帳號:guest(3.144.105.36)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳鈺穎
作者(外文):Chen, Yu-Ying
論文名稱(中文):三步驟法製備CsPbI2Br無機鈣鈦礦太陽能電池之研究
論文名稱(外文):A Study on Inorganic CsPbI2Br Perovskite Solar Cell Made from Three-step Approach
指導教授(中文):衛子健
指導教授(外文):Wei, Tzu-Chien
口試委員(中文):廖英志
黃頌修
陳志銘
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:108032512
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:108
中文關鍵詞:無機鈣鈦礦甲胺蒸氣處理多步驟水性硝酸鉛
外文關鍵詞:inorganicperovskiteMethylamineleadnitrateaqueous
相關次數:
  • 推薦推薦:0
  • 點閱點閱:54
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
以CsPbI2Br為吸光層所製備出的無機鈣鈦礦太陽能電池因具備良好的先天熱穩定性以及合理的能隙(Eg=1.92eV),引起了極大的關注。然而,傳統的一步法製備CsPbI2Br鈣鈦礦吸光層,通常會有低結晶性、鈣鈦礦薄膜形貌差等問題,從而影響其鈣鈦礦元件之光伏表現。
在本研究中,我們開發一種全新的三步驟浸泡法,並結合甲胺蒸氣修補技術,不僅加強了無機鈣鈦礦之相穩定性,同時改善了薄膜形貌。首先透過兩步驟浸泡法製備無機鈣鈦礦CsPbI2Br,再將黃相的無機鈣鈦礦CsPbI2Br刻意浸泡於有機MAX溶液中(MAX = MAI/ MABr)用以形成有機無機的鈣鈦礦化合物,以增加對後續甲胺修補步驟時之甲胺吸收度。接著將此刻意製作的有機無機的鈣鈦礦化合物暴露於甲胺蒸氣中形成一透明的液態中間相薄膜,使其具流動性達到平坦化以改善薄膜的形貌。最後將此有機無機的薄膜置於280℃下退火15分鐘釋放有機分子,同時也進行相轉變形成黑相的α-CsPbI2Br。通過甲胺蒸氣修補的鈣鈦礦薄膜能具有較佳的結晶性以及較好的薄膜形貌,使得後續的光伏元件特性得以提升。此外,我們改善退火流程,採取梯度熱退火的方式以減少薄膜上的孔洞以及缺陷。目前以此三步法製備的CsPbI2Br無機鈣鈦礦太陽能電池效率可達到10.9%。
隨後,我們將此製程推展至本實驗室特有的水性硝酸鉛前驅物系統中。有別於PbI2/DMF系統,水性硝酸鉛前驅物系統將低毒性的水性硝酸鉛薄膜浸泡於以異丁醇(i-BuOH)為溶劑的碘液中,使之先行轉化為片狀多孔之碘化鉛薄膜,接著再接續第一階段的研究成果之流程,利用有機MAX溶液浸泡以及甲胺蒸氣法改善薄膜形貌與結晶性,最終元件效率達到8%,分析其原因為硝酸鉛起始塗層覆蓋率不足致使鈣鈦礦層形貌更加難以控制,雖然經過甲胺蒸氣修補,最終CsPbI2Br薄膜的形貌仍不夠緻密所致,儘管如此,此製程為無機鈣鈦礦電池研究中第一個完全使用低毒性的醇類與水為溶劑的製程,希望未來經由後人的努力能有所突破。
All-inorganic perovskite solar cells (PSCs) based on CsPbI2Br absorber have attracted tremendous attention due to their promising intrinsic thermal stability and reasonable bandgap (1.92eV). Nevertheless, traditional one-step spin-coated CsPbI2Br film usually suffers from low crystallinity and poor morphology which impedes its photovoltaic performance. Herein, a novel three-step dipping method combined with methylamine (MA) gas healing is unprecedentedly developed to improve phase stability and film morphology. In this study, we prepared inorganic perovskite CsPbI2Br film through a two-step dipping approach. Following by dipping inorganic perovskite intentionally into MAX solution (MAX = MAI/ MABr) to form a hybrid organic-inorganic perovskite compound to increase the absorbance of MA gas; this intermediate compound was then treated by MA gas healing to further improve the film morphology. Finally, the hybrid film was annealed at 280℃ for 15 minutes to release the organic components and form the black phase. Through MA healing, the resulting perovskite film with higher crystallinity, better morphology, and enhanced photovoltaic performance was achieved. Besides, we adopted the gradient thermal annealing method to minimize the defects and pinholes on the film. Currently, the conversion efficiency of 10.9% is achieved in all-inorganic CsPbI2Br-based PSC.
Later on, we promoted this procedure into the Pb(NO3)2/ H2O system. The Pb(NO3)2 film was firstly dipped into iodine solution to transform it into mesoporous flake-shaped lead iodide. Then, we followed the procedure in the previous investigation. The film was treated with MA gas healing to improve the film morphology and crystallinity. The resulting cell conversion efficiency reached 8%. It results from the low coverage of Pb(NO3)2 layer leading to low compactness of inorganic perovskite film. Nevertheless, this is the first-ever low toxicity fabrication of inorganic PSCs.
摘要 I
ABSTRACT II
誌謝 III
圖目錄 VII
表目錄 XI
第一章 緒論 1
1-1 前言 1
第二章 文獻回顧 4
2-1 鈣鈦礦太陽能電池(Perovskite solar cell) 4
2-1.1 鈣鈦礦的發現與結構 4
2-1.2 鈣鈦礦太陽能電池的發展 5
2-1.3 鈣鈦礦太陽能電池的結構與運作原理 6
2-2. 鈣鈦礦吸光層的製備方式 9
2-2.1旋轉塗佈法 9
2-2.2 甲胺蒸氣修飾法 14
2-3 無機鈣鈦礦太陽能電池 (Inorganic PSC) 15
2-3.1 無機鈣鈦礦太陽能電池的起源 15
2-3.2 無機鈣鈦礦太陽能電池的發展 18
2-3.3 無機鈣鈦礦CsPbX3太陽電池技術發展的迷思 23
2-3.4銫鉛鹵化物CsPbX3之結構與光電特性 25
2-3.5 CsPbX3之製備方式 29
2-3.5.1一步溶液法旋塗製備CsPbX3 29
2-3.5.2 一步法製程中使用甲胺蒸氣改良 32
2-3.5.3 兩步溶液法製備CsPbX3 35
2-4 低毒性硝酸鉛製程 38
2-4.1 高毒性溶劑的隱憂 38
2-4.2 硝酸鉛水溶液為鈣鈦礦前驅物之發展 39
2-5 研究目的與動機 43
第三章 研究方法與儀器分析 45
3-1 實驗儀器與分析設備 45
3-2 實驗藥品和相關材料 46
3-3 實驗方法與步驟 47
3-3.1 FTO導電玻璃前處理與製備TiO2電子傳輸層 47
3-3.2 鈣鈦礦前驅液、HTM(Spiro-OMeTAD)溶液配製 48
3-3.3 鈣鈦礦層製作流程 49
3-3.4 製備電洞傳輸層(HTL)與對電極 50
3-4 儀器分析 52
3-4.1 X光繞射儀(X-ray diffractometer, XRD) 52
3-4.2 紫外光-可見光光譜儀(Ultraviolet-visible spectrometer, UV-vis) 53
3-4.3 場發射掃描式顯微鏡(Field emission scanning electron microscope, FESEM) 55
3-4.4 太陽光模擬器(Solar simulator)和J-V曲線 56
3-4.4.1 I-V特性曲線 57
3-4.4.2 短路電流(Short-circuit current, Jsc) 59
3-4.4.3 開路電壓(Open-circuit voltage, Voc) 59
3-4.4.4 填充因子(Fill factor, FF) 60
3-4.4.5 光電轉換效率(Power conversion efficiency, PCE, η%) 60
第四章 實驗結果與討論 61
4-1無機鈣鈦礦CsPbX3之系統建立 61
4-1.1 一步法製備CsPbI3 61
4-1.2 PMMA塗佈技術 62
4-1.3 一步法製備CsPbI2Br 63
4-2 碘化鉛/DMF系統下製備CsPbI2Br 64
4-2.1兩步法製備CsPbI2Br 64
4-2.1.1 CsX鹵素比例的調整 64
4-2.1.2 CsX浸泡時間之優化 65
4-2.2 CsPbI2Br鈣鈦礦薄膜之修飾 67
4-2.2.1 MA蒸氣法 67
4-2.2.2 MAX浸泡時間優化 71
4-2.3 梯度熱退火法(Gradient Thermal Annealing Method, GTA) 73
4-2.3.1梯度熱退火法設計流程與目的 73
4-2.3.2 梯度熱退火法之成果 76
4-3 Pb(NO3)2/H2O系統下製備CsPbI2Br 80
4-3.1 三步法製備CsPbI2Br無機鈣鈦礦 81
4-3.1.1 以硝酸鉛起始層製備碘化鉛薄膜 81
4-3.1.2 製備CsPbI2Br無機鈣鈦礦薄膜 83
4-3.2 硝酸鉛系統下的MA蒸氣修飾法 88
第五章 結論 100
第六章 未來工作 102
第七章 參考文獻 103
[1] A. Mahapatra, D. Prochowicz, M. M. Tavakoli, “A review of aspects of additive engineering in perovskite solar cells,” Journal of Materials Chemistry A, vol. 8, no. 1, pp. 27-54, 2020.
[2] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
[3] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Scientific reports, vol. 2, no. 1, pp. 1-7, 2012.
[4] H.-S. Kim, C.-R. Lee, J.-H. Im, “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%,” Scientific Reports, vol. 2, pp. 591, 2012.
[5] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature, vol. 499, no. 7458, pp. 316-319, 2013.
[6] M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, vol. 501, no. 7467, pp. 395-398, 2013.
[7] J. Seo, J. H. Noh, and S. I. Seok, “Rational strategies for efficient perovskite solar cells,” Accounts of chemical research, vol. 49, no. 3, pp. 562-572, 2016.
[8] N. NREL, “Best research-cell efficiencies,” National Renewable Energy Laboratory: Golden, Colorado, 2020.
[9] L. Meng, J. You, T.-F. Guo, and Y. Yang, “Recent advances in the inverted planar structure of perovskite solar cells,” Accounts of chemical research, vol. 49, no. 1, pp. 155-165, 2016.
[10] T. Liu, K. Chen, Q. Hu, R. Zhu, and Q. Gong, “Inverted perovskite solar cells: progresses and perspectives,” Advanced Energy Materials, vol. 6, no. 17, pp. 1600457, 2016.
[11] C.-G. Wu, C.-H. Chiang, Z.-L. Tseng, “High efficiency stable inverted perovskite solar cells without current hysteresis,” Energy & Environmental Science, vol. 8, no. 9, pp. 2725-2733, 2015.
[12] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, U. Bach, Y. Cheng, and L. Spiccia, “Perovskite solar cells hot paper a fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells,” Angew. Chem. Int. Ed., vol. 53, pp. 9898-9903, 2014.
[13] W. Qiu, T. Merckx, M. Jaysankar, C. M. De La Huerta, “Pinhole-free perovskite films for efficient solar modules,” Energy & Environmental Science, vol. 9, no. 2, pp. 484-489, 2016.
[14] J. Lee, H. Kang, G. Kim, H. Back, J. Kim, S. Hong, “Achieving large‐area planar perovskite solar cells by introducing an interfacial compatibilizer,” Advanced Materials, vol. 29, no. 22, pp. 1606363, 2017.
[15] J.-H. Im, H.-S. Kim, and N.-G. Park, “Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3,” Apl Materials, vol. 2, no. 8, pp. 081510, 2014.
[16] H. Shen, Y. Wu, J. Peng, T. Duong, “Improved reproducibility for perovskite solar cells with 1 cm2 active area by a modified two-step process,” ACS applied materials & interfaces, vol. 9, no. 7, pp. 5974-5981, 2017.
[17] T.-S. Su, T.-E. Fan, H.-K. Si, D.-A. Le, N. Perumbalathodi, and T.-C. Wei, “Characterization on Highly Efficient Perovskite Solar Cells Made from One‐Step and Two‐Step Solution Processes,” Solar RRL, pp. 2100109.
[18] Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu, Y. Wang, Z. Yin, J. Wu, X. Zhang, and J. You, “Planar‐structure perovskite solar cells with efficiency beyond 21%,” Advanced materials, vol. 29, no. 46, pp. 1703852, 2017.
[19] Z. Zhou, Z. Wang, Y. Zhou, S. Pang, D. Wang, H. Xu, Z. Liu, N. P. Padture, and G. Cui, “Methylamine‐Gas‐Induced Defect‐Healing Behavior of CH3NH3PbI3 Thin Films for Perovskite Solar Cells,” Angewandte Chemie, vol. 127, no. 33, pp. 9841-9845, 2015.
[20] D. Bogachuk, L. Wagner, S. Mastroianni, M. Daub, H. Hillebrecht, and A. Hinsch, “The nature of the methylamine–MAPbI3 complex: fundamentals of gas-induced perovskite liquefaction and crystallization,” Journal of Materials Chemistry A, vol. 8, no. 19, pp. 9788-9796, 2020.
[21] C. S. T. Photovoltaic, “Modules—Design Qualification and Type Approval,” IEC, vol. 1215, pp. 2005-05, 2005.
[22] G. E. Eperon, S. N. Habisreutinger, T. Leijtens, “The importance of moisture in hybrid lead halide perovskite thin film fabrication,” ACS nano, vol. 9, no. 9, pp. 9380-9393, 2015.
[23] J. A. Christians, P. A. Miranda Herrera, and P. V. Kamat, “Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air,” Journal of the American Chemical Society, vol. 137, no. 4, pp. 1530-1538, 2015.
[24] S. Emami, L. Andrade, and A. Mendes, “Recent progress in long-term stability of perovskite solar cells,” U. Porto Journal of Engineering, vol. 1, no. 2, pp. 52-62, 2015.
[25] D. Wang, M. Wright, N. K. Elumalai et al., “Stability of perovskite solar cells,” Solar Energy Materials and Solar Cells, vol. 147, pp. 255-275, 2016.
[26] R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, “Bandgap‐tunable cesium lead halide perovskites with high thermal stability for efficient solar cells,” Advanced Energy Materials, vol. 6, no. 8, pp. 1502458, 2016.
[27] T. Matsui, T. Yamamoto, T. Nishihara, R. Morisawa, T. Yokoyama, “Compositional engineering for thermally stable, highly efficient perovskite solar cells exceeding 20% power conversion efficiency with 85° C/85% 1000 h stability,” Advanced Materials, vol. 31, no. 10, pp. 1806823, 2019.
[28] Z. Chen, J. J. Wang, Y. Ren, C. Yu, and K. Shum, “Schottky solar cells based on CsSnI3 thin-films,” Applied Physics Letters, vol. 101, no. 9, pp. 093901, 2012.
[29] G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, “Inorganic caesium lead iodide perovskite solar cells,” Journal of Materials Chemistry A, vol. 3, no. 39, pp. 19688-19695, 2015.
[30] R. J. Sutton, M. R. Filip, A. A. Haghighirad et al., “Cubic or orthorhombic? Revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment,” ACS Energy Letters, vol. 3, no. 8, pp. 1787-1794, 2018.
[31] M. Kulbak, D. Cahen, and G. Hodes, “How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells,” The journal of physical chemistry letters, vol. 6, no. 13, pp. 2452-2456, 2015.
[32] M. Kulbak, S. Gupta, N. Kedem et al., “Cesium enhances long-term stability of lead bromide perovskite-based solar cells,” The journal of physical chemistry letters, vol. 7, no. 1, pp. 167-172, 2016.
[33] A. Swarnkar, A. R. Marshall, E. M. Sanehira et al., “Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics,” Science, vol. 354, no. 6308, pp. 92-95, 2016.
[34] L. A. Frolova, D. V. Anokhin, A. A. Piryazev et al., “Highly efficient all-inorganic planar heterojunction perovskite solar cells produced by thermal coevaporation of CsI and PbI2,” The journal of physical chemistry letters, vol. 8, no. 1, pp. 67-72, 2017.
[35] J. K. Nam, S. U. Chai, W. Cha, Y. J. Choi et al., “Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells,” Nano letters, vol. 17, no. 3, pp. 2028-2033, 2017.
[36] C. F. J. Lau, M. Zhang, X. Deng, J. Zheng et al., “Strontium-doped low-temperature-processed CsPbI2Br perovskite solar cells,” ACS Energy Letters, vol. 2, no. 10, pp. 2319-2325, 2017.
[37] Z. Guo, S. Zhao, A. Liu, Y. Kamata, S. Teo, S. Yang et al., “Niobium incorporation into CsPbI2Br for stable and efficient all-inorganic perovskite solar cells,” ACS applied materials & interfaces, vol. 11, no. 22, pp. 19994-20003, 2019.
[38] W. Xiang, Z. Wang, D. J. Kubicki, W. Tress, J. Luo et al., “Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells,” Joule, vol. 3, no. 1, pp. 205-214, 2019.
[39] F. Yang, D. Hirotani, G. Kapil, M. A. Kamarudin, “All‐Inorganic CsPb1-xGexI2Br Perovskite with Enhanced Phase Stability and Photovoltaic Performance,” Angewandte chemie international edition, vol. 57, no. 39, pp. 12745-12749, 2018.
[40] K. Wang, Z. Jin, L. Liang, H. Bian, D. Bai, H. Wang, “All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%,” Nature communications, vol. 9, no. 1, pp. 1-8, 2018.
[41] Y. Wang, T. Zhang, M. Kan, and Y. Zhao, “Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics,” Journal of the American Chemical Society, vol. 140, no. 39, pp. 12345-12348, 2018.
[42] Y. Wang, X. Liu, T. Zhang et al., “The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: additive or dopant?,” Angewandte Chemie International Edition, vol. 58, no. 46, pp. 16691-16696, 2019.
[43] F. Fang, W. Chen, Y. Li, H. Liu, M. Mei, R. Zhang et al., “Employing polar solvent controlled ionization in precursors for synthesis of high‐quality inorganic perovskite nanocrystals at room temperature,” Advanced Functional Materials, vol. 28, no. 10, pp. 1706000, 2018.
[44] T. Moot, A. R. Marshall, L. M. Wheeler, S. N. Habisreutinger, T. H. Schloemer et al., “CsI‐Antisolvent Adduct Formation in All‐Inorganic Metal Halide Perovskites,” Advanced Energy Materials, vol. 10, no. 9, pp. 1903365, 2020.
[45] W. Chen, H. Chen, G. Xu, R. Xue, S. Wang, Y. Li, and Y. Li, “Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells,” Joule, vol. 3, no. 1, pp. 191-204, 2019.
[46] Q. Tai, K.-C. Tang, and F. Yan, “Recent progress of inorganic perovskite solar cells,” Energy & Environmental Science, vol. 12, no. 8, pp. 2375-2405, 2019.
[47] F. Haque, M. Wright, M. A. Mahmud et al., “Effects of hydroiodic acid concentration on the properties of CsPbI3 perovskite solar cells,” ACS omega, vol. 3, no. 9, pp. 11937-11944, 2018.
[48] W. Ke, I. Spanopoulos, C. C. Stoumpos, and M. G. Kanatzidis, “Myths and reality of HPbI3 in halide perovskite solar cells,” Nature communications, vol. 9, no. 1, pp. 1-9, 2018.
[49] J. A. Steele, M. Lai, Y. Zhang, Z. Lin, J. Hofkens, M. B. Roeffaers, and P. Yang, “Phase transitions and anion exchange in all-inorganic halide perovskites,” Accounts of Materials Research, vol. 1, no. 1, pp. 3-15, 2020.
[50] S. Dastidar, C. J. Hawley, A. D. Dillon et al., “Quantitative phase-change thermodynamics and metastability of perovskite-phase cesium lead iodide,” The journal of physical chemistry letters, vol. 8, no. 6, pp. 1278-1282, 2017.
[51] A. Marronnier, G. Roma, S. Boyer-Richard et al., “Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells,” ACS nano, vol. 12, no. 4, pp. 3477-3486, 2018.
[52] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano letters, vol. 13, no. 4, pp. 1764-1769, 2013.
[53] T. Ma, S. Wang, Y. Zhang, K. Zhang, and L. Yi, “The development of all-inorganic CsPbX3 perovskite solar cells,” Journal of Materials Science, pp. 1-16, 2020.
[54] Q. Zeng, X. Zhang, C. Liu, T. Feng, Z. Chen, W. Zhang et al., “Inorganic CsPbI2Br perovskite solar cells: The progress and perspective,” Solar RRL, vol. 3, no. 1, pp. 1800239, 2019.
[55] N. A. N. Ouedraogo, Y. Chen, Y. Y. Xiao et al., “Stability of all-inorganic perovskite solar cells,” Nano Energy, vol. 67, pp. 104249, 2020.
[56] P. Wang, X. Zhang, Y. Zhou, Q. Jiang, Q. Ye et al., “Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells,” Nature communications, vol. 9, no. 1, pp. 1-7, 2018.
[57] Z. Shao, Z. Wang, Z. Li, Y. Fan, H. Meng, R. Liu, “A Scalable Methylamine Gas Healing Strategy for High‐Efficiency Inorganic Perovskite Solar Cells,” Angewandte Chemie International Edition, vol. 58, no. 17, pp. 5587-5591, 2019.
[58] C. Dong, X. Han, W. Li, Q. Qiu, and J. Wang, “Anti-solvent assisted multi-step deposition for efficient and stable carbon-based CsPbI2Br all-inorganic perovskite solar cell,” Nano Energy, vol. 59, pp. 553-559, 2019.
[59] Q. Ma, S. Huang, S. Chen, M. Zhang et al., “The effect of stoichiometry on the stability of inorganic cesium lead mixed-halide perovskites solar cells,” The Journal of Physical Chemistry C, vol. 121, no. 36, pp. 19642-19649, 2017.
[60] B. Parida, J. Ryu, S. Yoon, S. Lee, Y. Seo, J. S. Cho, and D.-W. Kang, “Two-step growth of CsPbI3−xBrx films employing dynamic CsBr treatment: toward all-inorganic perovskite photovoltaics with enhanced stability,” Journal of Materials Chemistry A, vol. 7, no. 31, pp. 18488-18498, 2019.
[61] V. Scailteur, and R. Lauwerys, “Dimethylformamide (DMF) hepatotoxicity,” Toxicology, vol. 43, no. 3, pp. 231-238, 1987.
[62] J. Mraz, P. Jheeta, A. Gescher, R. Hyland et al., “Investigation of the mechanistic basis of N, N-dimethylformamide toxicity. Metabolism of N, N-dimethylformamide and its deuterated isotopomers by cytochrome P450 2E1,” Chemical research in toxicology, vol. 6, no. 2, pp. 197-207, 1993.
[63] T.-Y. Hsieh, T.-C. Wei, K.-L. Wu, M. Ikegami, and T. Miyasaka, “Efficient perovskite solar cells fabricated using an aqueous lead nitrate precursor,” Chemical Communications, vol. 51, no. 68, pp. 13294-13297, 2015.
[64] T.-Y. Lin, T. T. Pfeiffer, and P. B. Lillehoj, “Stability of UV/ozone-treated thermoplastics under different storage conditions for microfluidic analytical devices,” RSC advances, vol. 7, no. 59, pp. 37374-37379, 2017.
[65] Y. Fu, F. Meng, M. B. Rowley, B. J. Thompson et al., “Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications,” Journal of the American Chemical Society, vol. 137, no. 17, pp. 5810-5818, 2015.
[66] X. Zhang, Y. Zhou, Y. Li, J. Sun, X. Lu, “Efficient and carbon-based hole transport layer-free CsPbI2Br planar perovskite solar cells using PMMA modification,” Journal of Materials Chemistry C, vol. 7, no. 13, pp. 3852-3861, 2019.
[67] S. R. Raga, Y. Jiang, L. K. Ono, and Y. Qi, “Application of methylamine gas in fabricating organic–inorganic hybrid perovskite solar cells,” Energy Technology, vol. 5, no. 10, pp. 1750-1761, 2017.
[68] Z. Song, S. C. Watthage, A. B. Phillips et al., “Impact of processing temperature and composition on the formation of methylammonium lead iodide perovskites,” Chemistry of Materials, vol. 27, no. 13, pp. 4612-4619, 2015.
[69] S. Mariotti, O. S. Hutter, L. J. Phillips, P. J. Yates, B. Kundu, and K. Durose, “Stability and performance of CsPbI2Br thin films and solar cell devices,” ACS applied materials & interfaces, vol. 10, no. 4, pp. 3750-3760, 2018.
[70] 謝順來, “硝酸鉛水溶液應用於低毒性三步法製備鈣鈦礦薄膜之研究,” 國立清華大學, 2019.
[71] F. Fu, L. Kranz, S. Yoon et al., “Controlled growth of PbI2 nanoplates for rapid preparation of CH3NH3PbI3 in planar perovskite solar cells,” Physica status solidi (a), vol. 212, no. 12, pp. 2708-2717, 2015.
[72] Y. Y. Kim, E. Y. Park, T.-Y. Yang et al., “Fast two-step deposition of perovskite via mediator extraction treatment for large-area, high-performance perovskite solar cells,” Journal of Materials Chemistry A, vol. 6, no. 26, pp. 12447-12454, 2018.
[73] Q. Liang, J. Han, H. Li, L. Chen, Z. Xie, “Uniform, high crystalline, (100) crystal orientated perovskite films without PbI2 residue by controlling the nanostructure of PbI2,” Organic Electronics, vol. 53, pp. 26-34, 2018.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *