|
1.Grason, G.M. and R.D. Kamien, Interfaces in diblocks: A study of miktoarm star copolymers. Macromolecules, 2004. 37(19): p. 7371-7380. 2.Park, J., S. Jang, and J. Kon Kim, Morphology and microphase separation of star copolymers. Journal of Polymer Science Part B: Polymer Physics, 2015. 53(1): p. 1-21. 3.Leibler, L., Theory of microphase separation in block copolymers. Macromolecules, 1980. 13(6): p. 1602-1617. 4.Vavasour, J.D. and M.D. Whitmore, Self-consistent mean field theory of the microphases of diblock copolymers. Macromolecules, 1992. 25(20): p. 5477-5486. 5.Matsen, M.W. and F.S. Bates, Unifying weak-and strong-segregation block copolymer theories. Macromolecules, 1996. 29(4): p. 1091-1098. 6.Henze, M., et al., “Grafting Through”: Mechanistic Aspects of Radical Polymerization Reactions with Surface-Attached Monomers. Macromolecules, 2014. 47(9): p. 2929-2937. 7.Zammarelli, N., et al., "Grafting-from" polymerization of PMMA from stainless steel surfaces by a RAFT-mediated polymerization process. Langmuir, 2013. 29(41): p. 12834-43. 8.Highly Efficient “Click” Functionalization of Poly(3-azidopropyl methacrylate) Prepared by ATRP. Macromolecules, 2005. 38: p. 7540-7545. 9.Gao, H., K. Min, and K. Matyjaszewski, Synthesis of 3-Arm Star Block Copolymers by Combination of “Core-First” and “Coupling-Onto” Methods Using ATRP and Click Reactions. Macromolecular Chemistry and Physics, 2007. 208(13): p. 1370-1378. 10.Synthesis of Molecular Brushes by “Grafting onto” Method: Combination of ATRP and Click Reactions. J Am Chem Soc, 2007. 129: p. 6633-6639. 11.Nicolay V. Tsarevsky, S.A.B., and Krzysztof Matyjaszewski, Graft Copolymers by a Combination of ATRP and Two Different Consecutive Click Reactions. Macromolecules, 2007. 40: p. 4439-4445. 12.Sanchez, M.O.d.l.C.a.I.C., Theory of Microphase Separation in Graft and Star Copolymers. Macromolecules, 1986. 19: p. 2501-2508. 13.Pochan, D.J., et al., Morphologies of microphase-separated A2B simple graft copolymers. Macromolecules, 1996. 29(15): p. 5091-5098. 14.Drioli, E. and L. Giorno, Encyclopedia of Membranes. 2016. 15.Shen, Y., et al., Macrolattice formation in amorphous associating polymers. Phys Rev A, 1991. 43(4): p. 1886-1891. 16.Zare, P., et al., Hierarchically Nanostructured Polyisobutylene-Based Ionic Liquids. Macromolecules, 2012. 45(4): p. 2074-2084. 17.Aissou, K., et al., Sub-10 nm features obtained from directed self-assembly of semicrystalline polycarbosilane-based block copolymer thin films. Adv Mater, 2015. 27(2): p. 261-5. 18.Luo, Y., et al., Improved self-assembly of poly(dimethylsiloxane-b -ethylene oxide) using a hydrogen-bonding additive. Journal of Polymer Science Part A: Polymer Chemistry, 2016. 54(14): p. 2200-2208. 19.Luo, Y., et al., Poly(dimethylsiloxane-b-methyl methacrylate): A Promising Candidate for Sub-10 nm Patterning. Macromolecules, 2015. 48(11): p. 3422-3430. 20.Maher, M.J., et al., Directed self-assembly of silicon-containing block copolymer thin films. ACS Appl Mater Interfaces, 2015. 7(5): p. 3323-8. 21.Minehara, H., et al., Branched Block Copolymers for Tuning of Morphology and Feature Size in Thin Film Nanolithography. Macromolecules, 2016. 49(6): p. 2318-2326. 22.Yue, K., et al., Geometry induced sequence of nanoscale Frank-Kasper and quasicrystal mesophases in giant surfactants. Proc Natl Acad Sci U S A, 2016. 113(50): p. 14195-14200. 23.Lu, X., W. Steckle Jr, and R. Weiss, Morphological studies of a triblock copolymer ionomer by small-angle X-ray scattering. Macromolecules, 1993. 26(24): p. 6525-6530. 24.Hunt, J.N., et al., Tunable, high modulus hydrogels driven by ionic coacervation. Advanced Materials, 2011. 23(20): p. 2327-2331. 25.Buitrago, C.F., et al., Precise Acid Copolymer Exhibits a Face-Centered Cubic Structure. ACS Macro Letters, 2011. 1(1): p. 71-74. 26.Michelle E. Seitz, C.D.C., ‡,§ Kathleen L. Opper,⊥ and Travis W. Baughman, ¶ Kenneth B. Wagener,⊥ and Karen I. Winey*,†,‡, Nanoscale Morphology in Precisely Sequenced Poly(ethylene-co-acrylic acid) Zinc Ionomers. J. AM. CHEM. SOC., 2010. 132: p. 8165–8174. 27.Kato, T., From Nanostructured Liquid Crystals to Polymer‐Based Electrolytes. Angewandte Chemie International Edition, 2010. 49(43): p. 7847-7848. 28.Kerr, R.L., et al., New type of Li ion conductor with 3D interconnected nanopores via polymerization of a liquid organic electrolyte-filled lyotropic liquid-crystal assembly. Journal of the American Chemical Society, 2009. 131(44): p. 15972-15973. 29.Feng, X., et al., Scalable fabrication of polymer membranes with virtically aligned 1 nm pores by magnetic field directed self-assembly. Acs Nano, 2014. 8(12): p. 11977-11986. 30.Binnemans, K., Ionic liquid crystals. Chemical Reviews, 2005. 105(11): p. 4148-4204. 31.Lovelock, K.R., Quantifying intermolecular interactions of ionic liquids using cohesive energy densities. Royal Society open science, 2017. 4(12): p. 171223. 32.Santos, L.M., et al., Ionic liquids: first direct determination of their cohesive energy. Journal of the American Chemical Society, 2007. 129(2): p. 284-285. 33.Zaitsau, D.H., et al., Experimental vapor pressures of 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imides and a correlation scheme for estimation of vaporization enthalpies of ionic liquids. The Journal of Physical Chemistry A, 2006. 110(22): p. 7303-7306. 34.Zaitsau, D.H., et al., Structure-property relationships in ILs: A study of the alkyl chain length dependence in vaporisation enthalpies of pyridinium based ionic liquids. Science China Chemistry, 2012. 55(8): p. 1525-1531. 35.Bates, F.S., J.H. Rosedale, and G.H. Fredrickson, Fluctuation effects in a symmetric diblock copolymer near the order–disorder transition. The Journal of Chemical Physics, 1990. 92(10): p. 6255-6270. 36.Lei, Z., et al., Introduction: ionic liquids. Chemical Reviews, 2017. 117(10): p. 6633-6635. 37.Freemantle, M., An introduction to ionic liquids. 2010: Royal Society of chemistry. 38.Welton, T., Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical reviews, 1999. 99(8): p. 2071-2084. 39.Ohno, H., Electrochemical aspects of ionic liquids. 2005: John Wiley & Sons. 40.Ohno, H., M. Yoshizawa, and W. Ogihara, Development of new class of ion conductive polymers based on ionic liquids. Electrochimica Acta, 2004. 50(2-3): p. 255-261. 41.Holbrey, J.D. and K. Seddon, Ionic liquids. Clean products and processes, 1999. 1(4): p. 223-236. 42.Kosmulski, M., J. Gustafsson, and J.B. Rosenholm, Thermal stability of low temperature ionic liquids revisited. Thermochimica Acta, 2004. 412(1-2): p. 47-53. 43.Tsunashima, K. and M. Sugiya, Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochemistry Communications, 2007. 9(9): p. 2353-2358. 44.Safa, M., et al., Polymeric ionic liquid gel electrolyte for room temperature lithium battery applications. Electrochimica Acta, 2016. 213: p. 587-593. 45.Passerini, S., M. Montanino, and G. Appetecchi, Lithium polymer batteries based on ionic liquids. 2013, Wiley Online Library. p. 53-101. 46.Ye, Y.-S., J. Rick, and B.-J. Hwang, Ionic liquid polymer electrolytes. Journal of Materials Chemistry A, 2013. 1(8): p. 2719-2743. 47.Ohno, H., Molten salt type polymer electrolytes. Electrochimica Acta, 2001. 46(10-11): p. 1407-1411. 48.Appetecchi, G., et al., Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries. Journal of Power Sources, 2010. 195(11): p. 3668-3675. 49.Chaurasia, S.K., R.K. Singh, and S. Chandra, Structural and transport studies on polymeric membranes of PEO containing ionic liquid, EMIM-TY: evidence of complexation. Solid State Ionics, 2011. 183(1): p. 32-39. 50.Wang, M., et al., Investigation of PEO-imidazole ionic liquid oligomer electrolytes for dye-sensitized solar cells. Solar energy materials and solar cells, 2007. 91(9): p. 785-790. 51.Zardalidis, G., et al., Influence of chain topology on polymer crystallization: poly (ethylene oxide)(PEO) rings vs. linear chains. Soft Matter, 2016. 12(39): p. 8124-8134.
|