帳號:guest(18.191.97.124)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇敬庭
作者(外文):Su, Jing-Ting
論文名稱(中文):介孔核-殼硼摻雜矽碳複合物於鋰離子電容器上之應用
論文名稱(外文):Applications of Mesoporous Core-Shell B-doped Silicon-Carbon Composites as Electrode Materials for Lithium Ion Capacitors
指導教授(中文):呂世源
指導教授(外文):Lu, Shih-Yuan
口試委員(中文):蔡德豪
李建良
口試委員(外文):Tsai, De-Hao
Lee, Chien-Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:108032511
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:88
中文關鍵詞:鋰離子電容器硼摻雜核殼結構
外文關鍵詞:Li-ion capacitorSiliconB-dopedCore-shell
相關次數:
  • 推薦推薦:0
  • 點閱點閱:199
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著科技的發展,人們對於二次儲能元件的需求與日俱增,其中鋰離子電池因具有高能量密度以及較大的工作電壓而備受關注,但其功率密度與循環壽命仍有很大的改善空間。鋰離子電容器結合了鋰離子電池與超級電容器之電極,在維持一定能量密度下提高功率密度與循環壽命,是近幾年較為新穎之儲能裝置。為了發展出性能更優異的鋰離子電池/電容器,各式各樣的材料被提出並檢測其應用潛力,其中,矽因擁有最高的理論比電容值(3579 mAh g-1)而受到許多矚目,較低的嵌鋰電位使電池能擁有較大的工作電壓,在地殼中豐富的儲量也使矽之取得價格相對低廉。然而,矽材在充放電過程中劇烈的體積變化(300 %)使其容易從集電板上脫落,導致循環壽命與穩定性低落而限制了發展空間。
為了改善此現象,本研究以一鍋(one pot)法合成以RF樹脂(Resorcinol-Formaldehyde resin)包覆之二氧化矽奈米球(SiO2@RF),在經過碳化及鎂熱還原後,得到具有core-shell結構的矽碳複合材料(Si@RFC)。藉由調整前驅物添加比例以及反應時的溶液組成比例(Ethanol/Water ratio, E/W),分別調控不同的RF樹脂厚度以及產物粒徑大小,有效地抑制副產物碳化矽產生,調控產物之成分組成,得到具有最高放電比電容值之Si@1RFC (E/W=2)。透過硼元素摻雜以及添加還原氧化石墨烯(reduced Graphene Oxide, rGO),B-Si@1RFC/rGO,進一步提升比電容值、導電度與循環穩定性,在三者的偕同效應下而具有良好的電化學表現。
本研究亦採用水熱法與化學活化法,製備葡萄糖衍生奈米碳球(Glucose derived Carbon NanoSphere, GCNS),具有超高比表面積(1947 m2 g-1),與極佳的循環穩定性。B-Si@1RFC/rGO//GCNS鋰離子電容器結合兩材料優點,於2.0~4.5 V (vs. Li/Li+)的電位區間,在0.328 kW kg-1功率密度下達到149 Wh kg-1的能量密度,而在49.3 kW kg-1之高功率密度下仍保有82.1 Wh kg-1的能量密度。且在5 A g-1電流密度下經過20,000圈充放電,仍有67.3 %的電容維持率,兼具高能量、高功率密度,以及優異的循環穩定性。
With the growing demands for sustainable energies in response to the application in electric vehicles and portable electronic devices, research and development in energy storage devices becomes increasingly more critical. Lithium ion batteries (LIBs) continue to draw intensive and extensive research attention because of their high energy densities and working voltages. However, low power densities and unsatisfactory cycling life limit their further applications. To overcome this obstacle, lithium ion capacitors (LICs), which combine the advantages of lithium ion batteries and supercapacitors, were developed and demonstrated high power densities when maintaining decent energy densities. A wide range of materials have been investigated as potential electrode materials for LIBs and LICs. Among them, silicon captures much research attention because of its ultrahigh theoretical specific capacity (3579 mAh g-1). However, the drastic volume expansion (~300 %) induced by lithiation causes the loss of contact between the active material and the current collector, resulting in poor stability and cycling life of the battery.
In this work, we developed a one pot synthetic method to prepare core-shell SiO2-RF composites (SiO2@RF) through simultaneous condensation of resorcinol-formaldehyde resins and sol-gel reaction of tetraethoxysilane (TEOS). The as-synthesized SiO2@RF was converted into core-shell Si@RFC through carbonization followed by magnesiothermic reduction. By adjusting the ratio of the precursor of silica versus resin and the ratio of ethanol versus DI water used in the synthesis, the product composition and particle size could be manipulated, respectively. Product B-Si@1RFC/rGO combines the benefits of high specific capacities of Si@1RFC, enhanced electronic conductivities of boron doped Si, and good stability of rGO, and hence exhibits excellent electrochemical performances because of the corresponding synergistic effect.
Glucose derived carbon nanospheres (GCNS) were synthesized with a hydrothermal method followed by chemical activation to serve as the cathode materials. GCNS shows high specific surface area of 1947 m2 g-1 and excellent cycling stability. B-Si@1RFC/rGO//GCNS LIC combines the merits of Si@1RFC/rGO and GCNS, demonstrating a high energy density of 149 Wh kg-1 at a power density of 0.328 kW kg-1, and maintains a decent energy density of 82.1 Wh kg-1 at a high power density of 49.3 kW kg-1. The LIC also shows good cycling stability at a current density of 5 A g-1, exhibiting a 67.3 % capacity retention after a 20,000 cycle operation.
摘要 ………………………………………………………………………………… i
圖目錄 ……………………………………………………………………………ix
表目錄 ……………………………………………………………………………xiv
第 1 章 緒論 1
1-1 前言 1
1-2 鋰離子電池 2
1-3 超級電容器 4
1-4 鋰離子電容器 6
1-5 One pot法合成簡介 7
第 2 章 文獻回顧 8
2-1 概述 8
2-2 中空奈米球結構 9
2-3 異原子摻雜 14
2-4 以RF樹脂包覆之二氧化矽應用 17
2-5 以rGO導電網絡包覆之雙碳層中空矽球 18
2-5 實驗動機 20
第 3 章 實驗方法與儀器 22
3-1 實驗藥品 22
3-2 實驗器材 26
3-3 分析儀器 27
3-4 實驗流程 29
3-4-1製備以RF樹脂包覆之二氧化矽奈米球 29
3-4-2 碳化及鎂熱還原 31
3-4-3 硼元素摻雜 32
3-4-4以還原氧化石墨烯包覆硼摻雜矽碳複合物 32
3-4-5葡萄糖衍生碳材製備 33
3-4-6不鏽鋼網集電板前處理 34
3-4-7極片製備及陰陽極半電池組裝 34
3-4-8陰陽極活性物質配重及鋰離子電容器組裝 35
3-4-9 電化學分析 35
第 4 章 結果與討論 38
4-1 TEOS與RF比例之影響 (E/W=7) 38
4-1-1 SiO2@xRFC奈米球 38
4-1-2 Si@xRFC奈米球 41
4-1-3 電化學分析 44
4-2 溶劑組成比例之影響 48
4-2-1 SiO2@1RFC奈米球 48
4-2-2 Si@1RFC奈米球 52
4-2-3 電化學分析 54
4-3 TEOS與RF比例之影響 (E/W=2) 55
4-3-1 SiO2@xRFC奈米球 55
4-3-2 Si@xRFC奈米球 58
4-3-3 電化學分析 60
4-4 硼摻雜之影響 62
4-4-1 材料分析 62
4-4-2 電化學分析 66
4-5 添加rGO之影響 67
4-5-1 rGO之材料與電化學分析 68
4-5-2 rGO添加比例之影響 70
4-6 GCNS之材料與電化學分析 73
4-7 鋰離子電容器 77
第 5 章 結論 82
參考文獻 83

1. Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V., Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347 (6217).
2. Yi, R.; Chen, S. R.; Song, J. X.; Gordin, M. L.; Manivannan, A.; Wang, D. H., High-Performance Hybrid Supercapacitor Enabled by a High-Rate Si-based Anode. Advanced Functional Materials 2014, 24 (47), 7433-7439.
3. Zhang, H. J.; Jia, Q. C.; Kong, L. B., Multi-dimensional hybrid heterostructure MoS2@C nanocomposite as a highly reversible anode for high-energy lithium-ion capacitors. Applied Surface Science 2020, 531.
4. Choi, N. S.; Chen, Z. H.; Freunberger, S. A.; Ji, X. L.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G., Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors. Angewandte Chemie-International Edition 2012, 51 (40), 9994-10024.
5. Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B., The role of graphene for electrochemical energy storage. Nature Materials 2015, 14 (3), 271-279.
6. Bruce, P. G.; Scrosati, B.; Tarascon, J. M., Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition 2008, 47 (16), 2930-2946.
7. Palacin, M. R., Recent advances in rechargeable battery materials: a chemist's perspective. Chemical Society Reviews 2009, 38 (9), 2565-2575.
8. Zheng, M.; Tang, H.; Li, L.; Hu, Q.; Zhang, L.; Xue, H.; Pang, H., Hierarchically nanostructured transition metal oxides for lithium‐ion batteries. Advanced Science 2018, 5 (3), 1700592.
9. Deng, D., Li‐ion batteries: basics, progress, and challenges. Energy Science & Engineering 2015, 3 (5), 385-418.
10. Lee, S.-S.; Nam, K.-H.; Jung, H.; Park, C.-M., Si-based composite interconnected by multiple matrices for high-performance Li-ion battery anodes. Chemical Engineering Journal 2020, 381, 122619.
11. Lu, B.; Ma, B.; Deng, X.; Wu, B.; Wu, Z.; Luo, J.; Wang, X.; Chen, G., Dual stabilized architecture of hollow Si@ TiO2@ C nanospheres as anode of high-performance Li-ion battery. Chemical Engineering Journal 2018, 351, 269-279.
12. Agyeman, D. A.; Song, K.; Lee, G. H.; Park, M.; Kang, Y. M., Carbon‐coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy‐density Li‐ion battery. Advanced energy materials 2016, 6 (20), 1600904.
13. Lu, Y.; Yu, L.; Lou, X. W. D., Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 2018, 4 (5), 972-996.
14. Ue, M.; Uosaki, K., Recent progress in liquid electrolytes for lithium metal batteries. Current Opinion in Electrochemistry 2019, 17, 106-113.
15. Zhang, Q.; Liu, K.; Ding, F.; Liu, X., Recent advances in solid polymer electrolytes for lithium batteries. Nano Research 2017, 10 (12), 4139-4174.
16. Liang, S.; Yan, W.; Wu, X.; Zhang, Y.; Zhu, Y.; Wang, H.; Wu, Y., Gel polymer electrolytes for lithium ion batteries: Fabrication, characterization and performance. Solid State Ionics 2018, 318, 2-18.
17. Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; Giordano, L.; Shao-Horn, Y., Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chemical Reviews 2016, 116 (1), 140-162.
18. Simon, P.; Gogotsi, Y., Materials for electrochemical capacitors. Nature Materials 2008, 7 (11), 845-854.
19. Jiang, Y.; Liu, J., Definitions of pseudocapacitive materials: a brief review. Energy & Environmental Materials 2019, 2 (1), 30-37.
20. Augustyn, V.; Simon, P.; Dunn, B., Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science 2014, 7 (5), 1597-1614.
21. Yan, J.; Wang, Q.; Wei, T.; Fan, Z. J., Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities. Advanced Energy Materials 2014, 4 (4).
22. Aravindan, V.; Gnanaraj, J.; Lee, Y.-S.; Madhavi, S., Insertion-type electrodes for nonaqueous Li-ion capacitors. Chemical reviews 2014, 114 (23), 11619-11635.
23. Han, P.; Xu, G.; Han, X.; Zhao, J.; Zhou, X.; Cui, G., Lithium ion capacitors in organic electrolyte system: scientific problems, material development, and key technologies. Advanced Energy Materials 2018, 8 (26), 1801243.
24. Luan, Y.; Hu, R.; Fang, Y.; Zhu, K.; Cheng, K.; Yan, J.; Ye, K.; Wang, G.; Cao, D., Nitrogen and phosphorus dual-doped multilayer graphene as universal anode for full carbon-based lithium and potassium ion capacitors. Nano-Micro Letters 2019, 11 (1), 30.
25. Liu, M.; Zhang, Z.; Dou, M.; Li, Z.; Wang, F., Nitrogen and oxygen co-doped porous carbon nanosheets as high-rate and long-lifetime anode materials for high-performance Li-ion capacitors. Carbon 2019, 151, 28-35.
26. Fuertes, A. B.; Valle-Vigón, P.; Sevilla, M., One-step synthesis of silica@ resorcinol–formaldehyde spheres and their application for the fabrication of polymer and carbon capsules. Chemical Communications 2012, 48 (49), 6124-6126.
27. Verma, P.; Maire, P.; Novák, P., A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta 2010, 55 (22), 6332-6341.
28. Wu, H.; Cui, Y., Designing nanostructured Si anodes for high energy lithium ion batteries. Nano today 2012, 7 (5), 414-429.
29. Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L.; Nix, W. D.; Cui, Y., Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano letters 2011, 11 (7), 2949-2954.
30. Li, B.; Li, S. X.; Jin, Y.; Zai, J. T.; Chen, M.; Nazakat, A.; Zhan, P.; Huang, Y.; Qian, X. F., Porous Si@C ball-in-ball hollow spheres for lithium-ion capacitors with improved energy and power densities. Journal of Materials Chemistry A 2018, 6 (42), 21098-21103.
31. Lai, C.-M.; Kao, T.-L.; Tuan, H.-Y., Si nanowires/Cu nanowires bilayer fabric as a lithium ion capacitor anode with excellent performance. Journal of Power Sources 2018, 379, 261-269.
32. Lu, W.; Guo, X.; Luo, Y.; Li, Q.; Zhu, R.; Pang, H., Core-shell materials for advanced batteries. Chemical Engineering Journal 2019, 355, 208-237.
33. Li, B.; Li, S.; Jin, Y.; Zai, J.; Chen, M.; Nazakat, A.; Zhan, P.; Huang, Y.; Qian, X., Porous Si@ C ball-in-ball hollow spheres for lithium-ion capacitors with improved energy and power densities. Journal of Materials Chemistry A 2018, 6 (42), 21098-21103.
34. Li, P.; Hwang, J.-Y.; Sun, Y.-K., Nano/microstructured silicon–graphite composite anode for high-energy-density Li-ion battery. ACS nano 2019, 13 (2), 2624-2633.
35. Chen, Y.; Zhang, J.; Chen, X.; Yang, P.; An, M., Facile preparation of Hollow Si/SiC/C yolk-shell anode by one-step magnesiothermic reduction. Ceramics International 2019, 45 (14), 17040-17047.
36. Liu, X.; Shen, C.; Lu, J.; Liu, G.; Jiang, Y.; Gao, Y.; Li, W.; Zhao, B.; Zhang, J., Graphene bubble film encapsulated Si@ C hollow spheres as a durable anode material for lithium storage. Electrochimica Acta 2020, 361, 137074.
37. Liu, X.-M.; dong Huang, Z.; woon Oh, S.; Zhang, B.; Ma, P.-C.; Yuen, M. M.; Kim, J.-K., Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review. Composites Science and Technology 2012, 72 (2), 121-144.
38. Long, B.; Yang, H.; Wang, F.; Mao, Y.; Balogun, M.-S.; Song, S.; Tong, Y., Chemically-modified stainless steel mesh derived substrate-free iron-based composite as anode materials for affordable flexible energy storage devices. Electrochimica Acta 2018, 284, 271-278.
39. Yang, J.; Wang, Y.-X.; Chou, S.-L.; Zhang, R.; Xu, Y.; Fan, J.; Zhang, W.-x.; Liu, H. K.; Zhao, D.; Dou, S. X., Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy 2015, 18, 133-142.
40. Kravets, V.; Kolmykova, V. Y., Raman scattering of light in silicon nanostructures: First-and second-order spectra. Optics and spectroscopy 2005, 99 (1), 68-73.
41. Mishra, P.; Jain, K., First-and second-order Raman scattering in nanocrystalline silicon. Physical Review B 2001, 64 (7), 073304.
42. Salcedo, W. J.; Ramirez Fernandez, F. J.; Rubimc, J. C., Influence of laser excitation on raman and photoluminescence spectra and FTIR study of porous silicon layers. Brazilian Journal of Physics 1999, 29 (4), 751-755.
43. Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U., Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 2005, 43 (8), 1731-1742.
44. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nature nanotechnology 2008, 3 (1), 31-35.
45. Zhang, J.; Zhang, L.; Xue, P.; Zhang, L.; Zhang, X.; Hao, W.; Tian, J.; Shen, M.; Zheng, H., Silicon-nanoparticles isolated by in situ grown polycrystalline graphene hollow spheres for enhanced lithium-ion storage. Journal of Materials Chemistry A 2015, 3 (15), 7810-7821.
46. Guo, Z.; Milin, E.; Wang, J.; Chen, J.; Liu, H.-K., Silicon/disordered carbon nanocomposites for lithium-ion battery anodes. Journal of the Electrochemical Society 2005, 152 (11), A2211.
47. Ghimire, P. P.; Jaroniec, M., Renaissance of Stöber Method for Synthesis of Colloidal Particles: New Developments and Opportunities. Journal of Colloid and Interface Science 2020.
48. Matsoukas, T.; Gulari, E., Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetra-ethyl-orthosilicate. Journal of colloid and interface science 1988, 124 (1), 252-261.
49. Ren, Y.; Zhou, X.; Tang, J.; Ding, J.; Chen, S.; Zhang, J.; Hu, T.; Yang, X.-S.; Wang, X.; Yang, J., Boron-doped spherical hollow-porous silicon local lattice expansion toward a high-performance lithium-ion-battery anode. Inorganic chemistry 2019, 58 (7), 4592-4599.
50. Woo, J.; Baek, S.-H., A comparative investigation of different chemical treatments on SiO anode materials for lithium-ion batteries: towards long-term stability. RSC advances 2017, 7 (8), 4501-4509.
51. Zhang, X.; Huang, L.; Shen, Q.; Zhou, X.; Chen, Y., Hollow Boron-Doped Si/SiO x Nanospheres Embedded in the Vanadium Nitride/Nanopore-Assisted Carbon Conductive Network for Superior Lithium Storage. ACS applied materials & interfaces 2019, 11 (49), 45612-45620.
52. Tao, H.-C.; Yang, X.-L.; Zhang, L.-L.; Ni, S.-B., Double-walled core-shell structured Si@ SiO 2@ C nanocomposite as anode for lithium-ion batteries. Ionics 2014, 20 (11), 1547-1552.
53. Zhang, T.; Gao, J.; Zhang, H.; Yang, L.; Wu, Y.; Wu, H., Preparation and electrochemical properties of core-shell Si/SiO nanocomposite as anode material for lithium ion batteries. Electrochemistry communications 2007, 9 (5), 886-890.
54. Gu, X.; Tian, W.; Tian, X.; Ding, Y.; Jia, X.; Wang, L.; Qin, Y., Improving cycling performance of Si-based lithium ion batteries anode with Se-loaded carbon coating. ACS Applied Energy Materials 2019, 2 (7), 5124-5132.
55. Li, C.; Liu, C.; Ahmed, K.; Mutlu, Z.; Yan, Y.; Lee, I.; Ozkan, M.; Ozkan, C. S., Kinetics and electrochemical evolution of binary silicon–polymer systems for lithium ion batteries. RSC advances 2017, 7 (58), 36541-36549.
56. Wu, Y.-J.; Chen, Y.-A.; Huang, C.-L.; Su, J.-T.; Hsieh, C.-T.; Lu, S.-Y., Small highly mesoporous silicon nanoparticles for high performance lithium ion based energy storage. Chemical Engineering Journal 2020, 400, 125958.
57. Shin, Y.-E.; Sa, Y. J.; Park, S.; Lee, J.; Shin, K.-H.; Joo, S. H.; Ko, H., An ice-templated, pH-tunable self-assembly route to hierarchically porous graphene nanoscroll networks. Nanoscale 2014, 6 (16), 9734-9741.
58. Zhang, J.; Xu, Y.; Liu, Z.; Yang, W.; Liu, J., A highly conductive porous graphene electrode prepared via in situ reduction of graphene oxide using Cu nanoparticles for the fabrication of high performance supercapacitors. RSC advances 2015, 5 (67), 54275-54282.
59. Wang, H.; Xu, Z.; Li, Z.; Cui, K.; Ding, J.; Kohandehghan, A.; Tan, X.; Zahiri, B.; Olsen, B. C.; Holt, C. M., Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery–supercapacitor divide. Nano letters 2014, 14 (4), 1987-1994.
60. Dubal, D. P.; Jayaramulu, K.; Zboril, R.; Fischer, R. A.; Gomez-Romero, P., Unveiling BiVO 4 nanorods as a novel anode material for high performance lithium ion capacitors: beyond intercalation strategies. Journal of Materials Chemistry A 2018, 6 (14), 6096-6106.
61. Yi, R.; Chen, S.; Song, J.; Gordin, M. L.; Manivannan, A.; Wang, D., High‐performance hybrid supercapacitor enabled by a high‐rate Si‐based anode. Advanced Functional Materials 2014, 24 (47), 7433-7439.
62. Zhang, F.; Zhang, T.; Yang, X.; Zhang, L.; Leng, K.; Huang, Y.; Chen, Y., A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy & Environmental Science 2013, 6 (5), 1623-1632.
63. Jiang, H.; Wang, S.; Zhang, B.; Shao, Y.; Wu, Y.; Zhao, H.; Lei, Y.; Hao, X., High performance lithium-ion capacitors based on LiNbO3-arched 3D graphene aerogel anode and BCNNT cathode with enhanced kinetics match. Chemical Engineering Journal 2020, 396, 125207.
64. Zhao, Y.; Cui, Y.; Shi, J.; Liu, W.; Shi, Z.; Chen, S.; Wang, X.; Wang, H., Two-dimensional biomass-derived carbon nanosheets and MnO/carbon electrodes for high-performance Li-ion capacitors. Journal of Materials Chemistry A 2017, 5 (29), 15243-15252.
65. Yang, Y.; Lin, Q.; Ding, B.; Wang, J.; Malgras, V.; Jiang, J.; Li, Z.; Chen, S.; Dou, H.; Alshehri, S. M., Lithium-ion capacitor based on nanoarchitectured polydopamine/graphene composite anode and porous graphene cathode. Carbon 2020, 167, 627-633.
66. Wang, H.; Zhang, Y.; Ang, H.; Zhang, Y.; Tan, H. T.; Zhang, Y.; Guo, Y.; Franklin, J. B.; Wu, X. L.; Srinivasan, M., A High‐Energy Lithium‐Ion Capacitor by Integration of a 3D Interconnected Titanium Carbide Nanoparticle Chain Anode with a Pyridine‐Derived Porous Nitrogen‐Doped Carbon Cathode. Advanced Functional Materials 2016, 26 (18), 3082-3093.
67. Liu, X.; Jung, H.-G.; Kim, S.-O.; Choi, H.-S.; Lee, S.; Moon, J. H.; Lee, J. K., Silicon/copper dome-patterned electrodes for high-performance hybrid supercapacitors. Scientific reports 2013, 3 (1), 1-7.
68. Arnaiz, M.; Botas, C.; Carriazo, D.; Mysyk, R.; Mijangos, F.; Rojo, T.; Ajuria, J.; Goikolea, E., Reduced graphene oxide decorated with SnO2 nanoparticles as negative electrode for lithium ion capacitors. Electrochimica Acta 2018, 284, 542-550.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *