|
[1] A. Mahapatra, D. Prochowicz, M. M. Tavakoli, “A review of aspects of additive engineering in perovskite solar cells,” Journal of Materials Chemistry A, vol. 8, no. 1, pp. 27-54, 2020. [2] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009. [3] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Scientific reports, vol. 2, no. 1, pp. 1-7, 2012. [4] H.-S. Kim, C.-R. Lee, J.-H. Im, “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%,” Scientific Reports, vol. 2, pp. 591, 2012. [5] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature, vol. 499, no. 7458, pp. 316-319, 2013. [6] M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, vol. 501, no. 7467, pp. 395-398, 2013. [7] J. Seo, J. H. Noh, and S. I. Seok, “Rational strategies for efficient perovskite solar cells,” Accounts of chemical research, vol. 49, no. 3, pp. 562-572, 2016. [8] N. NREL, “Best research-cell efficiencies,” National Renewable Energy Laboratory: Golden, Colorado, 2020. [9] L. Meng, J. You, T.-F. Guo, and Y. Yang, “Recent advances in the inverted planar structure of perovskite solar cells,” Accounts of chemical research, vol. 49, no. 1, pp. 155-165, 2016. [10] T. Liu, K. Chen, Q. Hu, R. Zhu, and Q. Gong, “Inverted perovskite solar cells: progresses and perspectives,” Advanced Energy Materials, vol. 6, no. 17, pp. 1600457, 2016. [11] C.-G. Wu, C.-H. Chiang, Z.-L. Tseng, “High efficiency stable inverted perovskite solar cells without current hysteresis,” Energy & Environmental Science, vol. 8, no. 9, pp. 2725-2733, 2015. [12] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, U. Bach, Y. Cheng, and L. Spiccia, “Perovskite solar cells hot paper a fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed., vol. 53, pp. 9898-9903, 2014. [13] W. Qiu, T. Merckx, M. Jaysankar, C. M. De La Huerta, “Pinhole-free perovskite films for efficient solar modules,” Energy & Environmental Science, vol. 9, no. 2, pp. 484-489, 2016. [14] J. Lee, H. Kang, G. Kim, H. Back, J. Kim, S. Hong, “Achieving large‐area planar perovskite solar cells by introducing an interfacial compatibilizer,” Advanced Materials, vol. 29, no. 22, pp. 1606363, 2017. [15] J.-H. Im, H.-S. Kim, and N.-G. Park, “Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3,” Apl Materials, vol. 2, no. 8, pp. 081510, 2014. [16] H. Shen, Y. Wu, J. Peng, T. Duong, “Improved reproducibility for perovskite solar cells with 1 cm2 active area by a modified two-step process,” ACS applied materials & interfaces, vol. 9, no. 7, pp. 5974-5981, 2017. [17] T.-S. Su, T.-E. Fan, H.-K. Si, D.-A. Le, N. Perumbalathodi, and T.-C. Wei, “Characterization on Highly Efficient Perovskite Solar Cells Made from One‐Step and Two‐Step Solution Processes,” Solar RRL, pp. 2100109. [18] Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu, Y. Wang, Z. Yin, J. Wu, X. Zhang, and J. You, “Planar‐structure perovskite solar cells with efficiency beyond 21%,” Advanced materials, vol. 29, no. 46, pp. 1703852, 2017. [19] Z. Zhou, Z. Wang, Y. Zhou, S. Pang, D. Wang, H. Xu, Z. Liu, N. P. Padture, and G. Cui, “Methylamine‐Gas‐Induced Defect‐Healing Behavior of CH3NH3PbI3 Thin Films for Perovskite Solar Cells,” Angewandte Chemie, vol. 127, no. 33, pp. 9841-9845, 2015. [20] D. Bogachuk, L. Wagner, S. Mastroianni, M. Daub, H. Hillebrecht, and A. Hinsch, “The nature of the methylamine–MAPbI3 complex: fundamentals of gas-induced perovskite liquefaction and crystallization,” Journal of Materials Chemistry A, vol. 8, no. 19, pp. 9788-9796, 2020. [21] C. S. T. Photovoltaic, “Modules—Design Qualification and Type Approval,” IEC, vol. 1215, pp. 2005-05, 2005. [22] G. E. Eperon, S. N. Habisreutinger, T. Leijtens, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS nano, vol. 9, no. 9, pp. 9380-9393, 2015. [23] J. A. Christians, P. A. Miranda Herrera, and P. V. Kamat, “Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air,” Journal of the American Chemical Society, vol. 137, no. 4, pp. 1530-1538, 2015. [24] S. Emami, L. Andrade, and A. Mendes, “Recent progress in long-term stability of perovskite solar cells,” U. Porto Journal of Engineering, vol. 1, no. 2, pp. 52-62, 2015. [25] D. Wang, M. Wright, N. K. Elumalai et al., “Stability of perovskite solar cells,” Solar Energy Materials and Solar Cells, vol. 147, pp. 255-275, 2016. [26] R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, “Bandgap‐tunable cesium lead halide perovskites with high thermal stability for efficient solar cells,” Advanced Energy Materials, vol. 6, no. 8, pp. 1502458, 2016. [27] T. Matsui, T. Yamamoto, T. Nishihara, R. Morisawa, T. Yokoyama, “Compositional engineering for thermally stable, highly efficient perovskite solar cells exceeding 20% power conversion efficiency with 85° C/85% 1000 h stability,” Advanced Materials, vol. 31, no. 10, pp. 1806823, 2019. [28] Z. Chen, J. J. Wang, Y. Ren, C. Yu, and K. Shum, “Schottky solar cells based on CsSnI3 thin-films,” Applied Physics Letters, vol. 101, no. 9, pp. 093901, 2012. [29] G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, “Inorganic caesium lead iodide perovskite solar cells,” Journal of Materials Chemistry A, vol. 3, no. 39, pp. 19688-19695, 2015. [30] R. J. Sutton, M. R. Filip, A. A. Haghighirad et al., “Cubic or orthorhombic? Revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment,” ACS Energy Letters, vol. 3, no. 8, pp. 1787-1794, 2018. [31] M. Kulbak, D. Cahen, and G. Hodes, “How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells,” The journal of physical chemistry letters, vol. 6, no. 13, pp. 2452-2456, 2015. [32] M. Kulbak, S. Gupta, N. Kedem et al., “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” The journal of physical chemistry letters, vol. 7, no. 1, pp. 167-172, 2016. [33] A. Swarnkar, A. R. Marshall, E. M. Sanehira et al., “Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics,” Science, vol. 354, no. 6308, pp. 92-95, 2016. [34] L. A. Frolova, D. V. Anokhin, A. A. Piryazev et al., “Highly efficient all-inorganic planar heterojunction perovskite solar cells produced by thermal coevaporation of CsI and PbI2,” The journal of physical chemistry letters, vol. 8, no. 1, pp. 67-72, 2017. [35] J. K. Nam, S. U. Chai, W. Cha, Y. J. Choi et al., “Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells,” Nano letters, vol. 17, no. 3, pp. 2028-2033, 2017. [36] C. F. J. Lau, M. Zhang, X. Deng, J. Zheng et al., “Strontium-doped low-temperature-processed CsPbI2Br perovskite solar cells,” ACS Energy Letters, vol. 2, no. 10, pp. 2319-2325, 2017. [37] Z. Guo, S. Zhao, A. Liu, Y. Kamata, S. Teo, S. Yang et al., “Niobium incorporation into CsPbI2Br for stable and efficient all-inorganic perovskite solar cells,” ACS applied materials & interfaces, vol. 11, no. 22, pp. 19994-20003, 2019. [38] W. Xiang, Z. Wang, D. J. Kubicki, W. Tress, J. Luo et al., “Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells,” Joule, vol. 3, no. 1, pp. 205-214, 2019. [39] F. Yang, D. Hirotani, G. Kapil, M. A. Kamarudin, “All‐Inorganic CsPb1-xGexI2Br Perovskite with Enhanced Phase Stability and Photovoltaic Performance,” Angewandte chemie international edition, vol. 57, no. 39, pp. 12745-12749, 2018. [40] K. Wang, Z. Jin, L. Liang, H. Bian, D. Bai, H. Wang, “All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%,” Nature communications, vol. 9, no. 1, pp. 1-8, 2018. [41] Y. Wang, T. Zhang, M. Kan, and Y. Zhao, “Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics,” Journal of the American Chemical Society, vol. 140, no. 39, pp. 12345-12348, 2018. [42] Y. Wang, X. Liu, T. Zhang et al., “The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: additive or dopant?,” Angewandte Chemie International Edition, vol. 58, no. 46, pp. 16691-16696, 2019. [43] F. Fang, W. Chen, Y. Li, H. Liu, M. Mei, R. Zhang et al., “Employing polar solvent controlled ionization in precursors for synthesis of high‐quality inorganic perovskite nanocrystals at room temperature,” Advanced Functional Materials, vol. 28, no. 10, pp. 1706000, 2018. [44] T. Moot, A. R. Marshall, L. M. Wheeler, S. N. Habisreutinger, T. H. Schloemer et al., “CsI‐Antisolvent Adduct Formation in All‐Inorganic Metal Halide Perovskites,” Advanced Energy Materials, vol. 10, no. 9, pp. 1903365, 2020. [45] W. Chen, H. Chen, G. Xu, R. Xue, S. Wang, Y. Li, and Y. Li, “Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells,” Joule, vol. 3, no. 1, pp. 191-204, 2019. [46] Q. Tai, K.-C. Tang, and F. Yan, “Recent progress of inorganic perovskite solar cells,” Energy & Environmental Science, vol. 12, no. 8, pp. 2375-2405, 2019. [47] F. Haque, M. Wright, M. A. Mahmud et al., “Effects of hydroiodic acid concentration on the properties of CsPbI3 perovskite solar cells,” ACS omega, vol. 3, no. 9, pp. 11937-11944, 2018. [48] W. Ke, I. Spanopoulos, C. C. Stoumpos, and M. G. Kanatzidis, “Myths and reality of HPbI3 in halide perovskite solar cells,” Nature communications, vol. 9, no. 1, pp. 1-9, 2018. [49] J. A. Steele, M. Lai, Y. Zhang, Z. Lin, J. Hofkens, M. B. Roeffaers, and P. Yang, “Phase transitions and anion exchange in all-inorganic halide perovskites,” Accounts of Materials Research, vol. 1, no. 1, pp. 3-15, 2020. [50] S. Dastidar, C. J. Hawley, A. D. Dillon et al., “Quantitative phase-change thermodynamics and metastability of perovskite-phase cesium lead iodide,” The journal of physical chemistry letters, vol. 8, no. 6, pp. 1278-1282, 2017. [51] A. Marronnier, G. Roma, S. Boyer-Richard et al., “Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells,” ACS nano, vol. 12, no. 4, pp. 3477-3486, 2018. [52] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano letters, vol. 13, no. 4, pp. 1764-1769, 2013. [53] T. Ma, S. Wang, Y. Zhang, K. Zhang, and L. Yi, “The development of all-inorganic CsPbX3 perovskite solar cells,” Journal of Materials Science, pp. 1-16, 2020. [54] Q. Zeng, X. Zhang, C. Liu, T. Feng, Z. Chen, W. Zhang et al., “Inorganic CsPbI2Br perovskite solar cells: The progress and perspective,” Solar RRL, vol. 3, no. 1, pp. 1800239, 2019. [55] N. A. N. Ouedraogo, Y. Chen, Y. Y. Xiao et al., “Stability of all-inorganic perovskite solar cells,” Nano Energy, vol. 67, pp. 104249, 2020. [56] P. Wang, X. Zhang, Y. Zhou, Q. Jiang, Q. Ye et al., “Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells,” Nature communications, vol. 9, no. 1, pp. 1-7, 2018. [57] Z. Shao, Z. Wang, Z. Li, Y. Fan, H. Meng, R. Liu, “A Scalable Methylamine Gas Healing Strategy for High‐Efficiency Inorganic Perovskite Solar Cells,” Angewandte Chemie International Edition, vol. 58, no. 17, pp. 5587-5591, 2019. [58] C. Dong, X. Han, W. Li, Q. Qiu, and J. Wang, “Anti-solvent assisted multi-step deposition for efficient and stable carbon-based CsPbI2Br all-inorganic perovskite solar cell,” Nano Energy, vol. 59, pp. 553-559, 2019. [59] Q. Ma, S. Huang, S. Chen, M. Zhang et al., “The effect of stoichiometry on the stability of inorganic cesium lead mixed-halide perovskites solar cells,” The Journal of Physical Chemistry C, vol. 121, no. 36, pp. 19642-19649, 2017. [60] B. Parida, J. Ryu, S. Yoon, S. Lee, Y. Seo, J. S. Cho, and D.-W. Kang, “Two-step growth of CsPbI3−xBrx films employing dynamic CsBr treatment: toward all-inorganic perovskite photovoltaics with enhanced stability,” Journal of Materials Chemistry A, vol. 7, no. 31, pp. 18488-18498, 2019. [61] V. Scailteur, and R. Lauwerys, “Dimethylformamide (DMF) hepatotoxicity,” Toxicology, vol. 43, no. 3, pp. 231-238, 1987. [62] J. Mraz, P. Jheeta, A. Gescher, R. Hyland et al., “Investigation of the mechanistic basis of N, N-dimethylformamide toxicity. Metabolism of N, N-dimethylformamide and its deuterated isotopomers by cytochrome P450 2E1,” Chemical research in toxicology, vol. 6, no. 2, pp. 197-207, 1993. [63] T.-Y. Hsieh, T.-C. Wei, K.-L. Wu, M. Ikegami, and T. Miyasaka, “Efficient perovskite solar cells fabricated using an aqueous lead nitrate precursor,” Chemical Communications, vol. 51, no. 68, pp. 13294-13297, 2015. [64] T.-Y. Lin, T. T. Pfeiffer, and P. B. Lillehoj, “Stability of UV/ozone-treated thermoplastics under different storage conditions for microfluidic analytical devices,” RSC advances, vol. 7, no. 59, pp. 37374-37379, 2017. [65] Y. Fu, F. Meng, M. B. Rowley, B. J. Thompson et al., “Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications,” Journal of the American Chemical Society, vol. 137, no. 17, pp. 5810-5818, 2015. [66] X. Zhang, Y. Zhou, Y. Li, J. Sun, X. Lu, “Efficient and carbon-based hole transport layer-free CsPbI2Br planar perovskite solar cells using PMMA modification,” Journal of Materials Chemistry C, vol. 7, no. 13, pp. 3852-3861, 2019. [67] S. R. Raga, Y. Jiang, L. K. Ono, and Y. Qi, “Application of methylamine gas in fabricating organic–inorganic hybrid perovskite solar cells,” Energy Technology, vol. 5, no. 10, pp. 1750-1761, 2017. [68] Z. Song, S. C. Watthage, A. B. Phillips et al., “Impact of processing temperature and composition on the formation of methylammonium lead iodide perovskites,” Chemistry of Materials, vol. 27, no. 13, pp. 4612-4619, 2015. [69] S. Mariotti, O. S. Hutter, L. J. Phillips, P. J. Yates, B. Kundu, and K. Durose, “Stability and performance of CsPbI2Br thin films and solar cell devices,” ACS applied materials & interfaces, vol. 10, no. 4, pp. 3750-3760, 2018. [70] 謝順來, “硝酸鉛水溶液應用於低毒性三步法製備鈣鈦礦薄膜之研究,” 國立清華大學, 2019. [71] F. Fu, L. Kranz, S. Yoon et al., “Controlled growth of PbI2 nanoplates for rapid preparation of CH3NH3PbI3 in planar perovskite solar cells,” Physica status solidi (a), vol. 212, no. 12, pp. 2708-2717, 2015. [72] Y. Y. Kim, E. Y. Park, T.-Y. Yang et al., “Fast two-step deposition of perovskite via mediator extraction treatment for large-area, high-performance perovskite solar cells,” Journal of Materials Chemistry A, vol. 6, no. 26, pp. 12447-12454, 2018. [73] Q. Liang, J. Han, H. Li, L. Chen, Z. Xie, “Uniform, high crystalline, (100) crystal orientated perovskite films without PbI2 residue by controlling the nanostructure of PbI2,” Organic Electronics, vol. 53, pp. 26-34, 2018.
|