帳號:guest(18.219.154.224)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃鈺婷
作者(外文):Huang, Yu-Ting
論文名稱(中文):雙嵌段共聚物混摻選擇性溶劑之緊密堆積球與Frank-Kasper 相之研究
論文名稱(外文):Close-packed Sphere and Frank-Kasper Phases of Diblock Copolymer/Selective Solvent Mixture
指導教授(中文):陳信龍
指導教授(外文):Chen, Hsin-Lung
口試委員(中文):陳俊太
朱哲毅
口試委員(外文):Chen, Jiun-Tai
Chu, Che-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:108032508
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:100
中文關鍵詞:雙嵌段共聚物選擇性溶劑微相分離緊密堆積球Frank-Kasper相
外文關鍵詞:block copolymerselective solventmicrophase separationClose-packed SphereFrank-Kasper Phases
相關次數:
  • 推薦推薦:0
  • 點閱點閱:28
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在高分子產業中,因為溶劑被廣泛應用於合成、純化和加工製成當中,因此研究溶劑和高分子之間的作用力及其對於高分子結構上的影響是重要的主題。由於雙嵌段共聚物中不同化學性質的鏈段間會因為其互不相容的特性而有微相分離的發生,經由分離強度(χN)和體積分率(f)的調控,進而形成繁雜的奈米尺度結構。添加均聚物亦或是選擇性溶劑也是一種簡潔的方法來調控這些相分離結構,在一些特殊情況下,這甚至可以製造出在純均聚物中不易出現的特殊結構。
在本實驗中,我們利用由聚乙二醇和聚丁二烯組成的團聯式高分子poly(ethylene oxide)-block-poly(butadiene) (簡稱PEO-b-PB)來做為共聚物的來源,和十二烷基苯(dodecyl benzene, 簡稱DB)作為選擇性溶於PB鏈段的溶劑摻混,形成球核是PEO,而PB/DB包覆在外圍殼層的球型微胞所形成的PEO-b-PB/DB微相分離摻混物,並藉由小角度X光散射實驗(SAXS)來系統性地探討其微相分離的型態並建構相圖。在此實驗中發現了部分的新現象,除了在非常低的PEO體積分率下會出現面心立方(FCC)的晶格排列,發現在緊密堆積球(CPS)相中的主要結構是六方最密堆積(HCP)的晶體結構。在HCP相中展現了疊積缺層(stacking fault)的程度變化與溫度相關,在此,疊積缺層的熱力學驅動概論是藉由晶格在相對較低的溫度下,堆疊成HCP和FCC相之間的自由能差異會隨著減少。在高溫下會發現結構從CPS相轉變為體心立方(BCC)的堆疊結構,這是因為升高溫度削弱了晶格位勢(lattice potential)並增強了晶格熵(lattice entropy)的效應。最後,我們確認了在六角柱狀(Hex)相和球狀結構的邊界附近出現了Frank-Kasper (FK) σ相。總體來說,雙嵌段共聚物與選擇性溶劑的混摻物隨著選擇性溶劑的組成增加,呈現了HEXFK σ HCP  FCC 無序微胞(disordered micelle,簡稱DM)相的溶致相轉換(lyotropic phase transition)的發生。
此研究揭示了一種簡單達到由雙嵌段共聚物所形成的多樣的球狀圖譜,特別是很少被觀測到的由HCP相成為微胞主要的緊密堆結構,因此突顯了柔軟的嵌段共聚物微胞與堅硬的膠體粒子之間的差異。此外,我們確認了HCP相中的疊積缺層是源自於熱力學上的因素,這與硬球膠體中來自動力學特性的疊積缺層成為對比。因此,嵌段共聚物混摻物可以做為接下來研究柔軟膠體有序堆排的複雜機制的模型。
Solvent has been widely utilized in polymer industry for synthesis, purification, and processing, so the interaction between solvent and polymer and the effect of such an interaction on the structure of the polymer have been the important subjects of research. Due to the immiscibility of the chemically distinct block chains, block copolymer can produce diverse nanoscale morphology via the microphase separation governed by the segregation strength (χN) and the constituent volume fraction (f). The addition of homopolymer or selective solvent also offers a facile approach for tuning the microphase-separated structure of block copolymers. In some instances, this method can even create the unusual structures not easily formed in the neat copolymer.
In this study, we used poly(ethylene oxide)-block-poly(butadiene) (PEO-b-PB) as the parent copolymer and blended it with dodecyl benzene (DB) which acted as a PB-selective solvent to form the microphase-separated PEO-b-PB/DB mixture in which spherical micelles composed of PEO core and the corona containing PB/DB mixture formed. The microphase-separated morphology of the mixtures was systematically studied by small angle X-ray scattering (SAXS) to establish their phase diagrams. A number of new phenomena were disclosed in this study. It was found that close-packed sphere (CPS) phase dominated the phase window, where hexagonal close-packed (HCP) lattice was the predominant CPS structure except at very low PEO composition where face-centered cubic (FCC) lattice emerged. The HCP phase exhibited temperature-dependent variation of the degree of stacking fault. In this case, the introduction of stacking fault was thermodynamically driven by the decrease of the free energy difference between HCP and FCC packing under the condition of relatively low temperature. The CPS phase was found to transform into body-centered cubic (BCC) packing at the elevated temperature, which was attributed to the weakening of the lattice potential and the strengthening of the lattice entropy effect upon increasing temperature. Finally, we have identified the noncanonical Frank-Kasper (FK) σ phase in the vicinity of the boundary between hexagonally packed cylinder (Hex) phase and sphere phase. Generally speaking the diblock copolymer/selective solvent mixture exhibited the lyotropic phase transition sequence of HexFK σ HCP  FCC  disordered micelle phase with the increase of selective solvent composition.
The present study revealed a simple approach to access a rich spectrum of spherical phase of block copolymer, in particular that the rarely observed HCP phase became the dominant close-packed structure of the micelles, thereby highlighting the difference between soft block copolymer micelle and hard colloidal particle. Moreover, in contrast to the kinetic nature of the stacking fault in hard colloids, here we identified the thermodynamically originated stacking fault in the HCP phase. The block copolymer mixture can hence serve as a model system for further study of the complex mechanism underlying the ordered packing of soft colloids.
Abstract---------------------------------------------------------I
中文摘要----------------------------------------------------------III
Contents---------------------------------------------------------V
Figure contents--------------------------------------------------VII
Table contents---------------------------------------------------XII
Chapter 1 Introduction-------------------------------------------1
1.1 Phase behavior of diblock copolymer--------------------------1
1.1.1 Phase behavior of diblock copolymer in neat block copolymer-1
1.1.2 Phase behavior of diblock copolymer in block copolymer/homopolymer blends-------------------------------------5
1.1.3 Phase behavior of diblock copolymer in block copolymer/selective solvent blends-------------------------------8
1.2 Lattice structures of block copolymer in sphere phase--------14
1.2.1 Body-centered cubic (BCC) lattice--------------------------14
1.2.2 Close-packed sphere (CPS) lattices-------------------------18
1.2.3 Frank Kasper (FK) phase------------------------------------22
1.3 Research motivation------------------------------------------26
Chapter 2 Experimental section-----------------------------------29
2.1 Materials----------------------------------------------------29
2.2 Small angle X-ray scattering (SAXS) measurement--------------32
2.3 Lattice identification for SAXS profile----------------------33
2.3.1 FK σ phase-------------------------------------------------33
2.3.2 CPS phase with stacking fault------------------------------35
Chapter 3 Result & Discussion------------------------------------38
3.1 Mixtures of a compositionally asymmetric PEO-b-PB and DB-----38
3.2 Mixtures of a compositionally symmetric PEO-b-PB and DB------53
3.3 Discussion---------------------------------------------------65
3.3.1 Effects of the molecular weight and composition of the neat diblock on the HEX-Sphere phase boundary-------------------------68
3.3.2 The emergence of FK σ phase and the temperature-dependent structural order of σ phase--------------------------------------70
3.3.3 The thermodynamic origin of the temperature-dependent degree of stacking fault in HCP phase-----------------------------------76
3.3.4 The stability of the high-temperature BCC phase------------84
Chapter 4 Conclusions--------------------------------------------86
Chapter 5 Reference----------------------------------------------89

1. Matsen, M. W., & Schick, M. (1994). Stable and unstable phases of a diblock copolymer melt. Physical Review Letters, 72(16), 2660.
2. Grason, G. M. (2006). The packing of soft materials: Molecular asymmetry, geometric frustration and optimal lattices in block copolymer melts. Physics Reports, 433(1), 1-64.
3. Leibler, L. (1980). Theory of microphase separation in block copolymers. Macromolecules, 13(6), 1602-1617.
4. Matsen, M. W., & Bates, F. S. (1996). Unifying weak-and strong-segregation block copolymer theories. Macromolecules, 29(4), 1091-1098.
5. Ziherl, P., & Kamien, R. D. (2001). Maximizing entropy by minimizing area: Towards a new principle of self-organization.
6. Grason, G. M., DiDonna, B. A., & Kamien, R. D. (2003). Geometric theory of diblock copolymer phases. Physical Review Letters, 91(5), 058304.
7. Matsen, M. W. (2012). Effect of architecture on the phase behavior of AB-type block copolymer melts. Macromolecules, 45(4), 2161-2165.
8. Percec, V., Ahn, C. H., Ungar, G., Yeardley, D. J. P., Möller, M., & Sheiko, S. S. (1998). Controlling polymer shape through the self-assembly of dendritic side-groups. Nature, 391(6663), 161-164.
9. Matsen, M. W. (1995). Stabilizing new morphologies by blending homopolymer with block copolymer. Physical Review Letters, 74(21), 4225.
10. Tanaka, H., Hasegawa, H., & Hashimoto, T. (1991). Ordered structure in mixtures of a block copolymer and homopolymers. 1. Solubilization of low molecular weight homopolymers. Macromolecules, 24(1), 240-251.
11. Semenov, A. N. (1993). Phase equilibria in block copolymer-homopolymer mixtures. Macromolecules, 26(9), 2273-2281.
12. McConnell, G. A., Gast, A. P., Huang, J. S., & Smith, S. D. (1993). Disorder-order transitions in soft sphere polymer micelles. Physical Review Letters, 71(13), 2102.
13. Winey, K. I., Thomas, E. L., & Fetters, L. J. (1991). Ordered morphologies in binary blends of diblock copolymer and homopolymer and characterization of their intermaterial dividing surfaces. The Journal of Chemical Physics, 95(12), 9367-9375.
14. Matsen, M. W. (1995). Phase behavior of block copolymer/homopolymer blends. Macromolecules, 28(17), 5765-5773.
15. Liu, M., Qiang, Y., Li, W., Qiu, F., & Shi, A. C. (2016). Stabilizing the Frank-Kasper phases via binary blends of AB diblock copolymers. ACS Macro Letters, 5(10), 1167-1171.
16. Helfand, E., & Tagami, Y. (1972). Theory of the interface between immiscible polymers. II. The Journal of Chemical Physics, 56(7), 3592-3601.
17. Fredrickson, G. H., & Leibler, L. (1989). Theory of block copolymer solutions: nonselective good solvents. Macromolecules, 22(3), 1238-1250.
18. Olvera de la Cruz, M. (1989). Theory of microphase separation in block copolymer solutions. The Journal of Chemical Physics, 90(3), 1995-2002.
19. Whitmore, M. D., & Noolandi, J. (1990). Self‐consistent theory of block copolymer blends: Neutral solvent. The Journal of Chemical Physics, 93(4), 2946-2955.
20. Whitmore, M. D., & Vavasour, J. D. (1992). Self-consistent mean field theory of the microphase diagram of block copolymer/neutral solvent blends. Macromolecules, 25(7), 2041-2045.
21. Lodge, T. P., Hanley, K. J., Pudil, B., & Alahapperuma, V. (2003). Phase behavior of block copolymers in a neutral solvent. Macromolecules, 36(3), 816-822.
22. Hashimoto, T., Shibayama, M., & Kawai, H. (1983). Ordered structure in block polymer solutions. 4. Scaling rules on size of fluctuations with block molecular weight, concentration, and temperature in segregation and homogeneous regimes. Macromolecules, 16(7), 1093-1101.
23. Shibayama, M., Hashimoto, T., & Kawai, H. (1983). Ordered structure in block polymer solutions. 1. Selective solvents. Macromolecules, 16(1), 16-28.
24. Pedersen, J. S., Hamley, I. W., Ryu, C. Y., & Lodge, T. P. (2000). Contrast variation small-angle neutron scattering study of the structure of block copolymer micelles in a slightly selective solvent at semidilute concentrations. Macromolecules, 33(2), 542-550.
25. Hanley, K. J., Lodge, T. P., & Huang, C. I. (2000). Phase behavior of a block copolymer in solvents of varying selectivity. Macromolecules, 33(16), 5918-5931.
26. Lai, C., Russel, W. B., & Register, R. A. (2002). Phase Behavior of Styrene− Isoprene Diblock Copolymers in Strongly Selective Solvents. Macromolecules, 35(3), 841-849.
27. Suo, T., Yan, D., Yang, S., & Shi, A. C. (2009). A theoretical study of phase behaviors for diblock copolymers in selective solvents. Macromolecules, 42(17), 6791-6798.
28. Misra, P., Physics of condensed matter. Academic Press, 2011.
29. Pólya, G., Mathematics and plausible reasoning: Induction and analogy in mathematics (Vol. 1),1954.
30. Bassett, W. A., & Huang, E. (1987). Mechanism of the body-centered cubic—hexagonal close-packed phase transition in iron. Science, 238(4828), 780-783.
31. Wentzcovitch, R. M., & Cohen, M. L. (1988). Theoretical model for the hcp-bcc transition in Mg. Physical Review B, 37(10), 5571.
32. Wentzcovitch, R. M., & Krakauer, H. (1990). Martensitic transformation of Ca. Physical Review B, 42(7), 4563.
33. Wentzcovitch, R. M. (1994). hcp-to-bcc pressure-induced transition in Mg simulated by ab initio molecular dynamics. Physical Review B, 50(14), 10358.
34. Bang, J., & Lodge, T. P. (2003). Mechanisms and epitaxial relationships between close-packed and BCC lattices in block copolymer solutions. The Journal of Physical Chemistry B, 107(44), 12071-12081.
35. Shimizu, K., & Nishiyama, Z. (1972). Electron microscopic studies of martensitic transformations in iron alloys and steels. Metallurgical Transactions, 3(5), 1055-1068.
36. Mahynski, N. A., Kumar, S. K., & Panagiotopoulos, A. Z. (2015). Relative stability of the FCC and HCP polymorphs with interacting polymers. Soft Matter, 11(2), 280-289.
37. Frenkel, D., & Ladd, A. J. (1984). New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres. The Journal of Chemical Physics, 81(7), 3188-3193.
38. Woodcock, L. V. (1997). Entropy difference between the face-centred cubic and hexagonal close-packed crystal structures. Nature, 385(6612), 141-143.
39. Bolhuis, P. G., Frenkel, D. M. S. C., Mau, S. C., & Huse, D. A. (1997). Entropy difference between crystal phases. Nature, 388(6639), 235-236.
40. Mau, S. C., & Huse, D. A. (1999). Stacking entropy of hard-sphere crystals. Physical Review E, 59(4), 4396.
41. Bodnarchuk, M. I., Kovalenko, M. V., Pichler, S., Fritz-Popovski, G., Hesser, G., & Heiss, W. (2010). Large-area ordered superlattices from magnetic Wustite/cobalt ferrite core/shell nanocrystals by doctor blade casting. ACS nano, 4(1), 423-431.
42. Pusey, P. N., Van Megen, W., Bartlett, P., Ackerson, B. J., Rarity, J. G., & Underwood, S. M. (1989). Structure of crystals of hard colloidal spheres. Physical Review Letters, 63(25), 2753.
43. Verhaegh, N. A., van Duijneveldt, J. S., van Blaaderen, A., & Lekkerkerker, H. N. (1995). Direct observation of stacking disorder in a colloidal crystal. The Journal of Chemical Physics, 102(3), 1416-1421.
44. Imaizumi, K., Ono, T., Kota, T., Okamoto, S., & Sakurai, S. (2003). Transformation of cubic symmetry for spherical microdomains from face-centred to body-centred cubic upon uniaxial elongation in an elastomeric triblock copolymer. Journal of Applied Crystallography, 36(4), 976-981.
45. Huang, Y. Y., Chen, H. L., & Hashimoto, T. (2003). Face-centered cubic lattice of spherical micelles in block copolymer/homopolymer blends. Macromolecules, 36(3), 764-770.
46. Huang, Y. Y., Hsu, J. Y., Chen, H. L., & Hashimoto, T. (2007). Existence of fcc-packed spherical micelles in diblock copolymer melt. Macromolecules, 40(3), 406-409.
47. Matsen, M. W. (2009). Fast and accurate SCFT calculations for periodic block-copolymer morphologies using the spectral method with Anderson mixing. The European Physical Journal E, 30(4), 361-369.
48. Hsu, N. W., Nouri, B., Chen, L. T., & Chen, H. L. (2020). Hexagonal Close-Packed Sphere Phase of Conformationally Symmetric Block Copolymer. Macromolecules, 53(21), 9665-9675.
49. Takagi, H., & Yamamoto, K. (2018). Close-packed structures of the spherical microdomains in block copolymer–homopolymer binary mixture. Transactions of the Materials Research Society of Japan, 43(3), 161-165.
50. Chen, L. T., Chen, C. Y., & Chen, H. L. (2019). FCC or HCP: The stable close-packed lattice of crystallographically equivalent spherical micelles in block copolymer/homopolymer blend. Polymer, 169, 131-137.
51. Chen, L., Lee, H. S., Zhernenkov, M., & Lee, S. (2019). Martensitic Transformation of Close-Packed Polytypes of Block Copolymer Micelles. Macromolecules, 52(17), 6649-6661.
52. Frank, F. T., & Kasper, J. S. (1958). Complex alloy structures regarded as sphere packings. I. Definitions and basic principles. Acta Crystallographica, 11(3), 184-190.
53. Frank, F. T., & Kasper, J. S. (1959). Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures. Acta Crystallographica, 12(7), 483-499.
54. Sluiter, M. H., Pasturel, A., & Kawazoe, Y. (2005). Prediction of site preference and phase stability of transition metal based Frank-Kasper phases. In The Science of Complex Alloy Phases ashfield at the 134th TMS Annual Meeting. San Francisco.
55. Kim, S. A., Jeong, K. J., Yethiraj, A., & Mahanthappa, M. K. (2017). Low-symmetry sphere packings of simple surfactant micelles induced by ionic sphericity. Proceedings of the National Academy of Sciences, 114(16), 4072-4077.
56. Lachmayr, K. K., Wentz, C. M., & Sita, L. R. (2020). An exceptionally stable and scalable sugar–polyolefin Frank–Kasper A15 phase. Angewandte Chemie International Edition, 59(4), 1521-1526.
57. Huang, M., Hsu, C. H., Wang, J., Mei, S., Dong, X., Li, Y., ... & Zhang, W. B. (2015). Selective assemblies of giant tetrahedra via precisely controlled positional interactions. Science, 348(6233), 424-428.
58. Yue, K., Huang, M., Marson, R. L., He, J., Huang, J., Zhou, Z., ... & Guo, Z. (2016). Geometry induced sequence of nanoscale Frank–Kasper and quasicrystal mesophases in giant surfactants. Proceedings of the National Academy of Sciences, 113(50), 14195-14200.
59. Su, Z., Hsu, C. H., Gong, Z., Feng, X., Huang, J., Zhang, R., ... & Seifert, S. (2019). Identification of a Frank–Kasper Z phase from shape amphiphile self-assembly. Nature Chemistry, 11(10), 899-905.
60. Hudson, S. D., Jung, H. T., Percec, V., Cho, W. D., Johansson, G., Ungar, G., & Balagurusamy, V. S. K. (1997). Direct visualization of individual cylindrical and spherical supramolecular dendrimers. Science, 278(5337), 449-452.
61. Ungar, G., Liu, Y., Zeng, X., Percec, V., & Cho, W. D. (2003). Giant supramolecular liquid crystal lattice. Science, 299(5610), 1208-1211.
62. Lee, S., Bluemle, M. J., & Bates, F. S. (2010). Discovery of a Frank-Kasper σ phase in sphere-forming block copolymer melts. Science, 330(6002), 349-353.
63. Kim, K., Schulze, M. W., Arora, A., Lewis, R. M., Hillmyer, M. A., Dorfman, K. D., & Bates, F. S. (2017). Thermal processing of diblock copolymer melts mimics metallurgy. Science, 356(6337), 520-523.
64. Bates, M. W., Lequieu, J., Barbon, S. M., Lewis, R. M., Delaney, K. T., Anastasaki, A., ... & Bates, C. M. (2019). Stability of the A15 phase in diblock copolymer melts. Proceedings of the National Academy of Sciences, 116(27), 13194-13199.
65. Takagi, H., Hashimoto, R., Igarashi, N., Kishimoto, S., & Yamamoto, K. (2017). Frank–Kasper σ phase in polybutadiene-poly (ε-caprolactone) diblock copolymer/polybutadiene blends. Journal of Physics: Condensed Matter, 29(20), 204002.
66. Takagi, H., & Yamamoto, K. (2019). Phase Boundary of Frank–Kasper σ Phase in Phase Diagrams of Binary Mixtures of Block Copolymers and Homopolymers. Macromolecules, 52(5), 2007-2014.
67. Mueller, A. J., Lindsay, A. P., Jayaraman, A., Lodge, T. P., Mahanthappa, M. K., & Bates, F. S. (2020). Emergence of a C15 Laves Phase in Diblock Polymer/Homopolymer Blends. ACS Macro Letters, 9(4), 576-582.
68. Cheong, G. K., Bates, F. S., & Dorfman, K. D. (2020). Symmetry breaking in particle-forming diblock polymer/homopolymer blends. Proceedings of the National Academy of Sciences, 117(29), 16764-16769.
69. Lindsay, A. P., Lewis III, R. M., Lee, B., Peterson, A. J., Lodge, T. P., & Bates, F. S. (2020). A15, σ, and a Quasicrystal: Access to Complex Particle Packings via Bidisperse Diblock Copolymer Blends. ACS Macro Letters, 9(2), 197-203.
70. Bates, M. W., Barbon, S. M., Levi, A. E., Lewis III, R. M., Beech, H. K., Vonk, K. M., ... & Bates, C. M. (2020). Synthesis and Self-Assembly of AB n Miktoarm Star Polymers. ACS Macro Letters, 9(3), 396-403.
71. Lequieu, J., Koeper, T., Delaney, K. T., & Fredrickson, G. H. (2020). Extreme Deflection of Phase Boundaries and Chain Bridging in A (BA′) n Miktoarm Star Polymers. Macromolecules, 53(2), 513-522.
72. Schulze, M. W., Lewis III, R. M., Lettow, J. H., Hickey, R. J., Gillard, T. M., Hillmyer, M. A., & Bates, F. S. (2017). Conformational asymmetry and quasicrystal approximants in linear diblock copolymers. Physical Review Letters, 118(20), 207801.
73. Jeon, S., Jun, T., Jo, S., Ahn, H., Lee, S., Lee, B., & Ryu, D. Y. (2019). Frank–Kasper Phases Identified in PDMS‐b‐PTFEA Copolymers with High Conformational Asymmetry. Macromolecular Rapid Communications, 40(19), 1900259.
74. Chang, A. B., & Bates, F. S. (2020). Impact of Architectural Asymmetry on Frank–Kasper Phase Formation in Block Polymer Melts. ACS nano, 14(9), 11463-11472.
75. Lai, C. T., & Shi, A. C. (2021). Comment on “Quantify the contribution of chain length heterogeneity on block copolymer self-assembly”. Giant, 5, 100046.
76. Takagi, H., Hashimoto, R., Igarashi, N., Kishimoto, S., & Yamamoto, K. (2018). Synchrotron SAXS Studies on Lattice Structure of Spherical Micelles in Binary Mixtures of Block Copolymers and Homopolymers. Journal of Fiber Science and Technology, 74(1), 10-16.
77. Reddy, A., Buckley, M. B., Arora, A., Bates, F. S., Dorfman, K. D., & Grason, G. M. (2018). Stable Frank–Kasper phases of self-assembled, soft matter spheres. Proceedings of the National Academy of Sciences, 115(41), 10233-10238.
78. Van Krevelen (1997). Properties of Polymers (3rd ed.). Elsevier Press.
79. Lawson, A. C., Olsen, C. E., Richardson, J. W., Mueller, M. H., & Lander, G. H. (1988). Structure of β-uranium. Acta Crystallographica Section B: Structural Science, 44(2), 89-96.
80. Auer, S., & Frenkel, D. (2001). Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature, 409(6823), 1020-1023.
81. van de Waal, B. W. (1991). Can the Lennard-Jones solid be expected to be fcc?. Physical review letters, 67(23), 3263.
82. Pronk, S., & Frenkel, D. (1999). Can stacking faults in hard-sphere crystals anneal out spontaneously?. The Journal of chemical physics, 110(9), 4589-4592.
83. Grason, G. M. (2007). Ordered phases of diblock copolymers in selective solvent. The Journal of Chemical Physics, 126(11), 114904.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *