帳號:guest(3.14.250.221)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉君翔
作者(外文):Liu, Jun-Xiang.
論文名稱(中文):錫-銀-銅-銦-鉍五元合金銲料相平衡及凝固
論文名稱(外文):Phase Equilibria and solidification of the quinary Sn-Ag-Bi-Cu-In solder alloys
指導教授(中文):陳信文
指導教授(外文):Chen, Sinn-Wen
口試委員(中文):陳志銘
紀渥德
口試委員(外文):Chen, Chih-Ming
Gierlotka, Wojciech
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:108032562
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:159
中文關鍵詞:液化溫度熱分析錫-銀-銅-銦-鉍銲料Calphad相圖計算
外文關鍵詞:Liquidus temperaturesDSCAg-Bi-Cu-In-SnSolderCalphad
相關次數:
  • 推薦推薦:0
  • 點閱點閱:480
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
軟銲是電子產品主要的連接方法,過去常用錫鉛合金作為軟銲銲料,然而因為鉛對環境及身體健康具有危害,無鉛銲料取代錫鉛銲料成為工業界目前主要使用的銲料,包括了錫-銀、錫-銅、錫-銦、錫-鉍、錫-銀-銅、錫-銀-銦...等合金。雖然無鉛銲料已被使用,但是在軟銲溫度與性質上仍存在著許多改進空間,而透過不同元素的摻雜可以改變合金的性質。本研究探討錫-銀-銅-銦-鉍五元合金系統中部分三元與四元子系統的相轉變溫度,合金的液相線溫度及固相線溫度,與軟銲的加工溫度直接相關,為銲料的重要性質。相平衡的資料可以由實驗測定及以Calphad方法計算獲得。目前文獻中雖然有上述五元合金的Calphad熱力學資料庫,但是初步的計算結果顯示與實驗量測結果存在著顯著誤差。
本研究進行相關三元系統的不變反應(invariant)附近以及四元系統合金的熱分析實驗。本研究所使用的熱力學資料庫分別為NIST與Gierlotka公開的database與CompuTerm所提供的database,再以上述三者的計算結果與實驗量測的結果進行比較,進行了錫-銀-銅、錫-銀-鉍、錫-銀-銦、錫-銅-銦及錫-鉍-銦五個三元系統與錫¬¬-銀-銅-鉍、錫-銀-銅-銦兩個四元系統的量測,結果顯示錫-銅-銦三元系統中,以Computherm提供的data base所計算之不變反應(invariant)溫度低於實驗結果約8℃,錫-鉍二元系統以Computherm提供的data base所計算的共晶溫度高於實驗結果約4℃外,其餘三元合金不變反應(invariant)溫度的實驗結果與計算結果接近,而液化溫度則有明顯差距,四元系統中計算的液化溫度與固化溫度與實驗結果皆有差距。本研究中提供之實驗數據可做為Calphad模型參數優化的參考依據,並幫助建立出錫-銀-銅-銦-鉍五元系統的Calphad模型。
Soldering is the main connection method for electronic packaging. Tin-lead solder alloys were commonly used in the past. However, because lead is harmful to the environment and health, lead-free solder replaces tin-lead solder as the main solder currently used in the industry, including tin-silver, tin-copper, tin-indium, tin-bismuth, tin-silver-copper, tin-silver-indium... and other alloys. Although lead-free solder has been used, there are still many room for improvement in the soldering temperature and properties, and the properties of the alloy can be changed through the doping of different elements. The purpose of this study is to discuss the phase transformation temperature of some of the ternary and quaternary subsystems, the liquidus temperature and solidus temperature of solder alloys are directly related to the processing temperature of soldering, which are important properties of solder. The data of phase equilibrium can be obtained by experimental determination and calculation by Calphad method. Although there is a Calphad thermodynamic database of the above-mentioned five-element alloy in the literature, significant differences of the phase transformation temperature are observed between those calculated and experimental determined.
In this study, the thermal analysis of the alloy near the invariant reaction of the related ternary system was carried out. The thermodynamic database used in this research is the database published by NIST and Gierlotka and the database provided by CompuTerm, the calculation results of the above three are compared with the results of experimental measurements. Phase transformation termperatures of five ternary systems, tin-silver-copper, tin-silver-bismuth, tin-silver-indium, tin-copper-indium and tin-bismuth-indium and two quaternary systems, tin-silver-copper-bismuth and tin-silver-copper-indium are carried out in this study. The experimental results show that in the tin-copper-indium ternary system, the invariant reaction temperature calculated by using the data base of Computherm is about 8℃ lower than the experimental result, in the tin-bismuth binary system, the eutectic temperature calculated by using the data base of Computherm is about 4℃ higher than the experimental results. The experimental results of the invariant reaction temperature of the other ternary alloys are in good agreement with the calculated results, while significant deviations are observed regarding their liquidus temperatures. In the two quaternary systems, significant deviations are observed both in their liquidus temperatures and solidus temperatures. The Calphad modeling requires experimental data to fine tune their parameters. The experimental data provided in this study certainly contribute to the validity of the Calphad modeling of Ag-Bi-Cu-In-Sn quinary system.
目錄

摘要 2
Abstract 3
目錄 6
表目錄 10
圖目錄 12
一、前言 20
二、文獻回顧 23
2-1 液相線投影 23
2-2 二元系統 27
2-2-1 Ag-Cu二元系統 27
2-2-2 Sn-Ag二元系統 27
2-2-3 Sn-Cu二元系統 29
2-2-4 Sn-Bi二元系統 30
2-2-5 Ag-Bi二元系統 31
2-2-6 Bi-Cu二元系統 32
2-2-7 Sn-In二元系統 33
2-2-8 Ag-In二元系統 34
2-2-9 Bi-In二元系統 36
2-2-10 Cu-In二元系統 37
2-3三元相圖 39
2-3-1 Sn-Ag-Cu三元系統 39
2-3-2 Sn-Ag-Bi三元系統 42
2-3-3 Sn-Cu-Bi三元系統 43
2-3-4 Ag-Cu-Bi三元系統 45
2-3-5 Sn-Ag-In三元系統 46
2-3-6 Sn-In-Cu三元系統 49
2-3-7 Sn-Bi-In三元系統 51
2-3-8 Ag-Cu-In三元系統 53
2-3-9 Cu-Bi-In三元系統 56
2-3-10 Ag-Bi-In三元系統 58
2-4四元相圖 60
2-4-1 Sn-Ag-Bi-Cu四元系統 60
2-4-2 Sn-Ag-Bi-In四元系統 61
2-4-3 Sn-Bi-Cu-In四元系統 62
2-4-4 Sn-Ag-Cu-In四元系統 63
2-4-5 Ag-Bi-Cu-In四元系統 64
2-5五元相圖 64
2-5-1 Sn-Ag-Bi-Cu-In五元系統 64
2-6相圖計算 65
三、研究方法 67
3-1 合金之製備 67
3-2 DSC熱分析 67
3-3 相圖計算 67
四、結果與討論 68
4-1 DSC熱分析結果 68
4-1-1 Sn 68
4-1-2 In 69
4-1-3 Pb 71
4-1-4 Sn-Ag二元系統 73
4-1-5 Sn-Bi二元系統 74
4-1-6 Sn-Cu二元系統 74
4-1-7 Sn-In二元系統 75
4-1-8 Sn-Ag-Cu三元合金 76
4-1-9 Sn-Ag-In三元系統 88
4-1-10 Sn-Cu-In三元系統 98
4-1-11 Sn-Ag-Bi三元系統 109
4-1-12 Sn-Bi-In三元系統 122
4-1-13 Sn-Ag-Bi-Cu四元系統 133
4-1-14 Sn-Ag-Cu-In四元系統 139
五、結論 148
六、參考文獻 150

[1] H.-y. Chang, S.-w. Chen, D. S.-h. Wong, and H.-F. Hsu, "Determination of reactive wetting properties of Sn, Sn–Cu, Sn–Ag, and Sn–Pb alloys using a wetting balance technique", Journal of materials research, Vol. 18(6), pp.1420-1428, (2003).
[2] J. Y. Park, C. S. Kang, and J. P. Jung, "The analysis of the withdrawal force curve of the wetting curve using 63Sn-37Pb and 96.5 Sn-3.5 Ag eutectic solders", Journal of electronic materials, Vol. 28(11), pp.1256-1262, (1999).
[3] Official Journal of the European Union, Vol. 13.2(p. L 37/19~L 37/13, (2003).
[4] O. v. “Roadmap 2002 for Commercialization of Lead-free Solder”, September 2002, Lead-free Soldering Roadmap Committee, Technical Standardization Committee on Electronics Assembly Technology. JEITA.
[5] E. Bastow, "Solder Families And How They Work", Advanced materials & processes, Vol. 161(12), pp.26-29, (2003).
[6] J. Glazer, International Materials Review, Vol. 40(2), pp.63-95, (1995).
[7] J. Morris, J. F. Goldstein, and Z. Mei, "Microstructure and mechanical properties of Sn-In and Sn-Bi solders", JOM, Vol. 45(7), pp.25-27, (1993).
[8] Z. Mei and J. Morris, "Characterization of eutectic Sn-Bi solder joints", Journal of Electronic Materials, Vol. 21(6), pp.599-607, (1992).
[9] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, "Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes", Advanced Engineering Materials, Vol. 6(5), pp.299-303, (2004).
[10] R. P. Elliott, F. A. Shunk, and W. C. Giessen, "The Ag− Cu (Silver-Copper) system", Bulletin of Alloy Phase Diagrams, Vol. 1(1), p.41, (1980).
[11] F. H. Hayes, H. L. Lukas, G. Effenberg, and G. Petzow, "A Thermodynamic Optimisation of the Cu--Ag--Pb System", Z. Metallkd., Vol. 77(11), pp.749-754, (1986).
[12] NIST-solder.tdb, Phase Diagrams & Computational Thermodynamics: Solder systems, Materials Science and Engineering Division, NIST, (2017). (https://www.metallurgy.nist.gov/phase/solder/solder.html).
[13] I. Karakaya and W. Thompson, "The Ag-Sn (silver-tin) system", Bulletin of Alloy Phase Diagrams, Vol. 8(4), pp.340-347, (1987).
[14] U. r Kattner and W. J. Boettinger, "On the Sn-Bi-Ag ternary phase diagram", Journal of electronic materials, Vol. 23(7), pp.603-610, (1994).
[15] G. Raynor, "The Cu-Sn Phase Diagram", Annotated equilibrium diagram series, Vol. 2, (1944).
[16] N. Saunders and A. Miodownik, "The Cu-Sn (copper-tin) system", Bulletin of Alloy Phase Diagrams, Vol. 11(3), pp.278-287, (1990).
[17] J.-H. Shim, C.-S. Oh, B.-J. Lee, and D. Lee, "Thermodynamic assessment of the Cu-Sn system", International Journal of Materials Research, Vol. 87(3), pp.205-212, (1996).
[18] H. Ohtani and K. Ishida, "A thermodynamic study of the phase equilibria in the Bi-Sn-Sb system", Journal of electronic materials, Vol. 23(8), pp.747-755, (1994).
[19] B.-J. Lee, C.-S. Oh, and J.-H. Shim, "Thermodynamic assessments of the Sn-In and Sn-Bi binary systems", Journal of Electronic Materials, Vol. 25(6), pp.983-991, (1996).
[20] J. Vizdal, M. H. Braga, A. Kroupa, K. W. Richter, D. Soares, L. F. Malheiros, and J. Ferreira, "Thermodynamic assessment of the Bi–Sn–Zn system", Calphad, Vol. 31(4), pp.438-448, (2007).
[21] P. D. T. B. Zimmermann, Universität Stuttgart, F.R. Germany, 1976.
[22] O. Teppo, J. Niemelä, and P. Taskinen, "An assessment of the thermodynamic properties and phase diagram of the system Bi-Cu", Thermochimica acta, Vol. 173, pp.137-150, (1990).
[23] M. Hansen, K. Anderko, and H. Salzberg, "Constitution of binary alloys", Journal of the Electrochemical Society, Vol. 105(12), p.260C, (1958).
[24] T. Heumann and O. Alpaut, "Das Zustandsdiagramm Indium-Zinn", Journal of the Less Common Metals, Vol. 6(2), pp.108-117, (1964).
[25] H. Okamoto and C. White, "Phase diagrams of indium alloys and their engineering applications", Monograph Series on Alloy Phase Diagrams, ASM International, Materials Park, Ohio, pp.46-54, (1992).
[26] N. David, K. El Aissaoui, J. Fiorani, J. Hertz, and M. Vilasi, "Thermodynamic optimization of the In–Pb–Sn system based on new evaluations of the binary borders In–Pb and In–Sn", Thermochimica acta, Vol. 413(1-2), pp.127-137, (2004).
[27] H. Okamoto, "In-Sn (indium-tin)", Journal of Phase Equilibria and Diffusion, Vol. 27(3), p.313, (2006).
[28] C.-H. Yeh, L.-S. Chang, and B. Straumal, "Study on the solidus line in Sn-rich region of Sn-In phase diagram", Journal of phase equilibria and diffusion, Vol. 30(3), pp.254-257, (2009).
[29] M. Baren, "Ag-In (silver-indium)", Phase Diagrams of Indium Alloys and their engineering applications, (1992).
[30] Z. Moser, W. Gasior, J. Pstrus, W. Zakulski, I. Ohnuma, X. Liu, Y. Inohana, and K. Ishida, "Studies of the Ag-In phase diagram and surface tension measurements", Journal of electronic Materials, Vol. 30(9), pp.1120-1128, (2001).
[31] X. J. Liu, T. Yamaki, I. Ohnuma, R. Kainuma, and K. Ishida, "Thermodynamic calculations of phase equilibria, surface tension and viscosity in the In-Ag-X (X= Bi, Sb) system", Materials Transactions, Vol. 45(3), pp.637-645, (2004).
[32] D. Evans and A. Prince, "Bi–In system", Metal science, Vol. 17(3), pp.117-122, (1983).
[33] P.-Y. Chevalier, "A thermodynamic evaluation of the Bi-In system", Calphad, Vol. 12(4), pp.383-391, (1988).
[34] H. Okamoto and T. Massalski, "Binary alloy phase diagrams", ASM International, Materials Park, OH, USA, (1990).
[35] F. Weibke and H. Eggers, "The Phase Diagram of the System Copper-Indium", Z. Anorg. Allg. Chem, Vol. 220, pp.273, (1934).
[36] P. Subramanian and D. Laughlin, "The Cu− In (copper-indium) system", Bulletin of Alloy Phase Diagrams, Vol. 10(5), pp.554-568, (1989).
[37] A. Bolcavage, S. Chen, C. Kao, Y. Chang, and A. Romig, "Phase equilibria of the Cu-In system I: Experimental investigation", Journal of phase equilibria, Vol. 14(1), pp.14-21, (1993).
[38] Z. Bahari, E. Dichi, B. Legendre, and J. Dugué, "The equilibrium phase diagram of the copper–indium system: a new investigation", Thermochimica Acta, Vol. 401(2), pp.131-138, (2003).
[39] H. Liu, Y. Cui, K. Ishida, X. Liu, C. Wang, I. Ohnuma, R. Kainuma, and Z. Jin, "Thermodynamic assessment of the Cu-In binary system", Journal of phase equilibria, Vol. 23(5), pp.409-415, (2002).
[40] E. Gebhardt and G. Petzow, "Uber den Aufbau des Systems Silber-Kupfer-Zinn", ZEITSCHRIFT FUR METALLKUNDE, Vol. 50(10), pp.597-605, (1959).
[41] C. M. Miller, I. E. Anderson, and J. F. Smith, "A viable tin-lead solder substitute: Sn-Ag-Cu", Journal of electronic materials, Vol. 23(7), pp.595-601, (1994).
[42] M. Loomans and M. Fine, "Tin-silver-copper eutectic temperature and composition", Metallurgical and Materials Transactions A, Vol. 31(4), pp.1155-1162, (2000).
[43] K.-W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C. Handwerker, "Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys", Journal of electronic materials, Vol. 29(10), pp.1122-1136, (2000).
[44] S. Chada, R. Fournelle, W. Laub, and D. Shangguan, "Copper substrate dissolution in eutectic Sn-Ag solder and its effect on microstructure", Journal of Electronic Materials, Vol. 29(10), pp.1214-1221, (2000).
[45] Y.-w. Yen and S.-w. Chen, "Phase equilibria of the Ag–Sn–Cu ternary system", Journal of materials research, Vol. 19(8), pp.2298-2305, (2004).
[46] B.-J. Lee, N. M. Hwang, and H. M. Lee, "Prediction of interface reaction products between Cu and various solder alloys by thermodynamic calculation", Acta Materialia, Vol. 45(5), pp.1867-1874, (1997).
[47] H. M. Lee, S. W. Yoon, and B.-J. Lee, "Thermodynamic prediction of interface phases at Cu/solder joints", Journal of electronic materials, Vol. 27(11), pp.1161-1166, (1998).
[48] I. Ohnuma, M. Miyashita, K. Anzai, X. Liu, H. Ohtani, R. Kainuma, and K. Ishida, "Phase equilibria and the related properties of Sn-Ag-Cu based Pb-free solder alloys", Journal of Electronic Materials, Vol. 29(10), pp.1137-1144, (2000).
[49] H. Ohtani, I. Satoh, M. Miyashita, and K. Ishida, "Thermodynamic analysis of the Sn-Ag-Bi ternary phase diagram", Materials Transactions, Vol. 42(5), pp.722-731, (2001).
[50] G. Garzeł and L. Zabdyr, "Electromotive force study of the liquid silver-bismuth-tin alloys", Journal of phase equilibria and diffusion, Vol. 27(2), pp.140-144, (2006).
[51] K. Doi, H. Ohtani, and M. Hasebe, "Thermodynamic study of the phase equilibria in the Sn-Ag-Bi-Cu quaternary system", Materials Transactions, Vol. 45(2), pp.380-383, (2004).
[52] G. Garzel, M. Kopyto, and L. Zabdyr, "Thermodynamic properties of the liquid Ag-Bi-Cu-Sn Lead-free solder alloys", Journal of Mining and Metallurgy B: Metallurgy, Vol. 50(2), pp.145-148, (2014).
[53] J. Romanowska, "Experimental Study on Thermodynamics of The Bi-Cu-Sn System Badania Doświadczalne Stopów Bi-Cu-Sn", Archives of Metallurgy and Materials, (2011).
[54] H. Flandorfer, A. Sabbar, C. Luef, M. Rechchach, and H. Ipser, "Enthalpies of mixing of liquid Bi–Cu and Bi–Cu–Sn alloys relevant for lead-free soldering", Thermochimica acta, Vol. 472(1-2), pp.1-10, (2008).
[55] Y.-W. Yen, H.-M. Hsiao, G.-J. Jhang, H.-W. Shi, and M.-K. Huang, "Phase equilibria of the Sn-Bi-Cu ternary system in advanced microelectronic packaging," in 2012 7th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2012: IEEE, pp. 388-391.
[56] P. Fima and G. Garzeł, "Thermal analysis and microstructure of the as-cast Ag–Bi–Cu alloys", Calphad, Vol. 44, pp.48-53, (2014).
[57] T.-M. Korhonen and J. Kivilahti, "Thermodynamics of the Sn-In-Ag solder system", Journal of electronic materials, Vol. 27(3), pp.149-158, (1998).
[58] X. Liu, Y. Inohana, Y. Takaku, I. Ohnuma, R. Kainuma, K. Ishida, Z. Moser, W. Gasior, and J. Pstrus, "Experimental determination and thermodynamic calculation of the phase equilibria and surface tension in the Sn-Ag-In system", Journal of electronic materials, Vol. 31(11), pp.1139-1151, (2002).
[59] G. P. Vassilev, E. S. Dobrev, and J.-C. Tedenac, "Experimental study of the Ag–Sn–In phase diagram", Journal of alloys and compounds, Vol. 399(1-2), pp.118-125, (2005).
[60] S.-w. Chen, W.-y. Lee, C.-m. Hsu, C.-f. Yang, H.-y. Hsu, and H.-j. Wu, "Sn–In–Ag phase equilibria and Sn–In–(Ag)/Ag interfacial reactions", Materials Chemistry and Physics, Vol. 128(3), pp.357-364, (2011).
[61] 許哲瑋, " 電子軟銲Sn-In-Ag合金液相線投影圖及其與Cu,Ni之界面反應", 國立清華大學碩士論文, (2012).
[62] W. Köster, T. Gödecke, and D. Heine, "THE CONSTITUTION OF THE COPPER-INDIUM-TIN SYSTEM IN THE RANGE FROM 100 TO 50 AT.-% CU", Z METALLKD, Vol. 63(12), pp.802-807, (1972).
[63] X. Liu, H. Liu, I. Ohnuma, R. Kainuma, K. Ishida, S. Itabashi, K. Kameda, and K. Yamaguchi, "Experimental determination and thermodynamic calculation of the phase equilibria in the Cu-In-Sn system", Journal of Electronic Materials, Vol. 30(9), pp.1093-1103, (2001).
[64] S.-K. Lin, C.-F. Yang, S.-H. Wu, and S.-W. Chen, "Liquidus projection and solidification of the Sn-In-Cu ternary alloys", Journal of electronic materials, Vol. 37(4), pp.498-506, (2008).
[65] S.-k. Lin, T.-y. Chung, S.-w. Chen, and C.-h. Chang, "250° C isothermal section of ternary Sn-In-Cu phase equilibria", Journal of Materials Research, Vol. 24(8), pp.2628-2637, (2009).
[66] H. Kabassis, J. Rutter, and W. Winegard, "Phase relationships in Bi–In–Sn alloy system", Materials science and technology, Vol. 2(10), pp.985-988, (1986).
[67] M. Ruggiero and J. Rutter, "Origin of microstructure in 350 K eutectic of Bi–In–Sn ternary system", Materials science and technology, Vol. 11(2), pp.136-142, (1995).
[68] S. W. Yoon, B.-S. Rho, H. M. Lee, C.-U. Kim, and B.-J. Lee, "Investigation of the phase equilibria in the Sn-Bi-In alloy system", Metallurgical and materials transactions A, Vol. 30(6), pp.1503-1515, (1999).
[69] V. Witusiewicz, U. Hecht, B. Böttger, and S. Rex, "Thermodynamic re-optimisation of the Bi–In–Sn system based on new experimental data", journal of alloys and compounds, Vol. 428(1-2), pp.115-124, (2007).
[70] I. Manasijević, L. Balanović, T. H. Grgurić, D. Minić, and M. Gorgievski, "Study of microstructure and thermal properties of the low melting Bi-In-Sn eutectic alloys", Materials Research, Vol. 21(6), (2018).
[71] E. Gebhardt and M. Dreher, "Über den Aufbau des Systems Kupfer-Silber-Indium II. Gleichgewichtsverlauf bis zu Indiumgehalten von 30%", Z Metallk, Vol. 43, pp.357-363, (1952).
[72] C. Woychik and T. Massalski, "Phase stability relationships and glass formation in the system Cu-Ag-In", Metallurgical Transactions A, Vol. 19(1), pp.13-21, (1988).
[73] Z. Bahari, M. Elgadi, J. Rivet, and J. Dugue, "Experimental study of the ternary Ag–Cu–In phase diagram", Journal of alloys and compounds, Vol. 477(1-2), pp.152-165, (2009).
[74] L. Sisamouth, M. Hamdi, and T. Ariga, "Investigation of gap filling ability of Ag–Cu–In brazing filler metals", Journal of alloys and compounds, Vol. 504(2), pp.325-329, (2010).
[75] M. A. Haque and W. Gierlotka, "Phase equilibria of the ternary Ag–Cu–In system at 300 C", Int J Min Metall Mech Eng, Vol. 1, pp.173-177, (2013).
[76] W. Gierlotka, "Thermodynamic description of the quaternary Ag-Cu-In-Sn system", Journal of electronic materials, Vol. 41(1), pp.86-108, (2012).
[77] S. Itabashi, K. Kameda, K. Yamaguchi, and T. Kon, "Activity of indium in liquid In-Bi-Cu and In-Sb-Cu alloys measured by an EMF method using a zirconia electrolyte", Nippon Kinzoku Gakkaishi (1952), Vol. 63(7), pp.817-821, (1999).
[78] J. Wojewoda-Budka and P. Zięba, "Formation and growth of intermetallic phases in diffusion soldered Cu/In–Bi/Cu interconnections", Journal of alloys and compounds, Vol. 476(1-2), pp.164-171, (2009).
[79] A. Aljilji, D. Minić, D. Manasijević, D. Živković, and A. Todorović, "Phase equilibria and thermodynamics of the Bi–Cu–In ternary system", Thermochimica acta, Vol. 498(1-2), pp.11-15, (2010).
[80] D. Minić, M. Premović, M. Kolarević, V. Ćosović, D. Manasijević, and D. Živković, "Description of the Liquidus Surface and Characterization of Alloys of the Ternary Bi-Cu-In System", Journal of materials engineering and performance, Vol. 22(8), pp.2343-2350, (2013).
[81] V. Vassiliev, M. Alaoui-Elbelghiti, A. Zrineh, M. Gambino, and J. Bros, "Thermodynamics of the Ag–Bi–In system (with 0< xAg< 0.5)", Journal of alloys and compounds, Vol. 265(1-2), pp.160-169, (1998).
[82] R.-K. Shiue, L.-W. Tsay, C.-L. Lin, and J.-L. Ou, "A study of Sn-Bi-Ag-(In) lead-free solders", Journal of materials science, Vol. 38(6), pp.1269-1279, (2003).
[83] C. Wu, M. Huang, J. Lai, and Y. Chan, "Developing a lead-free solder alloy Sn-Bi-Ag-Cu by mechanical alloying", Journal of electronic materials, Vol. 29(8), pp.1015-1020, (2000).
[84] A. M. Erer, S. Oguz, and Y. Türen, "Influence of bismuth (Bi) addition on wetting characteristics of Sn-3Ag-0.5 Cu solder alloy on Cu substrate", Engineering Science and Technology, an International Journal, Vol. 21(6), pp.1159-1163, (2018).
[85] W. Gierlotka, "Thermodynamic Description of the Quaternary Ag-Bi-Cu-Sn System", Journal of Electronic Materials, Vol. 47(1), pp.212-224, (2018).
[86] K.-S. Kim, T. Imanishi, K. Suganuma, M. Ueshima, and R. Kato, "Properties of low temperature Sn–Ag–Bi–In solder systems", Microelectronics Reliability, Vol. 47(7), pp.1113-1119, (2007).
[87] A.-J. Jeon, S.-J. Kim, S.-H. Lee, and C.-Y. Kang, "Effect of indium content on the melting point, dross, and oxidation characteristics of Sn-2Ag-3Bi-xIn solders", Journal of electronic packaging, Vol. 135(2), (2013).
[88] J. Lee, J.-P. Jung, C.-S. Cheon, Y. Zhou, and M. Mayer, "Flip Chip Bump Formation of Sn–1.8 Bi–0.8 Cu–0.6 In Solder by Stencil Printing", Materials transactions, Vol. 46(11), pp.2359-2365, (2005).
[89] J. í. Sopoušek, M. Palcut, E. Hodúlová, and J. Janovec, "Thermal analysis of the Sn-Ag-Cu-In solder alloy", Journal of electronic materials, Vol. 39(3), pp.312-317, (2010).
[90] C. Lejuste, F. Hodaj, and L. Petit, "Solid state interaction between a Sn–Ag–Cu–In solder alloy and Cu substrate", Intermetallics, Vol. 36, pp.102-108, (2013).
[91] A.-M. Yu, M.-S. Kim, C.-W. Lee, and J.-H. Lee, "Wetting and interfacial reaction characteristics of Sn-1.2 Ag-0.5 Cu-xIn quaternary solder alloys", Metals and Materials International, Vol. 17(3), pp.521-526, (2011).
[92] D. Peng and Y. Liu, "Physical Properties of the Sn-Ag-Cu-In-X (Zn, Bi) Solder alloys," in 2007 8th International Conference on Electronic Packaging Technology, 2007: IEEE, pp. 1-5.
[93] Š. Beáta, H. Erika, and K. Ingrid, "Development of SnAgCu solders with Bi and In additions and microstructural characterization of joint interface", Welding in the World, Vol. 61(3), pp.613-621, (2017).
[94] M. Li, J. Han, F. Guo, L. Ma, Y. Wang, and W. Zhou, "Electromigration Behavior of Low-Silver Sn-0.3 Ag-0.7 Cu-1.6 Bi-0.2 In Solder Joints", Journal of Electronic Materials, Vol. 49(7), pp.4237-4248, (2020).
[95] J. Van Laar, "The melting and freezing curves of binary system when the solid phase is a mixture (amorphous or crystalline solid solution) of both components", Zeitschrift für physikalische Chemie, Vol. 63(64), pp.216-253, (1908).
[96] L. Kaufman, "The lattice stability of metals—I. Titanium and zirconium", Acta Metallurgica, Vol. 7(8), pp.575-587, (1959).
[97] L. Kaufman, "H, Bernstein. Computer calculation of phase diagrams," ed: Academic Press, New York, 1970.
[98] Computherm, https://computherm.com/
[99] H. Okamoto, "Bi-Sn (bismuth-tin)", Journal of Phase Equilibria and Diffusion, Vol. 31(2), pp.205-205, (2010).
[100] W. Gierlotka, S.-w. Chen, and S.-k. Lin, "Thermodynamic description of the Cu–Sn system", Journal of Materials Research, Vol. 22(11), pp.3158-3165, (2007).
[101] D. F. Susan, J. A. Rejent, R. P. Grant, and P. T. Vianco, "The Solidification Behavior and Microstructure of In-Sn-Cu Solder Alloys with Low Cu," Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2008.
[102] S.-w. Chen, H.-j. Wu, Y.-c. Huang, and W. Gierlotka, "Phase equilibria and solidification of ternary Sn–Bi–Ag alloys", Journal of alloys and compounds, Vol. 497(1-2), pp.110-117, (2010).
[103] S. Hassam, E. Dichi, and B. Legendre, "Experimental equilibrium phase diagram of the Ag–Bi–Sn system", Journal of alloys and compounds, Vol. 268(1-2), pp.199-206, (1998).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *