groove wick at different tilt angles, Int. J. Heat Mass Transfer 123 (2018) 839-847.
[23] S.-C. Wong, J.-H. Liou, C.-W. Chang, Evaporation resistance measurement with visualization for sintered copper-powder evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer 53 (2010) 3792-3798.
[24] K.V. Paiva, M.B.H. Mantelli, Wire-plate and sintered hybrid heat pipes: Model and experiments, Int. J. Therm. Sci. 93 (2015) 36-51.
[25] S.-C. Wong, C.-W. Chen, Visualization experiments for groove-wicked flat- plate heat pipes with various working fluids and powder-groove evaporator, Int. J. Heat Mass Transfer 66 (2013) 396-403.
[26] J. Supowit, T. Heflinger, M. Stubblebine, I. Catton, Designer fluid performance and inclination angle effects in a flat grooved heat pipe, Appl. Therm. Eng. 101 (2016) 770-777.
[27] D.R. Adkins, R.C. Dykhuizen, Procedures for measuring the properties of heat pipe wick materials, Intersociety Energy Conversion Engineering Conference, 1993.
[28] A. Faghri, Heat Pipe Science and Technology, 2nd Ed. Global Digital Press, Columbia, 2016.
[29] B. Holley, A. Faghri, Permeability and effective pore radius measurements for heat pipe and fuel cell application, Appl. Therm. Eng. 26 (2006) 448-462.
[30] Y. Nam, S. Sharratt, C. Byon, S.J. Kim, Y.S. Ju, Fabrication and characterization of the capillary performance of superhydrophilic Cu micropost arrays, Journal of Microelectromechanical Systems 19 (2010) 581-588.
[31] 廖偉翔,複合式溝槽/銅網毛細平板熱管之可視化實驗,國立清華大學碩士論文,2015。
[32] 劉旻杰,採用複合式溝槽/銅網毛細平板熱管在不同工作流體及傾角下之可視化實驗,國立清華大學碩士論文,2017。
[33] 鄭憲昇,毛細具縱向親水性變化之平板熱管可視化實驗,國立清華大學碩士論文,2013。
[34] S. Katzoff, Heat pipes and vapor chambers for thermal control of spacecraft, AIAA Thermophysics Specialists Conference, 1967.
[35] E. C. Phillips, Low Temperature Heat Pipe Research Program, NASA CR-66792, 1974.
[36] H. R. Kunz, L. S. Langston, B. H. Hilton, S. S. Wyde, G. H. Nasbick, Vapor Chamber Fin Studies - Transport Properties and Boiling Characteristics of Wicks, NASA CR-812, 1967.
[37] D. Deng, Y. Tang, G. Huang, L. Lu, D. Yuan, Characterization of capillary performance of composite wicks for two-phase heat transfer devices, Int. J. Heat Mass Transfer 56 (2013) 283-293.
[38] R. Singh, A. Akbarzadeh, M. Mochizuki, Effect of wick characteristics on the thermal performance of the miniature loop heat pipe, ASME J. Heat Transfer 131 (2009) 082601.1-082601.10.
[39] Y.-J. Lin, K.-S. Hwang, Effects of particle size and particle size distribution on heat dissipation of heat pipes with sintered porous wicks, Metall Mater Trans A 40 (2009) 2071-2078.
[40] F. A. D. Espinosa, T. B. Peters, J. G. Brisson, Effect of fabrication parameters on the thermophysical properties of sintered wicks for heat pipe applications, Int. J. Heat Mass Transfer 55 (2012) 7471-7486.
[41] N. Albu, J Keese, G. Hwang, Bimodal, Thin wick structures for high heat flux two-phase thermal control systems, 49th International Conference on Environmental Systems, ICES-206, 2019 (8 pp).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *