帳號:guest(13.59.188.225)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅暉閎
作者(外文):Lo, Hui-Hung
論文名稱(中文):無電鍍鎳鈷合金鑽石粉磁性調控及抗腐蝕改善之研究
論文名稱(外文):Study on Magnetism and Corrosion Resistance of Electroless Plated Co-Ni Diamond Powder
指導教授(中文):衛子健
指導教授(外文):Wei, Tzu-Chien
口試委員(中文):廖英志
陳志銘
黃頌修
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:108032518
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:105
中文關鍵詞:無電鍍磁性鑽石粉抗腐蝕磷化
外文關鍵詞:Electroless platingMagnetismDiamondCorrosion resistancePhosphorization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:57
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
應用鑽石切割線切割矽晶圓被認為是最具有效率、低污染及低切削損失的一項晶圓切割技術。製作晶圓切割線時為了將鑽石粉固定於高碳鋼線上,通常需要在電鍍鎳浴中同時將鎳金屬及鑽石粉沉積於高碳鋼線上,此步驟稱之為上砂。由於鑽石粉不具導電性無法直接上砂,因此在上砂之前需先將不具導電能力之鑽石粉以無電鍍鎳程序將之金屬化。此外在上砂的過程中,金屬化的鑽石粉的磁性會影響其線上鑽石顆粒密度,但無電鍍鎳沉積過程中會有磷的共沉積,使其磁性喪失,因此須將含無電鍍鎳之鑽石粉再進行電鍍純鎳以提高磁性以利上砂。換言之,為了顧及上砂的品質,原始的鑽粉需要經過無電鍍以及電鍍的程序,造成金屬化鑽粉的製程較繁瑣,成本也較高。
相較於鎳,鈷具有較強的磁性,甚至與其他金屬合金後依然可以保有高磁性。因此在此研究中,我們開創一種新的方法來將鑽石粉金屬化,就是利用無電鍍鈷或鈷鎳合金技術,在將鑽石粉金屬化過程中同時賦予磁性,如此一來可以不需後續的粉體電鍍程序。此新式方法不僅可使製程縮短及簡化,並同時保有高磁性。除此之外,可以藉由無電鍍液中的鈷鎳離子濃度來控制鎳鈷合金鍍層的元素比例進而控制其磁性。實驗結果顯示上砂後之線上鑽石顆粒密度,可藉由鍍層磁性的控制,達到高於商用鑽石粉之每100微米有68顆鑽石,也能控制低於商用之32顆鑽石,充分展現可控性。
本研究中發現在上砂的過程中,金屬化後的鑽石粉會被上砂電鍍液所腐蝕,導致喪失磁性與導電性,藉由退火後所產生晶相進行耐腐蝕比較,得知Ni2P具有優異的抗腐蝕性能,因此我們藉由磷化在無電鍍鈷鎳鑽石粉外面生成Ni2P以保護內層金屬不被腐蝕。商用電鍍鎳鑽石粉浸泡在上砂電鍍液中2小時後,在鑽石粉表面金屬剩餘接近0%,而鈷鎳鑽石粉在未處理的情況下可以保留35%之金屬,有磷化後鑽石粉還可保有高達80%金屬殘留,顯示了在鑽石粉磷化之優異抗腐蝕效果。
Diamond wire sawing (DWS) is considered most efficient for wafer slicing in terms of low cutting loss and low slurry waste. One of the key technical goals of DWS technology is to firmly attach diamond powder (DP) onto steel wire. This process is called sand tacking and is achieved by electroplating nickel film and DP simultaneously onto steel wire. To facilitate sand tacking, the magnetism of nickel-coated DP is important as it affects the tacking-on-density significantly. Because the electroless plating nickel (ELP Ni) layer contains the phosphor (P), it will lose its magnetism significantly. To enhance magnetism of nickel-coated DP, additional electroplating of pure nickel overlayer must apply on pre-electroless Ni/P-coated DP.
Compared with nickel, cobalt (Co) has stronger magnetism, and it can maintain high magnetic properties even when alloying with other elements. Consequently, in the first part of this study we attempt to develop an unprecedented approach to complete the metallization of DP for the DWS industry by using ELP Co/Ni alloy without the need for additional electroplating steps. This single-step method allows efficient DP metallization process while maintaining good magnetic property. More importantly, the magnetism of resultant ELP Co/Ni film is easily manipulated by controlling the stoichiometry of metal precursors in the ELP bath. The morphology, chemical composition, magnetic property, and mass increment of ELP Co/Ni film on the DP are carefully characterized. Sand tacking on steel wire confirms that tacking-on-density of DP is proportional to the magnetism of ELP Co/Ni DP. Our study provides a controllable and cost-effective process for the metallization of DP for DWS.
In the second part of this study, we found that the metal on diamond powders would be corroded by the electroplating solution, leading to loss of magnetism and conductivity. Through the comparison of the different crystal phases from the metal film after annealing, we found that Ni2P has excellent corrosion resistance. Therefore, we generated Ni2P on the metalized DP by phosphorization to protect the inner metal. Compared with commercial electroplating DP, the Ni2P, Co-Ni DP has 80% of metal remained after immersed in the electroplating solution for 2 hours while the commercial one has no metal remained on its surface under the same circumstance. Thus, the results of this study showed the excellent anti-corrosion effect produced by the phosphorization of diamond powder.
摘要 I
Abstract II
誌謝 IV
總目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1-1 前言 1
第二章 文獻回顧 3
2-1 矽晶圓切片技術 3
2-1-1 矽晶圓切片發展 3
2-1-2 線切割技術 6
2-1-3 鑽石切割線 10
2-2 無電鍍沉積 13
2-2-1 無電鍍沉積原理 13
2-2-2 無電鍍鎳與鈷的反應機制 14
2-2-3 無電鍍鍍液組成及功用 15
2-2-4 鑽石粉金屬化 17
2-3 物質的磁性 18
2-3-1 物質磁性成因 18
2-3-2 磁學分類 20
2-3-3 鐵磁性物質的磁滯曲線 26
2-4 鍍鎳鑽粉的腐蝕現象 28
2-4-1 腐蝕機制 28
2-4-2 腐蝕型態分類 30
2-4-3 防腐蝕方法 32
2-5 研究目的與動機 35
第三章 實驗 36
3-1 實驗藥品 36
3-2 設備與儀器 37
3-2-1 掃描式電子顯微鏡(Scanning electron microscope, SEM) 37
3-2-2 能量散射X射線譜(Energy-dispersive X-ray Spectroscopy, EDS) 39
3-2-3 感應耦合電漿原子發射光譜儀(Inductively Coupled Plasma Optical Emission Spectrometry, ICP-OES) 39
3-2-4 超導量子干涉磁力儀(Superconducting Quantum Interference Device Magnetometer, SQUID) 40
3-2-5 X光繞射儀 (X Ray Diffractometer, XRD) 42
3-3 實驗方法 43
3-3-1 自吸附奈米鈀 (ETAS-PVA-Pd) 觸媒合成 43
3-3-2 無電鍍液藥水配置 43
3-3-3 鑽石粉無電鍍沉積 44
3-3-4 上砂槽配置與流程 45
3-3-5 電鍍腐蝕液配置及腐蝕模擬 47
3-3-6 無電鍍鈷鎳鑽石粉退火 48
3-3-7 鑽石粉上製備Ni2P塗層 48
第四章 結果與討論 50
4-1 無電鍍鈷系統 50
4-1-1 無電鍍鈷鑽石粉之鍍層組成與沉積速率 50
4-1-2 無電鍍鈷鍍層附著力測試 54
4-1-3 無電鍍鈷鑽石粉之磁性 56
4-1-4 無電鍍鈷鑽石粉上砂 57
4-2 無電鍍鎳鈷合金系統 58
4-2-1 無電鍍鎳鈷合金鑽石粉 58
4-2-2 無電鍍鈷鎳合金鑽石粉磁性 65
4-2-3 無電鍍鈷鎳合金鑽石粉上砂 67
4-3 無電鍍鎳鈷鑽石粉之腐蝕現象及改善 69
4-3-1 退火對於金屬化鑽石粉之抗腐蝕影響 72
4-3-2 退火對於無電鍍鈷鑽石粉之磁性影響 78
4-4 無電鍍鎳鈷鑽石粉之抗腐蝕 81
4-4-1 鈷鎳鑽石粉二次無電鍍之晶相變化 84
4-4-2 無電鍍鈷鎳鑽石粉磷化之晶相變化 86
4-4-3 無電鍍鈷鎳鑽石粉磷化之抗腐蝕行為 89
4-4-4 無電鍍鈷鎳鑽石粉磷化後之磁性影響 91
第五章 結論 94
第六章 未來展望 96
第七章 參考文獻 97

[1] L. Zhang, and A. Ciftja, “Recycling of solar cell silicon scraps through filtration, Part I: Experimental investigation,” Solar energy materials and solar cells, 92 (11): p. 1450-1461, 2008.
[2] 林鼎將,“矽基板線鋸加工之表面形貌分析研究,” 國立臺灣科技大學機械工程系, 碩士論文, 2013.
[3] S. Schwinde, M. Berg, and M. Kunert, “New potential for reduction of kerf loss and wire consumption in multi-wire sawing,” Solar Energy Materials and Solar Cells, 136: p. 44-47, 2015.
[4] X. Yu, P. Wang, X. Li, and D. Yang, “Thin Czochralski silicon solar cells based on diamond wire sawing technology,” Solar energy materials and solar cells, 98: p. 337-342, 2012.
[5] H. Li, Y. Gao, P. Ge, W. Bi, and L. Zhang, “Study on process parameters of fabrication fine diameter electroplated diamond wire for slicing crystalline silicon solar cell,” The International Journal of Advanced Manufacturing Technology, 106 (7-8): p. 3153-3175, 2020.
[6] M. Fischer, "ITRPV 9th edition 2018 report release and key findings." in PV CellTech conference, 14: p. 1-42, 2018.
[7] J. S. Wang, Z. F. Li, and W. B. Wang, "Research Progress of Slicing Method for Solar Silicon Wafer." in Advanced Materials Research, 800: p. 191-195, 2013.
[8] 林韋辰,“電鑄法鑽石線切割藍寶石之特性研究,” 國立清華大學動力機械工程學系, 碩士論文, 2013.
[9] H. J. Möller, “Basic mechanisms and models of multi‐wire sawing,” Advanced engineering materials, 6 (7): p. 501-513, 2004.
[10] A. Bidiville, K. Wasmer, J. Michler, P. Nasch, M. Van der Meer, and C. Ballif, “Mechanisms of wafer sawing and impact on wafer properties,” Progress in photovoltaics: research and applications, 18 (8): p. 563-572, 2010.
[11] F. Cao, K. Chen, J. Zhang, X. Ye, J. Li, S. Zou, and X. Su, “Next-generation multi-crystalline silicon solar cells: Diamond-wire sawing, nano-texture and high efficiency,” Solar Energy Materials and Solar Cells, 141: p. 132-138, 2015.
[12] A. Kumar, and S. N. Melkote, “Diamond wire sawing of solar silicon wafers: a sustainable manufacturing alternative to loose abrasive slurry sawing,” Procedia Manufacturing, 21: p. 549-566, 2018.
[13] DMT-Technologies, “Diamond Wire Sawing,” DMT Technologies Meyer Burger, 2010.
[14] C. Yang, H. Wu, S. Melkote, and S. Danyluk, “Comparative analysis of fracture strength of slurry and diamond wire sawn multicrystalline silicon solar wafers,” Advanced Engineering Materials, 15 (5): p. 358-365, 2013.
[15] T. Enomoto, Y. Shimazaki, Y. Tani, M. Suzuki, and Y. Kanda, “Development of a resinoid diamond wire containing metal powder for slicing a slicing ingot,” CIRP Annals, 48 (1): p. 273-276, 1999.
[16] G. Sheela, and M. Pushpavanam, “Diamond-dispersed electroless nickel coatings,” Metal finishing, 100 (1): p. 45-47, 2002.
[17] M. J. Zhou, Diamond wire production method., CN 104088000A: p. 1-8, 2014.
[18] C. Yao, W. Zhang, K. Li, X. Xu, and H. Li, “Study on the formation mechanism of the magnetic abrasive particle layer on the surface of saw wire in magnetic induction-free abrasive wire sawing,” Powder Technology, 327: p. 163-169, 2018.
[19] D. M. Xu, H. B. Zhang, J. Gao, and M. H. Cong, "Study on Manufacturing Technology of Resin Bonded Diamond Wire Saw." in Advanced Materials Research, 602: p. 2054-2058, 2013.
[20] H. Wu, “Wire sawing technology: a state-of-the-art review,” Precision engineering, 43: p. 1-9, 2016.
[21] G. Schmid, and L. F. Chi, “Metal clusters and colloids,” Advanced Materials, 10 (7): p. 515-526, 1998.
[22] A. Brenner, and G. E. Riddell, “Nickel plating on steel by chemical reduction,” Plating and surface finishing, 85 (8): p. 54-55, 1998.
[23] B. Abner, and G. E. Riddell, Nickel plating by chemical reduction, US 2532283A: p. 1-5, 1950.
[24] T. Yonezawa, K. Imamura, and N. Kimizuka, “Direct preparation and size control of palladium nanoparticle hydrosols by water-soluble isocyanide ligands,” Langmuir, 17 (16): p. 4701-4703, 2001.
[25] K.-C. Lai, P.-Y. Wu, C.-M. Chen, T.-C. Wei, C.-H. Wu, and S.-P. Feng, “Interfacial characterizations of a nickel-phosphorus layer electrolessly deposited on a silane compound-modified silicon wafer under thermal annealing,” Journal of Electronic Materials, 45 (10): p. 4813-4822, 2016.
[26] R. Guo, S. Jiang, Y. Zheng, and J. Lan, “Electroless nickel deposition of a palladium‐activated self‐assembled monolayer on polyester fabric,” Journal of applied polymer science, 127 (5): p. 4186-4193, 2013.
[27] I. Baskaran, T. S. Narayanan, and A. Stephen, “Effect of accelerators and stabilizers on the formation and characteristics of electroless Ni–P deposits,” Materials chemistry and physics, 99 (1): p. 117-126, 2006.
[28] R. Parkinson, “Properties and applications of electroless nickel,” Nickel Development Institute, 37: p. 1-33, 1997.
[29] Z. Li, Y. Deng, B. Shen, L. Liu, and W. Hu, “Synthesis, characterization and microwave properties of Ni–Co–P hollow spheres,” Journal of alloys and compounds, 491 (1-2): p. 406-410, 2010.
[30] Y. Huang, and F. Cui, “Effect of complexing agent on the morphology and microstructure of electroless deposited Ni–P alloy,” Surface and coatings technology, 201 (9-11): p. 5416-5418, 2007.
[31] J. Judge, J. Morrison, D. Speliotis, and G. Bate, “Magnetic Properties and Corrosion Behavior of Thin Electroless Co‐P Deposits,” Journal of the Electrochemical Society, 112 (7): p. 681, 1965.
[32] A. Vaškelis, A. Jagminien, and A. Prokoptchik, “Surface layer pH in electroless nickel plating in hypophosphite solutions,” Surface and Coatings Technology, 27 (4): p. 301-310, 1986.
[33] Y. Okinaka, and T. Osaka, “Electroless deposition processes: fundamentals and applications,” Advances in electrochemical science and engineering, 3: p. 55-116, 2008.
[34] X. Xi, H. Miao, R. Zhang, and J. Cheng, “Effect of phosphorus content on the properties of Ni-P coated diamond,” Surface and Coatings Technology, 297: p. 27-33, 2016.
[35] J. Ahn, D. Kim, J. Lee, H. Chung, C. Kim, and H. Hai, “Improving the adhesion of electroless-nickel coating layer on diamond powder,” Surface and Coatings Technology, 201 (6): p. 3793-3796, 2006.
[36] Y.-h. Dong, X.-b. He, R. Ud-Din, C.-y. Guo, L. Xu, Y.-t. Huang, and X.-h. Qu, “Fabrication and thermal stability of Ni-P coated diamond powder using electroless plating,” International Journal of Minerals, Metallurgy, and Materials, 18 (4): p. 479, 2011.
[37] C. Kittel, P. McEuen, and P. McEuen, Introduction to solid state physics, Wiley, New York, 1996.
[38] B. Cullity, Introduction to Magnetic Materials, Wiley, Addison, 1972.
[39] 楊正旭,“超高真空中在矽晶片上成長鈷超薄膜之真空中量測磁性研究,” 輔仁大學物理學系, 碩士論文, 1999.
[40] J. A. C. Bland, and B. Heinrich, Magnetic anisotropy, magnetization and band structure, Springer, Berlin, 1994.
[41] D. K. Cheng, Field and wave electromagnetics Wesley Addison, 1989.
[42] 王坤池,“超高真空中在Ge(111)面上成長Co超薄膜之退火效應及磁性現象研究,” 國立臺灣科技大學機械工程系, 碩士論文, 2001.
[43] 戴道生, 鐵磁學, 科學出版社, 北京, 2017.
[44] 謝衛慶,“化學鍍方法製備鎳鈷磷合金及其特性之研究,” 國立成功大學化學工程學系, 碩士論文, 2008.
[45] D. J. Griffiths, “Introduction to electrodynamics,” American Journal of Physics, 73 (6): p. 574-576, 2005.
[46] 陳詠璞,“氧化石墨烯/環氧樹脂奈米複合材料之合成及其抗腐蝕特性研究,” 中興大學化學工程學系, 碩士論文, 2017.
[47] M. G. Fontana, Corrosion engineering, Tata McGraw-Hill Education, New Delhi, 2005.
[48] D. A. Jones, Principles and prevention of corrosion, Macmillan, New York, 1992.
[49] B. Nimmo, and G. Hinds, Beginners guide to corrosion, National Physical Laboratory, Teddington, 2003.
[50] X. Zhang, “Galvanic corrosion,” Uhlig's Corrosion Handbook, 51: p. 123, 2011.
[51] S. Sharland, “A review of the theoretical modelling of crevice and pitting corrosion,” Corrosion science, 27 (3): p. 289-323, 1987.
[52] A. Betts, and L. Boulton, “Crevice corrosion: review of mechanisms, modelling, and mitigation,” British corrosion journal, 28 (4): p. 279-296, 1993.
[53] F.-Y. Ma, “Corrosive effects of chlorides on metals,” Pitting corrosion, 294: p. 139-78, 2012.
[54] Z. Szklarska-Smialowska, Pitting corrosion of metals, National Association of Corrosion Engineers, Houston, 1986.
[55] J. R. Scully, Encyclopedia of Electrochemistry: Online, wiley, Online, 2007.
[56] V. Cihal, Intergranular corrosion of steels and alloys, Elsevier, New York, 1984.
[57] D. Upadhyay, M. A. Panchal, R. Dubey, and V. Srivastava, “Corrosion of alloys used in dentistry: A review,” Materials Science and Engineering: A, 432 (1-2): p. 1-11, 2006.
[58] A. Akcil, and H. Ciftci, “A study of the selective leaching of complex sulphides from the Eastern Black Sea Region, Turkey,” Minerals engineering, 15 (6): p. 457-459, 2002.
[59] 楊建華, and 周長彬,“可攜式氫燃料電池儲氫氣瓶銲道防蝕研究,” 國立交通大學工學院精密與自動化工程學程, 碩士論文, 2010.
[60] 張伯鴻,“海水淡化廠出水最佳防蝕方式研究,” 成功大學環境工程學系, 碩士論文, 2004.
[61] 楊淑梅,“以溶膠-凝膠程序製備無機複合膜之抗高溫氧化及防蝕性質研究,” 中原大學化學工程學系, 碩士論文, 2001.
[62] B. Joesphson, “Possible new effects in superconductive tunneling,” Phys. Lett, 1 (7): p. 251, 1962.
[63] Q. Design, Magnetic Property Measurement System MPMS XL Hardware Reference Manual, Quantum Design, San Diego, 1996.
[64] 高育祥,“玻璃基板上高附著濕製程金屬化之研究,” 國立清華大學化學工程學系, 碩士論文, 2018.
[65] H. Matsubara, and A. Yamada, “Control of magnetic properties of chemically deposited cobalt nickel phosphorus films by electrolysis,” Journal of the Electrochemical Society, 141 (9): p. 2386, 1994.
[66] M. Kalantary, K. Holbrook, and P. Wells, “Optimisation of a bath for electroless plating and its use for the production of nickel-phosphorus-silicon carbide coatings,” Transactions of the IMF, 71 (2): p. 55-61, 1993.
[67] H. Chen, Q. Wang, H. Dong, L. Xi, X. Lin, F. Pan, and Z. Ma, “Electroless plating of Ni-PW coatings containing scattered Nb2O5 on sintered NdFeB substrate,” Materials Research, 18 (5): p. 1089-1096, 2015.
[68] Z. Yongwei, C. Yongjun, Z. Changhong, and S. Xiangqian, “On the Ni-P-Nanodiamond Composite Electroless Plating,” Acta Metallurgica Sinica (English Letters), 23 (6): p. 409-415, 2010.
[69] T. S. Narayanan, S. Selvakumar, and A. Stephen, “Electroless Ni–Co–P ternary alloy deposits: preparation and characteristics,” Surface and Coatings Technology, 172 (2-3): p. 298-307, 2003.
[70] M. Younan, I. Aly, and M. Nageeb, “Effect of heat treatment on electroless ternary nickel–cobalt–phosphorus alloy,” Journal of Applied Electrochemistry, 32 (4): p. 439-446, 2002.
[71] A. Kumar, A. K. Suhag, A. Singh, S. K. Sharma, M. Kumar, and D. Kumar, “Deposition and characterization of amorphous electroless Ni-Co-P alloy thin film for ULSI application,” Materials Research Express, 1 (3): p. 035007, 2014.
[72] K. Hüller, M. Sydow, and G. Dietz, “Magnetic anisotropy, magnetostriction and intermediate range order in Co-P alloys,” Journal of magnetism and magnetic materials, 53 (3): p. 269-274, 1985.
[73] H. Maeda, “High coercivity Co and Co‐Ni alloy films,” Journal of Applied Physics, 53 (5): p. 3735-3739, 1982.
[74] H. Luo, D. Wang, J. He, and Y. Lu, “Magnetic cobalt nanowire thin films,” The Journal of Physical Chemistry B, 109 (5): p. 1919-1922, 2005.
[75] T.-Y. Kim, H.-J. Son, S.-K. Lim, Y.-I. Song, H.-S. Park, and S.-J. Suh, “Electroless nickel alloy deposition on SiO2 for application as a diffusion barrier and seed layer in 3D copper interconnect technology,” Journal of nanoscience and nanotechnology, 14 (12): p. 9515-9524, 2014.
[76] S. He, S. He, F. Gao, X. Bo, Q. Wang, X. Chen, J. Duan, and C. Zhao, “Ni2P@ carbon core-shell nanorod array derived from ZIF-67-Ni: Effect of phosphorization temperature on morphology, structure and hydrogen evolution reaction performance,” Applied Surface Science, 457: p. 933-941, 2018.
[77] C. Liu, T. Gong, J. Zhang, X. Zheng, J. Mao, H. Liu, Y. Li, and Q. Hao, “Engineering Ni2P-NiSe2 heterostructure interface for highly efficient alkaline hydrogen evolution,” Applied Catalysis B: Environmental, 262: p. 118245, 2020.
[78] X.-Y. Zhang, B.-Y. Guo, Q.-W. Chen, B. Dong, J.-Q. Zhang, J.-F. Qin, J.-Y. Xie, M. Yang, L. Wang, and Y.-M. Chai, “Ultrafine and highly-dispersed bimetal Ni2P/Co2P encapsulated by hollow N-doped carbon nanospheres for efficient hydrogen evolution,” International Journal of Hydrogen Energy, 44 (29): p. 14908-14917, 2019.
[79] Y. Wu, H. Wang, S. Ji, B. G. Pollet, X. Wang, and R. Wang, “Engineered porous Ni 2 P-nanoparticle/Ni 2 P-nanosheet arrays via the Kirkendall effect and Ostwald ripening towards efficient overall water splitting,” Nano Research, 13: p. 2098-2105, 2020.
[80] K. Zeppenfeld, and W. Jeitschko, “Magnetic behaviour of Ni3P Ni2P, NiP3 and the series Ln2Ni12P7 (Ln= Pr, Nd, Sm, Gd, Lu),” Journal of Physics and Chemistry of Solids, 54 (11): p. 1527-1531, 1993.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *