帳號:guest(18.188.70.131)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂育綸
作者(外文):Lu, Yu-Lun.
論文名稱(中文):液動式微型化灌流式細胞培養平臺以應用於藥物檢測
論文名稱(外文):Hydraulically-driven Micro-perfusion Cell Culture Platform for Drug Screening
指導教授(中文):黃振煌
指導教授(外文):Huang, Jen-Huang
口試委員(中文):朱一民
姜文軒
口試委員(外文):Chu, I-Ming
Chiang, Wen-Hsuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:108032517
出版年(民國):110
畢業學年度:110
語文別:英文
論文頁數:69
中文關鍵詞:體外培養模型細胞培養藥物篩選微流體灌輸系統液壓驅動微灌溉系統剪切力
外文關鍵詞:in-vitrodynamic culturehydraulically-drivendrug screeningmicro-perfusionmicrofluidicsperfusionshear stress
相關次數:
  • 推薦推薦:0
  • 點閱點閱:340
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
體外細胞培養模型是醫學生物技術工程的基礎研究工具,其被應用於藥物篩選等癌症相
關研究。目前被廣泛使用的模型,如:細胞培養角瓶或培養皿等,都因靜態培養條件不能準
確地模擬體內腫瘤環境,而導致篩選結果不盡準確。
在此研究中,透過雷射切割及逐層堆疊技術而建構出一微灌輸培養平台。這個平台包
含了三個獨立運作的液壓驅動系統,以同時進行三組細胞培養與藥物篩選。此外,這樣的系
統組合可以實現可控制的剪切力與應變力;而各個系統都包含三個部分:一個負責維持運作
的液壓驅動微幫浦、一對防止逆流的可更換微單向閥,以及一可自由拆卸的培養器。並且三
個系統都由同一個蠕動式幫浦提供總驅動力。此平台先透過單純的細胞培養實驗以確保細胞
在動態條件下依然能正常增殖;最後,在藥物測試的實驗中比較了靜態與動態不同條件下,
細胞的型態變化以及生存率等表現。
未來,將整合更多系統單位以建立更完善的平台,並改良成三維細胞培養模型,更準
確地進行細胞培養與藥物測試,以確立此平台的開發潛力。
Cell culture has been regarded as a foundational tool for medical biotechnology, for instance, it is widely applied in cancer research for drug screening. Conventional in vitro culture models, such as flasks or petri dishes, have been mostly used so far; yet static conditions might make it hard to simulate dynamic environment of the human system, resulting in an inaccurate screening outcome.
Here, a microfluidic platform operating in dynamic conditions was fabricated by laser cutting and additive lamination manufacturing. In this platform, three hydraulically-driven perfusion systems were included, suggesting three models for culturing and screening could be done simultaneously. In addition, controllable shear stress and mechanical strain were achievable due to the combination of perfusion systems, where each system consisted of three parts: a hydraulically- driven pump to keep the whole system working automatically, a pair of micro-valves for ensuring medium flowed one direction only, and a bioreactor where the cells were cultured and treated. The feasibility of platform was first examined by a culture experiment to ensure the normal proliferation. Finally, cell morphology and viability under static and different dynamic conditions were compared. In the future, more system units will be integrated to establish a more complete platform and improved into a three-dimensional model for more accurate cell culture and drug screening to ensure the potential of this platform.
Abstract _____________________________I
摘要 ________________________________II
序言 ________________________________III
Contents ____________________________IV
List of Illustrations ____________________VII
List of Tables ________________________X
Chapter 1. Introduction ________________1
1-1 Background.............................................1
1-1-1 Cancer statistics..................................1
1-1-2 Cancer therapies..................................2
1-2 Conventional Screening Models..............4
1-2-1 In vitro models .....................................4
1-2-2 In vivo models......................................5
1-3 Dynamic Culture......................................6
1-4 Microfluidics Technology ........................8
1-4-1 Lab-on-chip system..............................8
1-4-2 Micro-perfusion system ......................9
1-5 Purposes ..................................................11
Chapter 2. Materials and Methods _________12
2-1 Materials ..................................................12
2-1-1 Polyethylene Terephthalate (PET) ..........12
2-1-2 Poly(methyl methacrylate) (PMMA) .........13
2-1-3 Polydimethylsiloxane (PDMS) Membrane...13
2-1-4 O’ring .......................................................14
2-1-5 Silicon Tubing ...........................................15
2-2 Platform Fabrication and Device Design........15
2-2-1 Fabrication Process ...................................16
2-2-2 Peristaltic Pump ..........................................18
2-2-3 Concept and Principle .................................19
2-2-4 Device Versions and Overview ....................21
2-2-5 Micro-pump .................................................26
2-2-6 Micro-valve...................................................30
2-2-7 Bioreactor.......................................................33
2-2-8 Platform Setup and Operating Procedure......34
2-3 Flow Measurements...........................................36
2-3-1 Flow pattern Analysis.......................................37
2-3-2 Flow Rate and Stability Test .............................37
2-3-3 Flow Rate Test of a Peristaltic Pump ................38
2-4 A549 Cell Culture .................................................38
2-4-1 Platform Sterilization .........................................39
2-4-2 Static Culture.....................................................40
2-4-3 Dynamic Culture ...............................................40
2-5 Drug Screening .....................................................41
2-5-1 Screening Procedure .........................................41
2-5-2 Live/Dead Assay ................................................42
2-5-3 Counting Cell Kit-8 (CCK-8) Cytotoxicity Assay ...42
2-5-4 Diffusion Test.........................................................43
Chapter 3. Results and Discussion __________________44
3-1 Flow Measurements...................................................44
3-1-1 Flow Pattern ...........................................................44
3-1-2 Stability and Flow Rate Test ...................................46
3-1-3 Comparison: Peristaltic Pump versus Platform ......48
3-2 Cell Culture.................................................................49
3-2-1 Static Culture...........................................................49
3-2-2 Dynamic Culture .....................................................50
3-3 Drug Screening ...........................................................52
3-3-1 Qualitative Analysis ..................................................52
3-3-2 Quantitative Analysis ...............................................54
3-4 Discussion....................................................................56
3-4-1 Diffusion Curve.........................................................56
3-4-2 Comparison: Serum versus Serum-free ..................57
3-4-3 Impact of Flow Stress ..............................................59
Chapter 4. Conclusions and Future Work ______________63
4-1 Conclusions..................................................................63
4-2 Future Work .................................................................64
4-2-1 Screening Assays of More Cell Lines .......................64
4-2-2 Expansion of Device Units .......................................64
4-2-3 3D Screening............................................................65
4-2-4 Drug Screening with Serum......................................65
Chapter 5 References ______________________________66
1. Huda, S., Alam, M.A. & Sharma, P.K. Smart nanocarriers-based drug delivery for cancer therapy: An innovative and developing strategy. Journal of Drug Delivery Science and Technology 60 (2020).
2. Tran, S., DeGiovanni, P.J., Piel, B. & Rai, P. Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med 6, 44 (2017).
3. Fidler, M.M., Bray, F. & Soerjomataram, I. The global cancer burden and human development: A review. Scand J Public Health 46, 27-36 (2018).
4. Milroy, M.J. Cancer Statistics: Global and National, in Quality Cancer Care 29-35 (2018).
5. Wu, T.Y., Chung, C.H., Lin, C.N., Hwang, J.S. & Wang, J.D. Lifetime risks, loss of life expectancy, and health care expenditures for 19 types of cancer in Taiwan. Clin Epidemiol
10, 581-591 (2018).
6. Asche, C.V. et al. Society of Behavioral Medicine (SBM) position statement: support
increased knowledge and efforts to address the financial burden associated with cancer
treatment. Transl Behav Med (2020).
7. Miller, K.D. et al. Cancer statistics for adolescents and young adults, 2020. CA Cancer J
Clin (2020).
8. Kauppila, J.H., Johar, A. & Lagergren, P. Medical and Surgical Complications and Health-
related Quality of Life After Esophageal Cancer Surgery. Ann Surg 271, 502-508 (2020).
9. Minnella, E.M. et al. The impact of improved functional capacity before surgery on
postoperative complications: a study in colorectal cancer. Acta Oncol 58, 573-578 (2019).
10. Chevallay, M. et al. Esophageal cancer surgery: review of complications and their
management. Ann N Y Acad Sci (2020).
11. Liu, Z. et al. Preventive Effect of Curcumin Against Chemotherapy-Induced Side-Effects.
Front Pharmacol 9, 1374 (2018).
12. Jiang, T. et al. Enhanced Transdermal Drug Delivery by Transfersome-Embedded
Oligopeptide Hydrogel for Topical Chemotherapy of Melanoma. ACS Nano 12, 9693-9701
(2018).
13. Oun, R., Moussa, Y.E. & Wheate, N.J. The side effects of platinum-based chemotherapy
drugs: a review for chemists. Dalton Trans 47, 6645-6653 (2018).
14. Milborne, B., Arafat, A., Layfield, R., Thompson, A. & Ahmed, I. The Use of Biomaterials
in Internal Radiation Therapy. Recent Progress in Materials 2, 1-34 (2020).
15. Maschmeyer, R.T., Gholami, Y.H. & Kuncic, Z. Clustering effects in nanoparticle-enhanced beta(-) emitting internal radionuclide therapy: a Monte Carlo study. Phys Med Biol 65,
125007 (2020).
16. Gao, Q., Zhou, G., Lin, S.J., Paus, R. & Yue, Z. How chemotherapy and radiotherapy
damage the tissue: Comparative biology lessons from feather and hair models. Exp Dermatol 28, 413-418 (2019).
17. Song, G., Cheng, L., Chao, Y., Yang, K. & Liu, Z. Emerging Nanotechnology and Advanced Materials for Cancer Radiation Therapy. Adv Mater 29 (2017).
18. Farkona, S., Diamandis, E.P. & Blasutig, I.M. Cancer immunotherapy: the beginning of the end of cancer? BMC Med 14, 73 (2016).
19. Riley, R.S., June, C.H., Langer, R. & Mitchell, M.J. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov 18, 175-196 (2019).
20. Galluzzi, L., Chan, T.A., Kroemer, G., Wolchok, J.D. & López-Soto, A. The hallmarks of successful anticancer immunotherapy. Science translational medicine 10 (2018).
21. Kouidhi, S., Ben Ayed, F. & Benammar Elgaaied, A. Targeting Tumor Metabolism: A New Challenge to Improve Immunotherapy. Front Immunol 9, 353 (2018).
22. Ellis, L.M. & Hicklin, D.J. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8, 579-591 (2008).
23. Boumahdi, S. & de Sauvage, F.J. The great escape: tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov 19, 39-56 (2020).
24. Jin, J. et al. Identification of Genetic Mutations in Cancer: Challenge and Opportunity in the New Era of Targeted Therapy. Front Oncol 9, 263 (2019).
25. LaBarbera, D.V., Reid, B.G. & Yoo, B.H. The multicellular tumor spheroid model for high- throughput cancer drug discovery. Expert opinion on drug discovery 7, 819-830 (2012).
26. Imamura, Y. et al. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncol Rep 33, 1837-1843 (2015).
27. Poenick, S. et al. Comparative label-free monitoring of immunotoxin efficacy in 2D and 3D mamma carcinoma in vitro models by impedance spectroscopy. Biosens Bioelectron 53, 370-376 (2014).
28. Kondo, J. & Inoue, M. Application of Cancer Organoid Model for Drug Screening and Personalized Therapy. Cells 8 (2019).
29. Stock, K. et al. Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery. Sci Rep 6, 28951 (2016).
30. Akasov, R. et al. Novel Doxorubicin Derivatives: Synthesis and Cytotoxicity Study in 2D and 3D in Vitro Models. Adv Pharm Bull 7, 593-601 (2017).
31. Lee, J.M. et al. Generation of uniform-sized multicellular tumor spheroids using hydrogel microwells for advanced drug screening. Sci Rep 8, 17145 (2018).
32. Mirab, F., Kang, Y.J. & Majd, S. Preparation and characterization of size-controlled glioma spheroids using agarose hydrogel microwells. PLoS One 14, e0211078 (2019).
33. Hirschhaeuser, F. et al. Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 148, 3-15 (2010).
34. Brancato, V., Oliveira, J.M., Correlo, V.M., Reis, R.L. & Kundu, S.C. Could 3D models of cancer enhance drug screening? Biomaterials 232, 119744 (2020).
35. Decaestecker, C., Debeir, O., Van Ham, P. & Kiss, R. Can anti-migratory drugs be screened in vitro? A review of 2D and 3D assays for the quantitative analysis of cell migration. Med Res Rev 27, 149-176 (2007).
36. Kelland, L.R. Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer 40, 827-836 (2004).
37. Mak, I.W., Evaniew, N. & Ghert, M. Lost in translation: animal models and clinical trials in cancer treatment. American journal of translational research 6, 114 (2014).
38. Sharpless, N.E. & Depinho, R.A. The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov 5, 741-754 (2006).
39. Blatt, N.L. et al. In vivo screening models of anticancer drugs. Life Sci. J 10, 1892 (2013).
40. Dothel, G., Vasina, V., Barbara, G. & De Ponti, F. Animal models of chemically induced
intestinal inflammation: predictivity and ethical issues. Pharmacol Ther 139, 71-86 (2013).
41. Shurbaji, S., G, G.A., E, A.H., Elzatahry, A. & H, C.Y. Effect of Flow-Induced Shear Stress in Nanomaterial Uptake by Cells: Focus on Targeted Anti-Cancer Therapy. Cancers (Basel)
12 (2020).
42. Gagliardi, T.M., Chelikani, R., Yang, Y., Tuozzolo, G. & Yuan, H. Development of a novel,
high-throughput screening tool for efficient perfusion-based cell culture process
development. Biotechnol Prog 35, e2811 (2019).
43. Massai, D. et al. A Versatile Bioreactor for Dynamic Suspension Cell Culture. Application to
the Culture of Cancer Cell Spheroids. PLoS One 11, e0154610 (2016).
44. Elbakary, B. & Badhan, R.K.S. A dynamic perfusion based blood-brain barrier model for
cytotoxicity testing and drug permeation. Sci Rep 10, 3788 (2020).
45. Damiati, S., Kompella, U.B., Damiati, S.A. & Kodzius, R. Microfluidic Devices for Drug
Delivery Systems and Drug Screening. Genes (Basel) 9 (2018).
46. Tsui, J.H., Lee, W., Pun, S.H., Kim, J. & Kim, D.H. Microfluidics-assisted in vitro drug
screening and carrier production. Adv Drug Deliv Rev 65, 1575-1588 (2013).
47. Sackmann, E.K., Fulton, A.L. & Beebe, D.J. The present and future role of microfluidics in
biomedical research. Nature 507, 181-189 (2014).
48. Dutse, S.W. & Yusof, N.A. Microfluidics-based lab-on-chip systems in DNA-based
biosensing: an overview. Sensors (Basel) 11, 5754-5768 (2011).
49. Mu, H.Y. et al. Triple Selection Strategy for In Situ Labeling of Circulating Tumor Cells
with High Purity and Viability toward Preclinical Personalized Drug Sensitivity Analysis.
Adv Biosyst 4, e2000013 (2020).
50. Wei, L. et al. Microfluidics-enabled 96-well perfusion system for high-throughput tissue
engineering and long-term all-optical electrophysiology. Lab Chip 20, 4031-4042 (2020).
51. Jaberi, A. et al. Microfluidic Systems with Embedded Cell Culture Chambers for High-
Throughput Biological Assays. ACS Applied Bio Materials 3, 6661-6671 (2020).
52. Jiang, B. et al. Influence of Thermal Aging in Oil on the Friction and Wear Properties of
Nitrile Butadiene Rubber. Tribology Letters 67 (2019).
53. Zhang, J. et al. High-Performance Nitrile Butadiene Rubber Composites with Good
Mechanical Properties, Tunable Elasticity, and Robust Shape Memory Behaviors. Industrial & Engineering Chemistry Research 59, 15936-15947 (2020).
54. Zeng, H., Xie, Q., Ma, C. & Zhang, G. Silicone Elastomer with Surface-Enriched, Nonleaching Amphiphilic Side Chains for Inhibiting Marine Biofouling. ACS Applied Polymer Materials 1, 1689-1696 (2019).
55. You, J. et al. A Chinese Herbal Medicine, Inhibits the Proliferation and Migration of Human Non-Small Cell Lung Carcinoma (NSCLC) Cells, A549 and H1299, by Activating the SIRT1/AMPK Signaling Pathway. Med Sci Monit 24, 2126-2133 (2018).
56. Manegold, C. Gemcitabine (Gemzar) in non-small cell lung cancer. Expert Rev Anticancer Ther 4, 345-360 (2004).
57. Follain, G. et al. Fluids and their mechanics in tumour transit: shaping metastasis. Nat Rev Cancer 20, 107-124 (2020).
58. Frohlich, E. et al. Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols. Toxicol In Vitro 27, 409-417 (2013).
59. Bergman, E. et al. Cell stiffness predicts cancer cell sensitivity to ultrasound as a selective superficial cancer therapy. Bioeng Transl Med 6, e10226 (2021).
60. Qin, X. et al. Low shear stress induces ERK nuclear localization and YAP activation to control the proliferation of breast cancer cells. Biochem Biophys Res Commun 510, 219-223 (2019).
61. Feng, S., Mao, S., Zhang, Q., Li, W. & Lin, J. M. Online Analysis of Drug Toxicity to Cells with Shear Stress on an Integrated Microfluidic Chip. ACS Sens 4, 521-527 (2019).
62. COMŞA, S., CÎMPEAN, A. M. & RAICA, M. The Story of MCF-7 Breast Cancer Cell Line: 40 years of Experience in Research. ANTICANCER RESEARCH 35, 3147-3154 (2015).
63. Arneth, B. Tumor Microenvironment. Medicina (Kaunas) 56, (2019).
64. Hassan, G. & Seno, M. Blood and Cancer: Cancer Stem Cells as Origin of Hematopoietic
Cells in Solid Tumor Microenvironments. Cells 9 (2020).
65. Nia, H. T., Munn, L. L. & Jain, R. K. Physical traits of cancer. Science 370 (2020).
66. Monteiro, M. V., Gaspar, V. M., Ferreira, L. P. & Mano, J. F. Hydrogel 3D in vitro tumor
models for screening cell aggregation mediated drug response. Biomater Sci 8, 1855-1864
(2020).
67. Vega, S. L. et al. Combinatorial hydrogels with biochemical gradients for screening 3D
cellular microenvironments. Nat Commun 9, 614 (2018).
68. Cho, C. Y. et al. Development of a Novel Hanging Drop Platform for Engineering
Controllable 3D Microenvironments. Front Cell Dev Biol 8, 327, (2020).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *