帳號:guest(3.149.239.65)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):穆斯塔法‧侯賽因
作者(外文):Hussain,Syed-Mustafa
論文名稱(中文):在高排斥力嵌段共聚物/均聚物混參系統之Frank-Kasper相及其形成機制之研究
論文名稱(外文):Frank-Kasper Sigma Phase and Its Formation Mechanism in High- χ Block Copolymer/Homopolymer Blend
指導教授(中文):陳信龍
指導教授(外文):Chen, Hsin-Lung
口試委員(中文):陳俊太
彭之皓
口試委員(外文):Chen, Jiun-Tai
Peng, Chi-How
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:108032709
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:59
中文關鍵詞:Frank-Kasper相
外文關鍵詞:Frank-Kasper phase
相關次數:
  • 推薦推薦:0
  • 點閱點閱:28
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
嵌段共聚物自組裝可利用調整排斥力強度及組成的方式提供我們得到不同規則排列的奈米結構之方法。然而,在wet brush的條件下,將一個能均勻混到其中一微相結構中的均聚物混摻至嵌段共聚物中是一個能有效調控自組裝結構的方式。在高度不對稱的組成中,嵌段共聚物會形成微胞,這些微胞會進而排列成一個三維向度的結構,而這些立體結構中以體心立方結構最為對稱。近年的理論研究發現,當構型高度不對稱且主成分鏈鍛的Kuhn length較小時,若嵌段共聚物系統可形成微胞,則這些微胞會趨向形成Frank-Kasper相。此時,為了減少冠狀區域的高分子鏈鍛產生packing frustration,微胞中的球核區與冠狀區域之介面會形變成Voronoi cell的形狀。

在此研究中,我們利用強排斥力嵌段共聚物:聚苯乙烯-共-聚二甲基矽氧烷混摻聚苯乙烯均聚物,將系統調控在組成不對稱的區域來系統性的探討其自組裝結構及相行為。從先前文獻的結果得知,聚苯乙烯-共-聚二甲基矽氧烷屬於構型對稱的系統,此系統不應形成Frank-Kasper相。然而,聚苯乙烯與聚二甲基矽氧烷之間有極大的排斥力,因此趨向形成微胞來降低介面自由能。然而,我們發現即使在高度組成不對稱的情況下,由於純的嵌段共聚物擁有較強的排斥力,使得介面自由能主導整體自組裝行為,而形成六方堆積柱狀結構。若混摻一種比共聚物之聚苯乙烯鏈鍛還小分子量的聚苯乙烯均聚物,此時系統會形成微胞結構,代表聚苯乙烯均聚物與共聚物之聚苯乙烯在冠狀區域中相互混合。於此系統中,聚二甲基矽氧烷所形成之球核主要會以體心立方結構的方式排列。有趣的是,在靠近六方堆積柱狀結構的附近,我們發現當均聚物分子量較小時,微胞將排列成Frank-Kasper σ 相。在升溫過程中,由於lattice fluctuation的緣故,使得微胞從近似準晶結構轉變成體心立方結構。此研究說明,即便在構型對稱的系統中,仍可利用混摻均聚物的方式來得到Frank-Kasper σ 相。
Self-assembly of block copolymer offers a fascinating process of producing a variety of ordered nanostructures governed by the segregation strength (χN, with χ and N being the Flory-Huggins interaction parameter and the degree of polymerization of the bcp, respectively) and composition of the constituting blocks. Blending with homopolymer is an effective strategy to tailor the morphology of a given bcp, provided that the homopolymer is uniformly solubilized in one of the microphases under the wet-brush condition. At highly asymmetric composition, the bcp system forms the spherical micelles that pack into three-dimensionally ordered lattices, where body-centred cubic (bcc) is the most common packing symmetry. It has been demonstrated theoretically for neat bcp that Frank-Kasper (FK) phase can be accessed for the micelles when the conformational asymmetry of the constituent blocks is sufficiently large, with the majority block bearing a smaller Kuhn length. In this case, the core-corona interface approaches the polyhedral interface limit (PIL) with the core adopting the polyhedral geometry that is the affinely shrunk copy of the Voronoi cell to minimize the packing frustration of the coronal block.
The present study systematically investigates the self-assembled structure and phase transition behavior of a common high-χ bcp, polystyrene-block-poly (dimethylsiloxane) (PS-b-PDMS), and its blends with PS homopolymer (h-PS) in the compositionally asymmetric regime. The formation of FK phase in PS-b-PDMS should be highly unfavored considering its conformational symmetry and the strong repulsion between PS and PDMS blocks so as to favor spherical core geometry for minimizing the interfacial free energy. The neat PS-b-PDMS was found to form hexagonally packed cylinders (HEXc) structure in spite of its highly asymmetric composition because of the significant role of the interfacial free energy for large χ. Blending with h-PS with lower molecular weight than that of the PS block transformed the morphology to spherical micelles, indicating that h-PS and PS block formed wet-brush mixture in the micelle corona. The PDMS core of the micelle was found to pack in bcc lattice over the major composition window. Intriguingly, in the vicinity of the boundary of HEXc phase, the micelles were found to organize into FK σ phase when h-PS molecular weight was sufficiently low. This quasicrystalline approximant underwent an order-order transition to bcc phase on heating, which can be attributed to the influence of the lattice fluctuations. The present study demonstrates that blending with homopolymer offers a facile approach for creating FK σ phase even for conformationally symmetric block copolymers.
1 Chapter 1 Introduction and Literature Review 1
1.1 Phase Behavior of the diblock copolymer 1
1.1.1 Microphase-separated morphology of diblock copolymers 1
1.1.2 Self-consistent Mean Field Theory: 4
1.2 Classical Phases in diblock copolymers 6
1.3 Spherical phase lattice structures of block copolymers 7
1.3.1 Body centered cubic (bcc) lattice 7
1.3.2 Closed packed spheres (CPS) Lattices: 8
1.4 Phase Behavior of diblock copolymer /homopolymer blends: 9
1.4.1 Frank-Kasper phase of sphere-forming diblock Copolymers 12
1.4.2 Conformational asymmetry effect on complex phases 15
1.4.3 Features of sigma phase 16
1.5 Research Motivation 19
2 Chapter 2 Frank-Kasper σ Phase and Its Formation Mechanism in Polystyrene-block-Poly (dimethyl siloxane) /Polystyrene Homopolymer Blends. 20
2.1 Introduction: 20
2.2 Experimental Section: 23
2.2.1 Material Preparation 23
2.2.2 Characterization 24
2.3 Results and Discussion 27
2.3.1 Equilibrium structure of PS-b-PDMS and PS-b-PDMS/h-PS blends 27
2.3.2 Equilibrium Phase behavior of the blends 29
2.3.3 Effect of annealing temperature on the formation of the ordered spherical phase 44
2.3.4 Evolution of σ phase from LLP phase via Ostwald’s step rule 47
Chapter 3 Conclusions 49
References 51
(1) Grason, G. M. The Packing of Soft Materials: Molecular Asymmetry, Geometric Frustration and Optimal Lattices in Block Copolymer Melts. Phys. Rep. 2006, 433 (1), 1–64.
(2) Matsen, M. W.; Schick, M. Stable and Unstable Phases of a Diblock Copolymer Melt. Phys. Rev. Lett. 1994, 72 (16), 2660–2663.
(3) Matsen, M. W.; Bates, F. S. Origins of Complex Self-Assembly in Block Copolymers. Macromolecules 1996, 29 (23), 7641–7644.
(4) Grason, G. M.; Didonna, B. A.; Kamien, R. D. Geometric Theory of Diblock Copolymer Phases. Phys. Rev. Lett. 2003, 31 (91),1–4.
(5) Ziherl, P.; Kamien, R. D. Maximizing Entropy by Minimizing Area : Towards a New Principle of Self-Organization. Phys. Chem. B 2001, 105, 42, 10147–10158.
(6) Matsen, M. W.; Bates, F. S. Unifying Weak- and Strong-Segregation Block Copolymer Theories. Macromolecules 1996, 29 (4), 1091–1098.
(7) Vavasour, J. D. Self-Consistent Field Theory of Block Copolymers with Conformational Asymmetry. Macromolecules 1993, 26, 25, 7070–7075.
(8) Feldman, D. The Theory of Polymer Dynamics, by M. Doi and S. F. Edwards, the Clarendon Press, Oxford University Press, New York, Polym. Sci. Part C Polym. Lett. 1989, 27 (7), 239–240.
(9) Fredrickson, G. H.; Helfand, E. Fluctuation Effects in the Theory of Microphase Separation in Block Copolymers. J. Chem. Phys. 1987, 87 (1), 697–705.
(10) A. N. Semenov, Theory of Block-Copolymer Interfaces in the Strong Segregation Limit, Macromolecules 1993, 26, 24, 6617–6621.
(11) Fredrickson, G. H.; Leibler, L. Theory of Block Copolymer Solutions : Nonselective Good Solvents. 1989, 1250 (34), 1238–1250.
(12) Bates, F. S.; Fredrickson, G. H. Block Copolymers—Designer Soft Materials. Phys. Today 1999, 52 (2), 32–38.
(13) Gartner, T. E.; Jayaraman, A. Modeling and Simulations of Polymers: A Roadmap. Macromolecules 2019, 52 (3), 755–786.
(14) Borovinskii, A. L.; Khokhlov, A. R. Microphase Separation in a Mixture of Block Copolymers in the Strong Segregation Regime. J. Chem. Phys. 1998, 9297 (97), 1180–1187.
(15) Matsen, M. W. Stabilizing New Morphologies by Blending Homopolymer with Block Copolymer. Phys. Rev. Lett. 1995, 74 (21), 4225–4228.
(16) Darling, S. B. Ã. Directing the Self-Assembly of Block Copolymers.Polymer. science. 2007, 32, 1152–1204.
(17) Sota, N.; Saijo, K.; Hasegawa, H.; Hashimoto, T. Directed Self-Assembly of Block Copolymers into Twin BCC-Sphere : Phase Transition Process from Aligned Hex-Cylinder to BCC-Sphere Induced by a Temperature Jump between the Two Equilibrium Phases. Macromolecules 2013, 46 (6), 2298-2316.
(18) Kimishima, K.; Koga, T.; Hashimoto, T. Order−Order Phase Transition between Spherical and Cylindrical Microdomain Structures of Block Copolymer. I. Mechanism of the Transition. Macromolecules 2000, 33 (3), 968–977.
(19) Bates, F. S.; Fredrickson, G. H. Block Copolymer Thermodynamics: Theory and Experiment. Annu. Rev. Phys. Chem. 1990, 41 (1), 525–557.
(20) Lodge, T. P.; Bang, J. Origin of the Thermoreversible Fcc-Bcc Transition in Block Copolymer Solutions. Annu. Rev. Phys. Chem. 2004, (92).145501-1-145501,1–4.
(21) Ren, J.; Segal-peretz, T.; Zhou, C.; Craig, G. S. W.; Nealey, P. F. Three-Dimensional Superlattice Engineering with Block Copolymer Epitaxy. Sci Adv. 2020, 24, (2), 1–8.
(22) Hsu, N. W.; Nouri, B.; Chen, L. T.; Chen, H. L. Hexagonal Close-Packed Sphere Phase of Conformationally Symmetric Block Copolymer. Macromolecules 2020, 53 (21), 9665–9675.
(23) Huang, Y. Y.; Hsu, J. Y.; Chen, H. L.; Hashimoto, T. Existence of Fcc-Packed Spherical Micelles in Diblock Copolymer Melt. Macromolecules 2007, 40 (3), 406–409.
(24) Wentzcovitch, R. M.; Cohen, M. L. Theoretical Model for the Hcp-Bcc Transition in Mg. Phys. Rev. B 1988, 37 (10), 5571–5576.
(25) Dawson, D. Fatigue , Alcohol and Performance Impairment. NATURE 1997 (388), 005 (1), 235–237.
(26) Mahynski, N. A.; Kumar, S. K.; Panagiotopoulos, A. Z. Relative Stability of the FCC and HCP Polymorphs with Interacting Polymers. Soft Matter 2015, 11 (2), 280–289.
(27) Matsen, M. W. Effect of Architecture on the Phase Behavior of AB-Type Block Copolymer Melts. Macromolecules 2012, 45 (4), 2161–2165.
(28) Cheong, G. K.; Bates, F. S.; Dorfman, K. D. Symmetry Breaking in Particle-Forming Diblock Polymer/Homopolymer Blends. Proc. Natl. Acad. Sci. U. S. A. 2020, 117 (29), 16764–16769.
(29) Matsen, M. W. Phase Behavior of Block Copolymer/Homopolymer Blends. Macromolecules 1995, 28 (17), 5765–5773.
(30) Winey, K. I.; Thomas, E. L.; Fetters, L. J. Swelling a Lamellar Diblock Copolymer with Homopolymer : Influences of Homopolymer Concentration and Molecular Weight Macromolecules, 1991, 24 (23), 6182–6188.
(31) Likhtman, A. E.; Semenov, A. N. Theory of Microphase Separation in Block Copolymer/ Homopolymer Mixtures. Macromolecules 1997, 30 (23), 7273–7278.
(32) Matsen, M. W. Phase Behavior of Block Copolymer/Homopolymer Blends. Macromolecules 1995, 28 (17), 5765–5773.
(33) Ding, M.; Gao, X.; Wei, Y.; Wang, H.; Li, B.; Han, Y. Controlling the Size of Nanostructures in Thin Films via Blending of Block Copolymers and Homopolymers. J. Chem. Phys. 2005, 122, 114706.
(34) Wang, C.-C.; Wu, K.-H.; Lo, C.-T. Chain Architecture and Hydrogen Bonding Induced Co-Ordering and Segregation of Block Copolymer/Graft Copolymer Blends. Macromolecules 2019, 52 (9), 3210–3221.
(35) Gao, Y.; Liu, H. Crystallization Behavior of Dry-Brush PEO-PS Block Copolymer and PEO Homopolymer Blend. J. Appl. Polym. Sci. 2007, 106 (4), 2718–2723.
(36) Tanaka, H.; Hasegawa, H.; Hashimoto, T. Ordered Structure in Mixtures of a Block Copolymer and Homopolymers. 1. Solubilization of Low Molecular Weight Homopolymers. Macromolecules 1991, 24 (1), 240–251.
(37) June, R.; August, R. Phase Equilibria in Block Copolymer-Homopolymer Mixtures. Macromolecules 1993,(26) 2273–2281.
(38) Koizumi, S.; Hasegawa, H.; Hashimoto, T. Ordered Structure of Block Polymer/Homopolymer Mixtures, 4. Vesicle Formation and Macrophase Separation. Makromol. Chemie. Macromol. Symp. 1992, 62 (1), 75–91.
(39) Hasegawa, H.; Tanaka, H.; Hashimoto, T.; Han, C. C. SANS and SAXS Study of Block Copolymer/Homopolymer Mixtures. J. Appl. Crystallogr. 1991, 24 (5), 672–678.
(40) Mueller, A. J.; Lindsay, A. P.; Jayaraman, A.; Lodge, T. P.; Mahanthappa, M. K.; Bates, F. S. Emergence of a C15 Laves Phase in Diblock Polymer/Homopolymer Blends. ACS Macro Lett. 2020, 9, 4, 576–582.
(41) Takagi, H.; Yamamoto, K. Phase Boundary of Frank − Kasper σ Phase in Phase Diagrams of Binary Mixtures of Block Copolymers and Homopolymers. Macromolecules 2019, 52, 5, 2007–2014.
(42) Dorfman, K. D. Frank–Kasper Phases in Block Polymers. Macromolecules 2021, 54 (22), 10251–10270.
(43) Yager, K. G. Beyond Native Block Copolymer Morphologies. Mol. Syst. Des. Eng. 2017, 2, 518.
(44) Percec, V.; Imam, M. R.; Peterca, M.; Wilson, D. A.; Heiney, P. A. Self-Assembly of Dendritic Crowns into Chiral Supramolecular Spheres. J. Am. Chem. Soc. 2009, 131 (3), 1294–1304.
(45) Percec, V.; Ahn, C. H.; Ungar, G.; Yeardley, D. J. P.; Möller, M.; Sheiko, S. S. Controlling Polymer Shape through the Self-Assembly of Dendritic Side- Groups. Nature 1998, 391 (6663), 161–164.
(46) Nouri, B.; Chen, C. Y.; Huang, Y. S.; Mansel, B. W.; Chen, H. L. Emergence of a Metastable Laves C14 Phase of Block Copolymer Micelle Bearing a Glassy Core. Macromolecules 2021, 54 (19), 9195–9203.
(47) Sangwoo, L.; J., B. M.; S., B. F. Discovery of a Frank-Kasper σ Phase in Sphere-Forming Block Copolymer Melts. Science 2010, 330 (6002), 349–353.
(48) Lee, S.; Leighton, C.; Bates, F. S. Sphericity and Symmetry Breaking in the Formation of Frank – Kasper Phases from One Component Materials. Proc. Natl. Acad. Sci. 2014, 111 (50) 17723-17731.
(49) Kyungtae, K.; W., S. M.; Akash, A.; M., L. R.; A., H. M.; D., D. K.; S., B. F. Thermal Processing of Diblock Copolymer Melts Mimics Metallurgy. Science 2017, 356 (6337), 520–523.
(50) Liu, M.; Qiang, Y.; Li, W.; Qiu, F.; Shi, A. Stabilizing the Frank-Kasper Phases via Binary Blends of AB Diblock Copolymers. ACS Macro Lett. 2016, (5), 1167−1171.
(51) Li, W.; Duan, C.; Shi, A. Nonclassical Spherical Packing Phases Self-Assembled from AB-Type Block Copolymers. ACS Macro Lett. 2017, 6, (11), 1257–1262.
(52) Sluiter, M. H. F.; Pasturel, A.; Kawazoe, Y. Prediction of Site Preference and Phase Stability of Transition Metal Based Frank-Kasper Phases. TMS Annu. Meet. 2005, 409–435.
(53) Xie, N.; Li, W.; Qiu, F.; Shi, A. σ Phase Formed in Conformationally Asymmetric AB-Type Block Copolymers. ACS Macro Lett. 2014, 3, (9), 906–910.
(54) Hadler, A. B.; Harris, N. A.; Fredrickson, D. C. New Roles for Icosahedral Clusters in Intermetallic Phases : Micelle- like Segregation of Ca − Cd and Cu − Cd Interactions in Ca 10 Cd 27 Cu 2. J. Am. Chem. Soc. 2013, 135, (46), 17369–17378.
(55) Gooch, J. W. Crystal Lattice. Encycl. Dict. Polym. 2011, 299, 184–184.
(56) Magruder, B. R.; Dorfman, K. D. The C36 Laves Phase in DiblockPolymer Melts. Soft Matter 2021, (17), 8950-8959.
(57) Matsen, M. W.; Bates, F. S. Conformationally Asymmetric Block Copolymers.Polym Sci B: Polym Phys 1996, (35),945–952.
(58) Schulze, M. W.; Iii, R. M. L.; Lettow, J. H.; Hickey, R. J.; Gillard, T. M.; Hillmyer, M. A.; Bates, F. S. Conformational Asymmetry and Quasicrystal Approximants in Linear Diblock Copolymers. Phys.Rev.Lett 2017, 207801, 1–5.
(59) Jeon, S.; Jun, T.; Jeon, H. Il; Ahn, H.; Lee, S.; Lee, B.; Ryu, D. Y. Various Low-Symmetry Phases in High-χ and Conformationally Asymmetric PDMS- b -PTFEA Copolymers . Macromolecules 2021.
(60) Liu, M.; Qiang, Y.; Li, W.; Qiu, F.; Shi, A. Supporting Information for : Stabilizing the Frank-Kasper Phases via Binary Blends of AB Diblock Copolymers. ACS Macro Lett. 2016, (5), 1167−1171.
(61) Xie, J.; Shi, A. Formation of Complex Spherical Packing Phases in Diblock Copolymer / Homopolymer Blends. Giant 2021,(5), 100043.
(62) Reddy, A.; Buckley, M. B.; Arora, A.; Bates, F. S.; Dorfman, K. D.; Grason, G. M. Stable Frank – Kasper Phases of Self-Assembled , Soft Matter Spheres., Proc. Natl. Acad. Sci. 2018,115 (41) 10233-10238.
(63) Frank, S.; Reddy, A.; Buckley, M. B.; Arora, A.; Bates, F. S.; Dorfman, K. D.; Grason, G. M.; Grason, G. M. Supplementary Information For. 1–16. Proc. Natl. Acad. Sci. 2007, (104), 14190 –14196.
(64) Bates, C. M.; Bates, F. S. 50th Anniversary Perspective : Block Polymers - Pure Potential. Macromolecules 2017, (50), 1, 3–22.
(65) Article, R.; Matsen, M. W. Fast and Accurate SCFT Calculations for Periodic Block-Copolymer Morphologies Using the Spectral Method with Anderson Mixing χ N. Eur Phys J E Soft Matter, 2009, (369), 361–369.
(66) Chen, L. T.; Chen, C. Y.; Chen, H. L. FCC or HCP: The Stable Close-Packed Lattice of Crystallographically Equivalent Spherical Micelles in Block Copolymer/Homopolymer Blend. Polymer (Guildf). 2019, (169), 131–137.
(67) Chen, L.-T.; Huang, Y.-T.; Chen, C.-Y.; Chen, M.-Z.; Chen, H.-L. Thermodynamically Originated Stacking Fault in the Close-Packed Structure of Block Copolymer Micelles. Macromolecules 2021, 54 (19), 8936–8945.
(68) Xie, N.; Li, W.; Qiu, F.; Shi, A. Supplementary Materials for The σ Phase Formed in Conformationally Asymmetric AB-Type Block Copolymers ACS Macro Lett. 2014, (3), 9, 906–910.
(69) Frank, F. C.; Kasper, J. S. Complex Alloy Structures Regarded as Sphere Packings. I. Definitions and Basic Principles. Acta Crystallogr. 1958, 11 (3), 184–190.
(70) Levine, D.; Steinhardt, P. J. Quasicrystals: A New Class of Ordered Structures. Phys. Rev. Lett. 1984, 53 (26), 2477–2480.
(71) Yue, K.; Huang, M.; Marson, R. L.; He, J.; Huang, J.; Zhou, Z.; Wang, J.; Liu, C. Geometry Induced Sequence of Nanoscale Frank – Kasper and Quasicrystal Mesophases, Proc. Natl. Acad. Sci. 2016, 113 (50), 14195–14200.
(72) Takagi, H.; Yamamoto, K. Phase Boundary of Frank–Kasper σ Phase in Phase Diagrams of Binary Mixtures of Block Copolymers and Homopolymers. Macromolecules 2019, 52, (5), 2007–2014.
(73) Chang, A. B.; Bates, F. S. Impact of Architectural Asymmetry on Frank − Kasper Phase Formation in Block Polymer Melts. ACS Nano 2020, 14, (9), 11463–11472.
(74) Kim, G.; Swier, S.; Lee, H. J.; Wang, C. Morphology Control of Poly(Styrene-Block-Dimethylsiloxane) by Simple Blending with Trimethylsilylated Silicate Nanoparticles. Macromolecules 2016, 49 (19), 7370–7378.
(75) Barbon, S. M.; Song, J.; Chen, D.; Zhang, C.; Lequieu, J.; Delaney, K. T.; Anastasaki, A.; Rolland, M.; Fredrickson, G. H.; Bates, M. W.; Hawker, C. J.; Bates, C. M. Architecture Effects in Complex Spherical Assemblies of (AB). ACS Macro Lett. 2020, 9, (12), 1745–1752.
(76) Chang, A. B.; Bates, F. S. Impact of Architectural Asymmetry on Frank ‐ Kasper Phase Formation in Block Polymer Melts ACS Nano 2020, 14, (9), 11463–11472.
(77) Lindsay, A. P.; Jayaraman, A.; Peterson, A. J.; Mueller, A. J.; Weigand, S.; Mahanthappa, M. K.; Lodge, T. P.; Bates, F. S. Reevaluation of Poly(Ethylene- Alt -Propylene)- Block -Polydimethylsiloxane Phase Behavior Uncovers Topological Close-Packing and Epitaxial Quasicrystal Growth. ACS Nano 2021, 15 (6), 9453-9468.
(78) Fei, H. F.; Yavitt, B. M.; Hu, X.; Kopanati, G.; Ribbe, A.; Watkins, J. J. Influence of Molecular Architecture and Chain Flexibility on the Phase Map of Polystyrene- Block-Poly(Dimethylsiloxane) Brush Block Copolymers. Macromolecules 2019, 52, (17), 6449–6457.
(79) Yue, K.; Huang, M.; Marson, R. L.; He, J.; Huang, J.; Zhou, Z.; Wang, J.; Liu, C.; Yan, X.; Wu, K.; Guo, Z.; Liu, H.; Zhang, W.; Ni, P.; Wesdemiotis, C.; Zhang, W.-B.; Glotzer, S. C.; Cheng, S. Z. D. Geometry Induced Sequence of Nanoscale Frank–Kasper and Quasicrystal Mesophases in Giant Surfactants. Proc. Natl. Acad. Sci. 2016, 113 (50), 14195 – 14200.
(80) Jeon, S.; Jun, T.; Jo, S.; Ahn, H.; Lee, S.; Lee, B.; Ryu, D. Y. Frank–Kasper Phases Identified in PDMS-b-PTFEA Copolymers with High Conformational Asymmetry. Macromol. Rapid Commun. 2019, 40 (19), 1900259.
(81) Su, Z.; Huang, M.; Cheng, S. Z. D. Complex Self-Assembled Lattices from Simple Polymer Blends. Proc. Natl. Acad. Sci. 2020, 117 (33), 19618–19620.
(82) Tanaka, H. Ordered Structure in Mixtures of Solubilization of Low Molecular Weight. Macromolecules 1991, 24, (1), 240–251.
(83) Varshney, S. K.; Khanna, D. N. Hexamethyl Cyclotrisiloxane–Styrene Block Copolymers and Their Chemical Composition. J. Appl. Polym. Sci. 1980, 25 (11), 2501–2511.
(84) Kim, M. J.; Park, W. I.; Choi, Y. J.; Jung, Y. K.; Kim, K. H. Ultra-Rapid Pattern Formation of Block Copolymers with a High-χ Parameter in Immersion Annealing Induced by a Homopolymer. RSC Adv. 2016, 6 (25), 21105–21110.
(85) Kim, K.; Schulze, M. W.; Arora, A.; Iii, R. M. L.; Hillmyer, M. A.; Dorfman, K. D.; Bates, F. S. Thermal Processing of Diblock Copolymer Melts Mimics Metallurgy. Science 2017, 523 , 520–523.
(86) Sollich, P.; Wilding, N. B. Crystalline Phases of Polydisperse Spheres. Phys. Rev. Lett. 2010, 104 (11), 118302.
(87) Kim, K.; Schulze, M. W.; Arora, A.; Lewis, R. M.; Hillmyer, M. A.; Dorfman, K. D.; Bates, F. S. Thermal Processing of Diblock Copolymer Melts Mimics Metallurgy. Science, 2017, 356 (6337), 520 – 523.
(88) Alexander, S.; McTague, J. Should All Crystals Be Bcc? Landau Theory of Solidification and Crystal Nucleation. Phys. Rev. Lett. 1978, 41 (10), 702–705.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *