帳號:guest(3.133.155.163)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張嫣琳
作者(外文):Teoh, Yen-Lynn
論文名稱(中文):利用溶液退火自組裝聚苯乙烯-聚二甲基矽氧烷薄膜建構三維奈米圖案成型技術
論文名稱(外文):Sequential Self-Assembly of Polystyrene-block-Polydimethylsiloxane for 3D Nanopatterning from Solvent Annealing
指導教授(中文):何榮銘
指導教授(外文):Ho, Rong-Ming
口試委員(中文):薛涵宇
張佳智
蔣酉旺
口試委員(外文):Hsueh, Han-Yu
Chang, Chia-Chih
Chiang, Yeo-Wan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:108032708
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:96
中文關鍵詞:三維奈米圖案成型技術
外文關鍵詞:3D Nanopatterning
相關次數:
  • 推薦推薦:1
  • 點閱點閱:50
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
摘要
三維奈米圖案 (3D Nanopatterning) 的製程中廣泛運用嵌段共聚物自組裝形成多層特徵的微結構已成為微機電系統的主流趨勢。此研究提出了一種有效且簡便的方法,用於開發三維奈米圖案化的新平臺技術。主要策略是使用含高Flory-Huggins Interaction Parameter (χ) 和擁有層板結構的聚苯乙烯-嵌段-聚二甲基矽氧烷 (PS-b-PDMS) 透過溶劑退火的方式來進行順序自組裝。 透過使用PS選擇性溶劑,加上相對溶劑蒸氣壓的調節,可以誘導嵌段共聚物薄膜的自組裝,從而產生各種有序的奈米結構。有趣的是,獨特且單層的六邊形穿孔層板結構 (HPL) 可在薄膜表層對稱的條件下形成。在反應離子蝕刻後,可以提供具有六邊形孔陣列的二氧化矽單塊。隨後,隨著相對溶劑蒸氣壓的增加,平行圓柱結構的單層可形成並排列在以上六邊形孔陣列的二氧化矽單塊上。在第二次的反應離子蝕刻後,形成線對孔的雙層結構。此外,隨著第二層薄膜厚度的減小,可以在具有平行圓柱陣列的單層薄膜上創建雙層的平行圓柱的正交奈米網格。此外,通過使用強 PS 選擇性溶劑進行退火,可以形成具有六邊形堆積球體的單層,並也可排列在以上六邊形孔陣列的二氧化矽單塊,形成點在孔的雙層結構。透過不同奈米微結構層的疊合,此方法成功創建了一種製造三維納米圖案的新平臺技術,適用於微機電系統應用中。
Abstract
Herein, this work aims to suggest an effective and facile method for the development of a new platform technology of 3D nanopatterning through sequential self-assembly of lamellae-forming polystyrene-block-polydimethylsiloxane (PS-b-PDMS) block copolymer (BCP) with a high Flory-Huggins interaction parameter (χ) from solvent annealing. With the use of PS selective solvent, the tuning of relative solvent vapor pressure may induce the self-assembly of BCP thin film, giving rise to a variety of ordered nanostructures. Interestingly, a unique hexagonally perforated lamellae (HPL) monolayer can be formed at symmetric boundary system, and thus served as an excellent candidate to give a well-defined two-dimensional SiO2 monolith with hexagonal hole array after reactive ion etching (RIE) treatment. Subsequently, with the increase of relative solvent vapor pressure, parallel cylinder-structured monolayer can be addressed on the SiO2 monolith fabricated above, giving line-on-hole nanopattern after 2nd RIE treatment. Moreover, with the reduction of film thickness of second layer, it is possible to create an orthogonal nanomesh of the forming parallel cylinders addressing onto a monolayer film with parallel cylinder array. Furthermore, with selection of strongly PS-selective solvent for annealing, it is feasible to give the formation of monolayer with hexagonal packed spheres that can also be addressed onto the SiO2 monolith fabricated above, giving dot-in-hole nanopattern. With the combination of forming nanostructured phases addressing one after another, it is feasible to create a new platform technology for fabrication of 3D nanopatterns in the nano-MEMS applications
Contents
Abstract I
Contents III
Table Caption VI
Figure Caption VII
Chapter 1 Introduction 1
1.1 Block Copolymers (BCPs) 1
1.1.1 Block Copolymers in Bulk State 1
1.1.2 Block Copolymers in Thin Film State 3
1.1.3 Self-Assembly of High χ Silicon-Containing Block Copolymers
………………………………………………………………………...7
1.2 Controlled Orientation of Block Copolymers Self-Assembly in Thin
Film 10
1.2.1 Thermal Annealing 11
1.2.2 Solvent Annealing 12
1.3 Factors Affecting Solvent Annealing Process 17
1.3.1 Solvent Selectivity 17
1.3.2 Solvent Vapor Pressure 19
1.3.3 Solvent Annealing Time 21
1.3.4 Substrate Surface Effects 23
1.4 3D Nanopatterning 25
1.4.1 Layering of Block Copolymers Patterns 25
1.4.2 Cross-linking for Sequential Deposition of Block Copolymers Patterns 27
1.4.3 Immobilization of Block Copolymers Patterns via Hybridization Methods for Subsequent Deposition of Block Copolymers Structure..30
Chapter 2 Objectives 35
Chapter 3 Experimental 37
3.1 Synthesis of PS-b-PDMS BCPs 37
3.2 Sample Preparation 40
3.2.1 Sample Preparation for PS-b-PDMS Bulk Samples 40
3.2.2 Preparation of PS-b-PDMS Thin Film 40
3.2.3 Substrate Functionalization via Grafting Approach 41
3.2.4 Characterization of Solvent Selectivity 41
3.2.5 Thin Film Morphology of PS-b-PDMS in Solvent Annealing 42
3.2.6 Sequential Self-Assembly of PS-b-PDMS on Topographic Patterned SiO2 43
3.3 Instrumentation 44
3.3.1 Transmission Electron Microscopy (TEM) 44
3.3.2 Small-Angle X-ray Scattering (SAXS) 45
3.3.3 Spectral Reflectometer (SR) 45
3.3.4 High Resolution X-ray Photoelectron Spectroscopy (HRXPS).. 46
3.3.5 Reactive Ion Etching (RIE) 46
3.3.6 Field-Emission Scanning Electron Microscopy (FESEM) 48
3.3.7 Atomic Force Microscope (AFM) 48
3.3.8 Focused Ion Beam (FIB) 48
Chapter 4 Results and Discussion 49
4.1 PS-b-PDMS Bulk from Solution Casting 49
4.2 Solvent Selectivity of Chlorobenzene 49
4.3 Effect of Relative Solvent Vapor Pressure on PS-b-PDMS Monolayer Self-Assembly 51
4.4 Substrate Functionalization via Grafting 58
4.5 Controlled Self-Assembly of PS-b-PDMS Monolayer on Functionalized Substrate 61
4.6 Monolayer with Spherical Texture from Solvent Annealing 71
4.7 Fabrication of Double-Layer Nanopatterns 72
Chapter 5 Conclusions and Prospective 83
Chapter 6 References 86

References
1. Bates, F. S.; Fredrickson, G. H., Block copolymer thermodynamics: theory and experiment. Annu Rev Phys Chem 1990, 41 (1), 525-57.
2. Park, S.; Wang, J.-Y.; Kim, B.; Russell, T. P., From Nanorings to Nanodots by Patterning with Block Copolymers. Nano Letters 2008, 8 (6), 1667-1672.
3. Abetz, V.; Simon, P. F. W., Phase Behaviour and Morphologies of Block Copolymers. In Block Copolymers I, Abetz, V., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2005; pp 125-212.
4. Fredrickson, G. H.; Helfand, E., Fluctuation Effects in the Theory of Microphase Separation in Block Copolymers. Journal of Chemical Physics 1987, 87 (1), 697-705.
5. Fetters, L. J., Synthesis of Block Polymers by Homogeneous Anionic Polymerization. Journal of Polymer Science Part C-Polymer Symposium 1969, 26 (26pc), 1-&.
6. Helfand, E.; Wasserman, Z. R., Block Copolymer Theory .4. Narrow Interphase Approximation. Macromolecules 1976, 9 (6), 879-888.
7. Helfand, E., Block Copolymer Theory. III. Statistical Mechanics of the Microdomain Structure. Macromolecules 1975, 8 (4), 552-556.
8. Leibler, L., Theory of Microphase Separation in Block Copolymers. Macromolecules 2002, 13 (6), 1602-1617.
9. Matsen, M. W.; Schick, M., Stable and unstable phases of a diblock copolymer melt. Phys Rev Lett 1994, 72 (16), 2660-2663.
10. Matsen, M. W.; Bates, F. S., Unifying weak- and strong-segregation block copolymer theories. Macromolecules 1996, 29 (4), 1091-1098.
11. Bates, F. S.; Fredrickson, G. H., Block copolymers - Designer soft materials. Physics Today 1999, 52 (2), 32-38.
12. Hamley, I. W., Ordering in thin films of block copolymers: Fundamentals to potential applications. Progress in Polymer Science 2009, 34 (11), 1161-1210.
13. Matsen, M. W., Thin films of block copolymer. Journal of Chemical Physics 1997, 106 (18), 7781-7791.
14. Turner, M. S., Equilibrium properties of a diblock copolymer lamellar phase confined between flat plates. (1079-7114 (Electronic)).
15. Walton, D. G.; Kellogg, G. J.; Mayes, A. M.; Lambooy, P.; Russell, T. P., A Free-Energy Model for Confined Diblock Copolymers. Macromolecules 1994, 27 (21), 6225-6228.
16. Tang, W. H., Confinement of symmetric diblock copolymer thin films. Macromolecules 2000, 33 (4), 1370-1384.
17. Song, J.; Li, Y.; Huang, Q.; Shi, T.; An, L., Monte Carlo simulation on symmetric ABA/AB copolymer blends in confined thin films. J Chem Phys 2007, 127 (9), 094903.
18. Fasolka, M. J.; Mayes, A. M., Block copolymer thin films: Physics and applications. Annual Review of Materials Research 2001, 31 (1), 323-355.
19. Smith, A. P.; Douglas, J. F.; Meredith, J. C.; Amis, E. J.; Karim, A., Combinatorial study of surface pattern formation in thin block copolymer films. Phys Rev Lett 2001, 87 (1), 015503.
20. Knoll, A.; Horvat, A.; Lyakhova, K. S.; Krausch, G.; Sevink, G. J.; Zvelindovsky, A. V.; Magerle, R., Phase behavior in thin films of cylinder-forming block copolymers. Phys Rev Lett 2002, 89 (3), 035501.
21. Bates, C. M.; Maher, M. J.; Janes, D. W.; Ellison, C. J.; Willson, C. G., Block Copolymer Lithography. Macromolecules 2013, 47 (1), 2-12.
22. Bang, J.; Kim, S. H.; Drockenmuller, E.; Misner, M. J.; Russell, T. P.; Hawker, C. J., Defect-free nanoporous thin films from ABC triblock copolymers. J Am Chem Soc 2006, 128 (23), 7622-9.
23. Jung, Y. S.; Ross, C. A., Orientation-controlled self-assembled nanolithography using a polystyrene-polydimethylsiloxane block copolymer. Nano Letters 2007, 7 (7), 2046-2050.
24. Sinturel, C.; Bates, F. S.; Hillmyer, M. A., High χ–LowNBlock Polymers: How Far Can We Go? ACS Macro Letters 2015, 4 (9), 1044-1050.
25. Rasappa, S.; Caridad, J. M.; Schulte, L.; Cagliani, A.; Borah, D.; Morris, M. A.; Boggild, P.; Ndoni, S., High quality sub-10 nm graphene nanoribbons by on-chip PS-b-PDMS block copolymer lithography. Rsc Advances 2015, 5 (82), 66711-66717.
26. Lo, T. Y.; Krishnan, M. R.; Lu, K. Y.; Ho, R. M., Silicon-containing block copolymers for lithographic applications. Progress in Polymer Science 2018, 77, 19-68.
27. Kim, G.; Libera, M., Morphological development in solvent-cast polystyrene-polybutadiene-polystyrene (SBS) triblock copolymer thin films. Macromolecules 1998, 31 (8), 2569-2577.
28. Campbell, I. P.; Lau, G. J.; Feaver, J. L.; Stoykovich, M. P., Network Connectivity and Long-Range Continuity of Lamellar Morphologies in Block Copolymer Thin Films. Macromolecules 2012, 45 (3), 1587-1594.
29. Russell, T. P.; Hjelm, R. P.; Seeger, P. A., Temperature-Dependence of the Interaction Parameter of Polystyrene and Poly(Methyl Methacrylate). Macromolecules 1990, 23 (3), 890-893.
30. Mansky, P.; Russell, T. P.; Hawker, C. J.; Mays, J.; Cook, D. C.; Satija, S. K., Interfacial segregation in disordered block copolymers: Effect of tunable surface potentials. Physical Review Letters 1997, 79 (2), 237-240.
31. Han, E.; Stuen, K. O.; Leolukman, M.; Liu, C. C.; Nealey, P. F.; Gopalan, P., Perpendicular Orientation of Domains in Cylinder-Forming Block Copolymer Thick Films by Controlled Interfacial Interactions. Macromolecules 2009, 42 (13), 4896-4901.
32. Fukunaga, K.; Elbs, H.; Magerle, R.; Krausch, G., Large-scale alignment of ABC block copolymer microdomains via solvent vapor treatment. Macromolecules 2000, 33 (3), 947-953.
33. Sinturel, C.; Vayer, M.; Morris, M.; Hillmyer, M. A., Solvent Vapor Annealing of Block Polymer Thin Films. Macromolecules 2013, 46 (14), 5399-5415.
34. Cavicchi, K. A.; Berthiaume, K. J.; Russell, T. P., Solvent annealing thin films of poly(isoprene-b-lactide). Polymer 2005, 46 (25), 11635-11639.
35. Jung, Y. S.; Ross, C. A., Solvent-Vapor-Induced Tunability of Self-Assembled Block Copolymer Patterns. Advanced Materials 2009, 21 (24), 2540-+.
36. Knoll, A.; Tsarkova, L.; Krausch, G., Nanoscaling of microdomain spacings in thin films of cylinder-forming block copolymers. Nano Lett 2007, 7 (3), 843-6.
37. Albalak, R. J.; Capel, M. S.; Thomas, E. L., Solvent swelling of roll-cast triblock copolymer films. Polymer 1998, 39 (8-9), 1647-1656.
38. Kimura, M.; Misner, M. J.; Xu, T.; Kim, S. H.; Russell, T. P., Long-range ordering of diblock copolymers induced by droplet pinning. Langmuir 2003, 19 (23), 9910-9913.
39. Jin, C.; Olsen, B. C.; Luber, E. J.; Buriak, J. M., Nanopatterning via Solvent Vapor Annealing of Block Copolymer Thin Films. Chemistry of Materials 2017, 29 (1), 176-188.
40. Horvat, A.; Lyakhova, K. S.; Sevink, G. J.; Zvelindovsky, A. V.; Magerle, R., Phase behavior in thin films of cylinder-forming ABA block copolymers: mesoscale modeling. J Chem Phys 2004, 120 (2), 1117-26.
41. Cavicchi, K. A.; Russell, T. P., Solvent annealed thin films of asymmetric polyisoprene-polylactide diblock copolymers. Macromolecules 2007, 40 (4), 1181-1186.
42. Park, S.; Kim, B.; Xu, J.; Hofmann, T.; Ocko, B. M.; Russell, T. P., Lateral Ordering of Cylindrical Microdomains Under Solvent Vapor. Macromolecules 2009, 42 (4), 1278-1284.
43. Gotrik, K. W.; Hannon, A. F.; Son, J. G.; Keller, B.; Alexander-Katz, A.; Ross, C. A., Morphology control in block copolymer films using mixed solvent vapors. ACS Nano 2012, 6 (9), 8052-9.
44. Gotrik, K. W.; Ross, C. A., Solvothermal annealing of block copolymer thin films. Nano Lett 2013, 13 (11), 5117-22.
45. Rodwogin, M. D.; Spanjers, C. S.; Leighton, C.; Hillmyer, M. A., Polylactide-poly(dimethylsiloxane)-polylactide triblock copolymers as multifunctional materials for nanolithographic applications. ACS Nano 2010, 4 (2), 725-32.
46. Phillip, W. A.; O'Neill, B.; Rodwogin, M.; Hillmyer, M. A.; Cussler, E. L., Self-assembled block copolymer thin films as water filtration membranes. ACS Appl Mater Interfaces 2010, 2 (3), 847-53.
47. Elbs, H.; Drummer, C.; Abetz, V.; Krausch, G., Thin film morphologies of ABC triblock copolymers prepared from solution. Macromolecules 2002, 35 (14), 5570-5577.
48. Knill, C.; Kennedy, J., Polymer handbook (4th Edition): J. Brandrup, E.H. Immergut, E.A. Grulke (Eds.); Wiley, New York, 1999, xiii+2288 pages, ISBN 0-471-16628-6 (£226-00). Carbohydrate Polymers 2001, 46, 295.
49. Chen, Y.; Huang, H.; Hu, Z.; He, T., Lateral nanopatterns in thin diblock copolymer films induced by selective solvents. Langmuir 2004, 20 (9), 3805-8.
50. Hanley, K. J.; Lodge, T. P.; Huang, C. I., Phase behavior of a block copolymer in solvents of varying selectivity. Macromolecules 2000, 33 (16), 5918-5931.
51. Lo, T. Y.; Chao, C. C.; Ho, R. M.; Georgopanos, P.; Avgeropoulos, A.; Thomas, E. L., Phase Transitions of Polystyrene-b-poly(dimethylsiloxane) in Solvents of Varying Selectivity. Macromolecules 2013, 46 (18), 7513-7524.
52. Hui, C. Y.; Wu, K. C.; Lasky, R. C.; Kramer, E. J., Case-Ii Diffusion in Polymers .2. Steady-State Front Motion. Journal of Applied Physics 1987, 61 (11), 5137-5149.
53. Thomson, G. W., The Antoine equation for vapor-pressure data. Chem Rev 1946, 38 (1), 1-39.
54. Zettl, U.; Knoll, A.; Tsarkova, L., Effect of confinement on the mesoscale and macroscopic swelling of thin block copolymer films. Langmuir 2010, 26 (9), 6610-7.
55. Sharp, J. S.; Forrest, J. A.; Jones, R. A. L., Swelling of Poly(DL-lactide) and polylactide-co-glycolide in humid environments. Macromolecules 2001, 34 (25), 8752-8760.
56. Kim, S. H.; Misner, M. J.; Xu, T.; Kimura, M.; Russell, T. P., Highly oriented and ordered arrays from block copolymers via solvent evaporation. Advanced Materials 2004, 16 (3), 226-+.
57. Vayer, M.; Hillmyer, M. A.; Dirany, M.; Thevenin, G.; Erre, R.; Sinturel, C., Perpendicular orientation of cylindrical domains upon solvent annealing thin films of polystyrene-b-polylactide. Thin Solid Films 2010, 518 (14), 3710-3715.
58. Epps, T. H., 3rd; DeLongchamp, D. M.; Fasolka, M. J.; Fischer, D. A.; Jablonski, E. L., Substrate surface energy dependent morphology and dewetting in an ABC triblock copolymer film. Langmuir 2007, 23 (6), 3355-62.
59. Segalman, R. A., Patterning with block copolymer thin films. Materials Science & Engineering R-Reports 2005, 48 (6), 191-226.
60. Mansky, P.; Liu, Y.; Huang, E.; Russell, T. P.; Hawker, C., Controlling Polymer-Surface Interactions with Random Copolymer Brushes. Science 1997, 275 (5305), 1458.
61. She, M.-S.; Lo, T.-Y.; Ho, R.-M., Controlled Ordering of Block Copolymer Gyroid Thin Films by Solvent Annealing. Macromolecules 2014, 47 (1), 175-182.
62. Xiang, J.; Lu, W.; Hu, Y. J.; Wu, Y.; Yan, H.; Lieber, C. M., Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 2006, 441 (7092), 489-493.
63. Park, H. G.; Barrelet, C. J.; Wu, Y. N.; Tian, B. Z.; Qian, F.; Lieber, C. M., A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source. Nature Photonics 2008, 2 (10), 622-626.
64. Stein, G. E.; Kramer, E. J.; Li, X. F.; Wang, J., Layering transitions in thin films of spherical-domain block copolymers. Macromolecules 2007, 40 (7), 2453-2460.
65. Bates, F. S.; Hillmyer, M. A.; Lodge, T. P.; Bates, C. M.; Delaney, K. T.; Fredrickson, G. H., Multiblock polymers: panacea or Pandora's box? Science 2012, 336 (6080), 434-40.
66. Bai, W.; Ross, C. A., Functional nanostructured materials based on self-assembly of block copolymers. Mrs Bulletin 2016, 41 (2), 100-107.
67. Doerk, G. S.; Yager, K. G., Beyond native block copolymer morphologies. Molecular Systems Design & Engineering 2017, 2 (5), 518-538.
68. Kim, J. H.; Jin, H. M.; Yang, G. G.; Han, K. H.; Yun, T.; Shin, J. Y.; Jeong, S. J.; Kim, S. O., Smart Nanostructured Materials based on Self-Assembly of Block Copolymers. Advanced Functional Materials 2020, 30 (2), 1902049.
69. Tavakkoli, K. G. A.; Gotrik, K. W.; Hannon, A. F.; Alexander-Katz, A.; Ross, C. A.; Berggren, K. K., Templating three-dimensional self-assembled structures in bilayer block copolymer films. Science 2012, 336 (6086), 1294-8.
70. Jeong, J. W.; Park, W. I.; Do, L. M.; Park, J. H.; Kim, T. H.; Chae, G.; Jung, Y. S., Nanotransfer Printing with sub-10 nm Resolution Realized using Directed Self-Assembly. Advanced Materials 2012, 24 (26), 3526-3531.
71. Kim, J. Y.; Kim, B. H.; Hwang, J. O.; Jeong, S. J.; Shin, D. O.; Mun, J. H.; Choi, Y. J.; Jin, H. M.; Kim, S. O., Flexible and transferrable self-assembled nanopatterning on chemically modified graphene. Adv Mater 2013, 25 (9), 1331-5.
72. Shin, C.; Ahn, H.; Kim, E.; Ryu, D. Y.; Huh, J.; Kim, K. W.; Russell, T. P., Transition Behavior of Block Copolymer Thin Films on Preferential Surfaces. Macromolecules 2008, 41 (23), 9140-9145.
73. Jung, H.; Hwang, D.; Kim, E.; Kim, B. J.; Lee, W. B.; Poelma, J. E.; Kim, J.; Hawker, C. J.; Huh, J.; Ryu du, Y.; Bang, J., Three-dimensional multilayered nanostructures with controlled orientation of microdomains from cross-linkable block copolymers. ACS Nano 2011, 5 (8), 6164-73.
74. He, C.; Stoykovich, M. P., Self-Assembly: Profile Control in Block Copolymer Nanostructures using Bilayer Thin Films for Enhanced Pattern Transfer Processes (Adv. Funct. Mater. 45/2014). Advanced Functional Materials 2014, 24 (45), 7224-7224.
75. Kim, S. Y.; Nunns, A.; Gwyther, J.; Davis, R. L.; Manners, I.; Chaikin, P. M.; Register, R. A., Large-area nanosquare arrays from shear-aligned block copolymer thin films. Nano Lett 2014, 14 (10), 5698-705.
76. Cummins, C.; Ghoshal, T.; Holmes, J. D.; Morris, M. A., Strategies for Inorganic Incorporation using Neat Block Copolymer Thin Films for Etch Mask Function and Nanotechnological Application. Advanced Materials 2016, 28 (27), 5586-5618.
77. Majewski, P. W.; Rahman, A.; Black, C. T.; Yager, K. G., Arbitrary lattice symmetries via block copolymer nanomeshes. Nat Commun 2015, 6 (1), 7448.
78. Tavakkoli K G, A.; Nicaise, S. M.; Gadelrab, K. R.; Alexander-Katz, A.; Ross, C. A.; Berggren, K. K. Multilayer block copolymer meshes by orthogonal self-assembly Nature communications [Online], 2016, p. 10518. PubMed. http://europepmc.org/abstract/MED/26796218
https://doi.org/10.1038/ncomms10518
https://europepmc.org/articles/PMC4736107
https://europepmc.org/articles/PMC4736107?pdf=render (accessed 2016/01//).
79. Son, J. G.; Hannon, A. F.; Gotrik, K. W.; Alexander-Katz, A.; Ross, C. A., Hierarchical nanostructures by sequential self-assembly of styrene-dimethylsiloxane block copolymers of different periods. Adv Mater 2011, 23 (5), 634-9.
80. Jin, C.; Olsen, B. C.; Luber, E. J.; Buriak, J. M., Preferential Alignment of Incommensurate Block Copolymer Dot Arrays Forming Moire Superstructures. ACS Nano 2017, 11 (3), 3237-3246.
81. Rahman, A.; Majewski, P. W.; Doerk, G.; Black, C. T.; Yager, K. G., Non-native three-dimensional block copolymer morphologies. Nat Commun 2016, 7 (1), 13988.
82. Ulrich, R. D., P. J. Flory. In Macromolecular Science: Retrospect and Prospect, Ulrich, R. D., Ed. Springer US: Boston, MA, 1978; pp 69-98.
83. Sudduth, R., RDS Summary of Publications and Presentations 7-1-20. 2020.
84. Carpenter, C. L.; Nicaise, S.; Theofanis, P. L.; Shykind, D.; Berggren, K. K.; Delaney, K. T.; Fredrickson, G. H., Orientational Preference in Multilayer Block Copolymer Nanomeshes with Respect to Layer-to-Layer Commensurability. Macromolecules 2017, 50 (20), 8258-8266.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *