|
[1] L. Zhang, and A. Ciftja, “Recycling of solar cell silicon scraps through filtration, Part I: Experimental investigation,” Solar energy materials and solar cells, 92 (11): p. 1450-1461, 2008. [2] 林鼎將,“矽基板線鋸加工之表面形貌分析研究,” 國立臺灣科技大學機械工程系, 碩士論文, 2013. [3] S. Schwinde, M. Berg, and M. Kunert, “New potential for reduction of kerf loss and wire consumption in multi-wire sawing,” Solar Energy Materials and Solar Cells, 136: p. 44-47, 2015. [4] X. Yu, P. Wang, X. Li, and D. Yang, “Thin Czochralski silicon solar cells based on diamond wire sawing technology,” Solar energy materials and solar cells, 98: p. 337-342, 2012. [5] H. Li, Y. Gao, P. Ge, W. Bi, and L. Zhang, “Study on process parameters of fabrication fine diameter electroplated diamond wire for slicing crystalline silicon solar cell,” The International Journal of Advanced Manufacturing Technology, 106 (7-8): p. 3153-3175, 2020. [6] M. Fischer, "ITRPV 9th edition 2018 report release and key findings." in PV CellTech conference, 14: p. 1-42, 2018. [7] J. S. Wang, Z. F. Li, and W. B. Wang, "Research Progress of Slicing Method for Solar Silicon Wafer." in Advanced Materials Research, 800: p. 191-195, 2013. [8] 林韋辰,“電鑄法鑽石線切割藍寶石之特性研究,” 國立清華大學動力機械工程學系, 碩士論文, 2013. [9] H. J. Möller, “Basic mechanisms and models of multi‐wire sawing,” Advanced engineering materials, 6 (7): p. 501-513, 2004. [10] A. Bidiville, K. Wasmer, J. Michler, P. Nasch, M. Van der Meer, and C. Ballif, “Mechanisms of wafer sawing and impact on wafer properties,” Progress in photovoltaics: research and applications, 18 (8): p. 563-572, 2010. [11] F. Cao, K. Chen, J. Zhang, X. Ye, J. Li, S. Zou, and X. Su, “Next-generation multi-crystalline silicon solar cells: Diamond-wire sawing, nano-texture and high efficiency,” Solar Energy Materials and Solar Cells, 141: p. 132-138, 2015. [12] A. Kumar, and S. N. Melkote, “Diamond wire sawing of solar silicon wafers: a sustainable manufacturing alternative to loose abrasive slurry sawing,” Procedia Manufacturing, 21: p. 549-566, 2018. [13] DMT-Technologies, “Diamond Wire Sawing,” DMT Technologies Meyer Burger, 2010. [14] C. Yang, H. Wu, S. Melkote, and S. Danyluk, “Comparative analysis of fracture strength of slurry and diamond wire sawn multicrystalline silicon solar wafers,” Advanced Engineering Materials, 15 (5): p. 358-365, 2013. [15] T. Enomoto, Y. Shimazaki, Y. Tani, M. Suzuki, and Y. Kanda, “Development of a resinoid diamond wire containing metal powder for slicing a slicing ingot,” CIRP Annals, 48 (1): p. 273-276, 1999. [16] G. Sheela, and M. Pushpavanam, “Diamond-dispersed electroless nickel coatings,” Metal finishing, 100 (1): p. 45-47, 2002. [17] M. J. Zhou, Diamond wire production method., CN 104088000A: p. 1-8, 2014. [18] C. Yao, W. Zhang, K. Li, X. Xu, and H. Li, “Study on the formation mechanism of the magnetic abrasive particle layer on the surface of saw wire in magnetic induction-free abrasive wire sawing,” Powder Technology, 327: p. 163-169, 2018. [19] D. M. Xu, H. B. Zhang, J. Gao, and M. H. Cong, "Study on Manufacturing Technology of Resin Bonded Diamond Wire Saw." in Advanced Materials Research, 602: p. 2054-2058, 2013. [20] H. Wu, “Wire sawing technology: a state-of-the-art review,” Precision engineering, 43: p. 1-9, 2016. [21] G. Schmid, and L. F. Chi, “Metal clusters and colloids,” Advanced Materials, 10 (7): p. 515-526, 1998. [22] A. Brenner, and G. E. Riddell, “Nickel plating on steel by chemical reduction,” Plating and surface finishing, 85 (8): p. 54-55, 1998. [23] B. Abner, and G. E. Riddell, Nickel plating by chemical reduction, US 2532283A: p. 1-5, 1950. [24] T. Yonezawa, K. Imamura, and N. Kimizuka, “Direct preparation and size control of palladium nanoparticle hydrosols by water-soluble isocyanide ligands,” Langmuir, 17 (16): p. 4701-4703, 2001. [25] K.-C. Lai, P.-Y. Wu, C.-M. Chen, T.-C. Wei, C.-H. Wu, and S.-P. Feng, “Interfacial characterizations of a nickel-phosphorus layer electrolessly deposited on a silane compound-modified silicon wafer under thermal annealing,” Journal of Electronic Materials, 45 (10): p. 4813-4822, 2016. [26] R. Guo, S. Jiang, Y. Zheng, and J. Lan, “Electroless nickel deposition of a palladium‐activated self‐assembled monolayer on polyester fabric,” Journal of applied polymer science, 127 (5): p. 4186-4193, 2013. [27] I. Baskaran, T. S. Narayanan, and A. Stephen, “Effect of accelerators and stabilizers on the formation and characteristics of electroless Ni–P deposits,” Materials chemistry and physics, 99 (1): p. 117-126, 2006. [28] R. Parkinson, “Properties and applications of electroless nickel,” Nickel Development Institute, 37: p. 1-33, 1997. [29] Z. Li, Y. Deng, B. Shen, L. Liu, and W. Hu, “Synthesis, characterization and microwave properties of Ni–Co–P hollow spheres,” Journal of alloys and compounds, 491 (1-2): p. 406-410, 2010. [30] Y. Huang, and F. Cui, “Effect of complexing agent on the morphology and microstructure of electroless deposited Ni–P alloy,” Surface and coatings technology, 201 (9-11): p. 5416-5418, 2007. [31] J. Judge, J. Morrison, D. Speliotis, and G. Bate, “Magnetic Properties and Corrosion Behavior of Thin Electroless Co‐P Deposits,” Journal of the Electrochemical Society, 112 (7): p. 681, 1965. [32] A. Vaškelis, A. Jagminien, and A. Prokoptchik, “Surface layer pH in electroless nickel plating in hypophosphite solutions,” Surface and Coatings Technology, 27 (4): p. 301-310, 1986. [33] Y. Okinaka, and T. Osaka, “Electroless deposition processes: fundamentals and applications,” Advances in electrochemical science and engineering, 3: p. 55-116, 2008. [34] X. Xi, H. Miao, R. Zhang, and J. Cheng, “Effect of phosphorus content on the properties of Ni-P coated diamond,” Surface and Coatings Technology, 297: p. 27-33, 2016. [35] J. Ahn, D. Kim, J. Lee, H. Chung, C. Kim, and H. Hai, “Improving the adhesion of electroless-nickel coating layer on diamond powder,” Surface and Coatings Technology, 201 (6): p. 3793-3796, 2006. [36] Y.-h. Dong, X.-b. He, R. Ud-Din, C.-y. Guo, L. Xu, Y.-t. Huang, and X.-h. Qu, “Fabrication and thermal stability of Ni-P coated diamond powder using electroless plating,” International Journal of Minerals, Metallurgy, and Materials, 18 (4): p. 479, 2011. [37] C. Kittel, P. McEuen, and P. McEuen, Introduction to solid state physics, Wiley, New York, 1996. [38] B. Cullity, Introduction to Magnetic Materials, Wiley, Addison, 1972. [39] 楊正旭,“超高真空中在矽晶片上成長鈷超薄膜之真空中量測磁性研究,” 輔仁大學物理學系, 碩士論文, 1999. [40] J. A. C. Bland, and B. Heinrich, Magnetic anisotropy, magnetization and band structure, Springer, Berlin, 1994. [41] D. K. Cheng, Field and wave electromagnetics Wesley Addison, 1989. [42] 王坤池,“超高真空中在Ge(111)面上成長Co超薄膜之退火效應及磁性現象研究,” 國立臺灣科技大學機械工程系, 碩士論文, 2001. [43] 戴道生, 鐵磁學, 科學出版社, 北京, 2017. [44] 謝衛慶,“化學鍍方法製備鎳鈷磷合金及其特性之研究,” 國立成功大學化學工程學系, 碩士論文, 2008. [45] D. J. Griffiths, “Introduction to electrodynamics,” American Journal of Physics, 73 (6): p. 574-576, 2005. [46] 陳詠璞,“氧化石墨烯/環氧樹脂奈米複合材料之合成及其抗腐蝕特性研究,” 中興大學化學工程學系, 碩士論文, 2017. [47] M. G. Fontana, Corrosion engineering, Tata McGraw-Hill Education, New Delhi, 2005. [48] D. A. Jones, Principles and prevention of corrosion, Macmillan, New York, 1992. [49] B. Nimmo, and G. Hinds, Beginners guide to corrosion, National Physical Laboratory, Teddington, 2003. [50] X. Zhang, “Galvanic corrosion,” Uhlig's Corrosion Handbook, 51: p. 123, 2011. [51] S. Sharland, “A review of the theoretical modelling of crevice and pitting corrosion,” Corrosion science, 27 (3): p. 289-323, 1987. [52] A. Betts, and L. Boulton, “Crevice corrosion: review of mechanisms, modelling, and mitigation,” British corrosion journal, 28 (4): p. 279-296, 1993. [53] F.-Y. Ma, “Corrosive effects of chlorides on metals,” Pitting corrosion, 294: p. 139-78, 2012. [54] Z. Szklarska-Smialowska, Pitting corrosion of metals, National Association of Corrosion Engineers, Houston, 1986. [55] J. R. Scully, Encyclopedia of Electrochemistry: Online, wiley, Online, 2007. [56] V. Cihal, Intergranular corrosion of steels and alloys, Elsevier, New York, 1984. [57] D. Upadhyay, M. A. Panchal, R. Dubey, and V. Srivastava, “Corrosion of alloys used in dentistry: A review,” Materials Science and Engineering: A, 432 (1-2): p. 1-11, 2006. [58] A. Akcil, and H. Ciftci, “A study of the selective leaching of complex sulphides from the Eastern Black Sea Region, Turkey,” Minerals engineering, 15 (6): p. 457-459, 2002. [59] 楊建華, and 周長彬,“可攜式氫燃料電池儲氫氣瓶銲道防蝕研究,” 國立交通大學工學院精密與自動化工程學程, 碩士論文, 2010. [60] 張伯鴻,“海水淡化廠出水最佳防蝕方式研究,” 成功大學環境工程學系, 碩士論文, 2004. [61] 楊淑梅,“以溶膠-凝膠程序製備無機複合膜之抗高溫氧化及防蝕性質研究,” 中原大學化學工程學系, 碩士論文, 2001. [62] B. Joesphson, “Possible new effects in superconductive tunneling,” Phys. Lett, 1 (7): p. 251, 1962. [63] Q. Design, Magnetic Property Measurement System MPMS XL Hardware Reference Manual, Quantum Design, San Diego, 1996. [64] 高育祥,“玻璃基板上高附著濕製程金屬化之研究,” 國立清華大學化學工程學系, 碩士論文, 2018. [65] H. Matsubara, and A. Yamada, “Control of magnetic properties of chemically deposited cobalt nickel phosphorus films by electrolysis,” Journal of the Electrochemical Society, 141 (9): p. 2386, 1994. [66] M. Kalantary, K. Holbrook, and P. Wells, “Optimisation of a bath for electroless plating and its use for the production of nickel-phosphorus-silicon carbide coatings,” Transactions of the IMF, 71 (2): p. 55-61, 1993. [67] H. Chen, Q. Wang, H. Dong, L. Xi, X. Lin, F. Pan, and Z. Ma, “Electroless plating of Ni-PW coatings containing scattered Nb2O5 on sintered NdFeB substrate,” Materials Research, 18 (5): p. 1089-1096, 2015. [68] Z. Yongwei, C. Yongjun, Z. Changhong, and S. Xiangqian, “On the Ni-P-Nanodiamond Composite Electroless Plating,” Acta Metallurgica Sinica (English Letters), 23 (6): p. 409-415, 2010. [69] T. S. Narayanan, S. Selvakumar, and A. Stephen, “Electroless Ni–Co–P ternary alloy deposits: preparation and characteristics,” Surface and Coatings Technology, 172 (2-3): p. 298-307, 2003. [70] M. Younan, I. Aly, and M. Nageeb, “Effect of heat treatment on electroless ternary nickel–cobalt–phosphorus alloy,” Journal of Applied Electrochemistry, 32 (4): p. 439-446, 2002. [71] A. Kumar, A. K. Suhag, A. Singh, S. K. Sharma, M. Kumar, and D. Kumar, “Deposition and characterization of amorphous electroless Ni-Co-P alloy thin film for ULSI application,” Materials Research Express, 1 (3): p. 035007, 2014. [72] K. Hüller, M. Sydow, and G. Dietz, “Magnetic anisotropy, magnetostriction and intermediate range order in Co-P alloys,” Journal of magnetism and magnetic materials, 53 (3): p. 269-274, 1985. [73] H. Maeda, “High coercivity Co and Co‐Ni alloy films,” Journal of Applied Physics, 53 (5): p. 3735-3739, 1982. [74] H. Luo, D. Wang, J. He, and Y. Lu, “Magnetic cobalt nanowire thin films,” The Journal of Physical Chemistry B, 109 (5): p. 1919-1922, 2005. [75] T.-Y. Kim, H.-J. Son, S.-K. Lim, Y.-I. Song, H.-S. Park, and S.-J. Suh, “Electroless nickel alloy deposition on SiO2 for application as a diffusion barrier and seed layer in 3D copper interconnect technology,” Journal of nanoscience and nanotechnology, 14 (12): p. 9515-9524, 2014. [76] S. He, S. He, F. Gao, X. Bo, Q. Wang, X. Chen, J. Duan, and C. Zhao, “Ni2P@ carbon core-shell nanorod array derived from ZIF-67-Ni: Effect of phosphorization temperature on morphology, structure and hydrogen evolution reaction performance,” Applied Surface Science, 457: p. 933-941, 2018. [77] C. Liu, T. Gong, J. Zhang, X. Zheng, J. Mao, H. Liu, Y. Li, and Q. Hao, “Engineering Ni2P-NiSe2 heterostructure interface for highly efficient alkaline hydrogen evolution,” Applied Catalysis B: Environmental, 262: p. 118245, 2020. [78] X.-Y. Zhang, B.-Y. Guo, Q.-W. Chen, B. Dong, J.-Q. Zhang, J.-F. Qin, J.-Y. Xie, M. Yang, L. Wang, and Y.-M. Chai, “Ultrafine and highly-dispersed bimetal Ni2P/Co2P encapsulated by hollow N-doped carbon nanospheres for efficient hydrogen evolution,” International Journal of Hydrogen Energy, 44 (29): p. 14908-14917, 2019. [79] Y. Wu, H. Wang, S. Ji, B. G. Pollet, X. Wang, and R. Wang, “Engineered porous Ni 2 P-nanoparticle/Ni 2 P-nanosheet arrays via the Kirkendall effect and Ostwald ripening towards efficient overall water splitting,” Nano Research, 13: p. 2098-2105, 2020. [80] K. Zeppenfeld, and W. Jeitschko, “Magnetic behaviour of Ni3P Ni2P, NiP3 and the series Ln2Ni12P7 (Ln= Pr, Nd, Sm, Gd, Lu),” Journal of Physics and Chemistry of Solids, 54 (11): p. 1527-1531, 1993.
|