帳號:guest(3.141.35.116)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王柏凱
作者(外文):Wang, Po-Kai
論文名稱(中文):可建構10奈米以下尺度結構之離子液體-高分子物複合體之自組裝行為研究
論文名稱(外文):Self-assembly Behavior of Polymer-Ionic Liquid Conjugates for Constructing Sub-10 nm Nanostructure
指導教授(中文):陳信龍
指導教授(外文):Chen, Hsin-Lung
口試委員(中文):賴偉淇
黎彥成
口試委員(外文):Lai, Wei-Chi
Li, Yen-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:108032506
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:81
中文關鍵詞:自組裝行為離子液體奈米結構結晶行為
外文關鍵詞:Self-assemblynanostructureionic liquidscrystallizability
相關次數:
  • 推薦推薦:0
  • 點閱點閱:69
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
嵌段共聚物產生的奈米結構因其在各個領域上都有潛在應用而受到相當大的重視,像是半導體產業中的微影蝕刻製程,近年來所需的線寬已達到小於10奈米。為了達到如此小的長度,嵌段共聚物必須同時具備低分子量以及非常強的嵌段間排斥力,使分子設計上相當具挑戰性。本論文研究一種新興聚合物「離子液體高分子物複合體」的自組裝行為,該材料通過將離子液體藉由共價鍵與聚合物末端鍵結而成。由於高分子鏈與離子液體之間有非常強的極性-非極性排斥力,此兩成分即使在低聚物狀態下也會產生微相分離,產生特徵尺寸小於10奈米的有序層狀結構以及六角堆積圓柱結構。
我們研究了兩種材料,低聚(二甲基矽氧烷)-離子液體 (ODMS-IL)以及聚(環氧乙烷)-離子液體 (PEO-IL)。我們發現所形成的有序結構、結構特徵距離以及有序-無序相轉化溫度都與離子液體部分所使用的陽離子和陰離子有很大的關聯,這部份可以藉由嵌段共聚物在微相分離上的基本物理學來解釋。此外,我們發現離子液體與PEO綴合後會對PEO的結晶動力學以及結晶能力產生強烈的影響,我們可以通過綴合物在無序熔融態時的結構來解釋這樣的行為。一旦離子液體在熔融態形成離子簇(ionic cluster),PEO分子鏈的流動性就會受到此離子簇的限制,進而影響其結晶行為。
目前的結果顯示,將離子液體綴合至聚合物結構中是一種有效生成特徵尺寸小於10奈米的有序結構的方法。此外,將其使用於製造薄膜有序結構,並應用在光蝕刻領域上,是一件非常令人感興趣的研究。
The nanostructures generated by block copolymers have received considerable attention for their potential applications in various fields including lithography which requires the line width to reach below 10 nm. To attain such a small lengthscale structure, the block copolymer has to possess both low molecular weight and very strong interblock repulsion, which is challenging in terms of the molecular design to suffice the later condition. This thesis investigates the self-assembly behavior of an emerging polymer material called “polymer-ionic liquid conjugate” formed by covalently coupling ionic liquid (IL) moiety with the polymer at the chain end. Due to very strong polar-nonpolar repulsion between the polymer and the IL, these two constituents undergo microphase separation even in the oligomeric regime, leading to ordered lamellae or hexagonally-packed cylinder structures with sub-10 nm in feature size. Two material systems have been studied here, namely, oligo(dimethyl siloxans) (ODMS)-IL and poly(ethylene oxide) (PEO)-IL conjugates. We revealed that the type of ordered structure formed, the characteristic interdomain distance, and the order-disorder temperature of the ODMS-IL conjugates depended strongly on the cationic and anionic groups of the IL moiety, which could be understood using the basic physics of the microphase transition of block copolymers. Moreover, we revealed that conjugating with the IL moiety exerted a strong effect on the crystallization kinetics and crystallizability of PEO. The observed effect could be rationalized by the structure of the conjugate in the disordered melt state, where the crystallization of PEO was strongly suppressed by the restriction in chain mobility once the IL moiety formed ionic clusters in the melt state. The present work demonstrates that incorporating IL into the polymer structure offers an effective route for generating tunable nanostructures with sub-10 nm feature size and further works relevant to the fabrication of the structure in the thin film for lithography application should be of interest.
Abstract...................I
摘要 ...................III
Table of Contents...................V
List of Figures...................VII
List of Tables...................XI
Chapter 1 Introduction...................1
1.1 Background of research...................1
1.2 Polymer systems exhibiting microphase separation...........3
1.2.1 Block copolymer...................3
1.2.2 Graft copolymer...................8
1.2.3 End-functionalized polymer...................11
1.3 Research motivation and objective...................17
Chapter 2 Structure and Phase Behavior of Oligo(dimethylsiloxane)-Ionic Liquids Conjugates...................19
2.1 Introduction...................19
2.2 Experimental Section...................22
2.2.1 Materials...................22
2.2.2 SAXS Measurement...................24
2.3 Results and Discussion...................25
2.3.1 Self-assembled structure and phase behavior of ODMS-IL conjugates...................25
2.3.2 Phase behavior of the blends ODMS-IL conjugate and ODMS...................38
2.4 Conclusions...................48
Chapter 3 Structure and Phase Transition of Crystalline Polymer-Ionic Liquid Conjugate...................51
3.1 Introduction...................51
3.2 Experimental Section...................54
3.2.1 Materials...................54
3.2.2 SAXS Measurement...................55
3.2.3 Differential Scanning Calorimetry (DSC) Measurement.........56
3.3 Results and Discussion...................58
3.4 Conclusions...................70
Chapter 4 Overall Summary...................72
Chapter 5 References...................75

1.Grason, G.M. and R.D. Kamien, Interfaces in diblocks: A study of miktoarm star copolymers. Macromolecules, 2004. 37(19): p. 7371-7380.
2.Park, J., S. Jang, and J. Kon Kim, Morphology and microphase separation of star copolymers. Journal of Polymer Science Part B: Polymer Physics, 2015. 53(1): p. 1-21.
3.Leibler, L., Theory of microphase separation in block copolymers. Macromolecules, 1980. 13(6): p. 1602-1617.
4.Vavasour, J.D. and M.D. Whitmore, Self-consistent mean field theory of the microphases of diblock copolymers. Macromolecules, 1992. 25(20): p. 5477-5486.
5.Matsen, M.W. and F.S. Bates, Unifying weak-and strong-segregation block copolymer theories. Macromolecules, 1996. 29(4): p. 1091-1098.
6.Henze, M., et al., “Grafting Through”: Mechanistic Aspects of Radical Polymerization Reactions with Surface-Attached Monomers. Macromolecules, 2014. 47(9): p. 2929-2937.
7.Zammarelli, N., et al., "Grafting-from" polymerization of PMMA from stainless steel surfaces by a RAFT-mediated polymerization process. Langmuir, 2013. 29(41): p. 12834-43.
8.Highly Efficient “Click” Functionalization of Poly(3-azidopropyl methacrylate) Prepared by ATRP. Macromolecules, 2005. 38: p. 7540-7545.
9.Gao, H., K. Min, and K. Matyjaszewski, Synthesis of 3-Arm Star Block Copolymers by Combination of “Core-First” and “Coupling-Onto” Methods Using ATRP and Click Reactions. Macromolecular Chemistry and Physics, 2007. 208(13): p. 1370-1378.
10.Synthesis of Molecular Brushes by “Grafting onto” Method: Combination of ATRP and Click Reactions. J Am Chem Soc, 2007. 129: p. 6633-6639.
11.Nicolay V. Tsarevsky, S.A.B., and Krzysztof Matyjaszewski, Graft Copolymers by a Combination of ATRP and Two Different Consecutive Click Reactions. Macromolecules, 2007. 40: p. 4439-4445.
12.Sanchez, M.O.d.l.C.a.I.C., Theory of Microphase Separation in Graft and Star Copolymers. Macromolecules, 1986. 19: p. 2501-2508.
13.Pochan, D.J., et al., Morphologies of microphase-separated A2B simple graft copolymers. Macromolecules, 1996. 29(15): p. 5091-5098.
14.Drioli, E. and L. Giorno, Encyclopedia of Membranes. 2016.
15.Shen, Y., et al., Macrolattice formation in amorphous associating polymers. Phys Rev A, 1991. 43(4): p. 1886-1891.
16.Zare, P., et al., Hierarchically Nanostructured Polyisobutylene-Based Ionic Liquids. Macromolecules, 2012. 45(4): p. 2074-2084.
17.Aissou, K., et al., Sub-10 nm features obtained from directed self-assembly of semicrystalline polycarbosilane-based block copolymer thin films. Adv Mater, 2015. 27(2): p. 261-5.
18.Luo, Y., et al., Improved self-assembly of poly(dimethylsiloxane-b
-ethylene oxide) using a hydrogen-bonding additive. Journal of Polymer Science Part A: Polymer Chemistry, 2016. 54(14): p. 2200-2208.
19.Luo, Y., et al., Poly(dimethylsiloxane-b-methyl methacrylate): A Promising Candidate for Sub-10 nm Patterning. Macromolecules, 2015. 48(11): p. 3422-3430.
20.Maher, M.J., et al., Directed self-assembly of silicon-containing block copolymer thin films. ACS Appl Mater Interfaces, 2015. 7(5): p. 3323-8.
21.Minehara, H., et al., Branched Block Copolymers for Tuning of Morphology and Feature Size in Thin Film Nanolithography. Macromolecules, 2016. 49(6): p. 2318-2326.
22.Yue, K., et al., Geometry induced sequence of nanoscale Frank-Kasper and quasicrystal mesophases in giant surfactants. Proc Natl Acad Sci U S A, 2016. 113(50): p. 14195-14200.
23.Lu, X., W. Steckle Jr, and R. Weiss, Morphological studies of a triblock copolymer ionomer by small-angle X-ray scattering. Macromolecules, 1993. 26(24): p. 6525-6530.
24.Hunt, J.N., et al., Tunable, high modulus hydrogels driven by ionic coacervation. Advanced Materials, 2011. 23(20): p. 2327-2331.
25.Buitrago, C.F., et al., Precise Acid Copolymer Exhibits a Face-Centered Cubic Structure. ACS Macro Letters, 2011. 1(1): p. 71-74.
26.Michelle E. Seitz, C.D.C., ‡,§ Kathleen L. Opper,⊥ and Travis W. Baughman, ¶ Kenneth B. Wagener,⊥ and Karen I. Winey*,†,‡, Nanoscale Morphology in Precisely Sequenced Poly(ethylene-co-acrylic acid) Zinc Ionomers. J. AM. CHEM. SOC., 2010. 132: p. 8165–8174.
27.Kato, T., From Nanostructured Liquid Crystals to Polymer‐Based Electrolytes. Angewandte Chemie International Edition, 2010. 49(43): p. 7847-7848.
28.Kerr, R.L., et al., New type of Li ion conductor with 3D interconnected nanopores via polymerization of a liquid organic electrolyte-filled lyotropic liquid-crystal assembly. Journal of the American Chemical Society, 2009. 131(44): p. 15972-15973.
29.Feng, X., et al., Scalable fabrication of polymer membranes with virtically aligned 1 nm pores by magnetic field directed self-assembly. Acs Nano, 2014. 8(12): p. 11977-11986.
30.Binnemans, K., Ionic liquid crystals. Chemical Reviews, 2005. 105(11): p. 4148-4204.
31.Lovelock, K.R., Quantifying intermolecular interactions of ionic liquids using cohesive energy densities. Royal Society open science, 2017. 4(12): p. 171223.
32.Santos, L.M., et al., Ionic liquids: first direct determination of their cohesive energy. Journal of the American Chemical Society, 2007. 129(2): p. 284-285.
33.Zaitsau, D.H., et al., Experimental vapor pressures of 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imides and a correlation scheme for estimation of vaporization enthalpies of ionic liquids. The Journal of Physical Chemistry A, 2006. 110(22): p. 7303-7306.
34.Zaitsau, D.H., et al., Structure-property relationships in ILs: A study of the alkyl chain length dependence in vaporisation enthalpies of pyridinium based ionic liquids. Science China Chemistry, 2012. 55(8): p. 1525-1531.
35.Bates, F.S., J.H. Rosedale, and G.H. Fredrickson, Fluctuation effects in a symmetric diblock copolymer near the order–disorder transition. The Journal of Chemical Physics, 1990. 92(10): p. 6255-6270.
36.Lei, Z., et al., Introduction: ionic liquids. Chemical Reviews, 2017. 117(10): p. 6633-6635.
37.Freemantle, M., An introduction to ionic liquids. 2010: Royal Society of chemistry.
38.Welton, T., Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical reviews, 1999. 99(8): p. 2071-2084.
39.Ohno, H., Electrochemical aspects of ionic liquids. 2005: John Wiley & Sons.
40.Ohno, H., M. Yoshizawa, and W. Ogihara, Development of new class of ion conductive polymers based on ionic liquids. Electrochimica Acta, 2004. 50(2-3): p. 255-261.
41.Holbrey, J.D. and K. Seddon, Ionic liquids. Clean products and processes, 1999. 1(4): p. 223-236.
42.Kosmulski, M., J. Gustafsson, and J.B. Rosenholm, Thermal stability of low temperature ionic liquids revisited. Thermochimica Acta, 2004. 412(1-2): p. 47-53.
43.Tsunashima, K. and M. Sugiya, Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochemistry Communications, 2007. 9(9): p. 2353-2358.
44.Safa, M., et al., Polymeric ionic liquid gel electrolyte for room temperature lithium battery applications. Electrochimica Acta, 2016. 213: p. 587-593.
45.Passerini, S., M. Montanino, and G. Appetecchi, Lithium polymer batteries based on ionic liquids. 2013, Wiley Online Library. p. 53-101.
46.Ye, Y.-S., J. Rick, and B.-J. Hwang, Ionic liquid polymer electrolytes. Journal of Materials Chemistry A, 2013. 1(8): p. 2719-2743.
47.Ohno, H., Molten salt type polymer electrolytes. Electrochimica Acta, 2001. 46(10-11): p. 1407-1411.
48.Appetecchi, G., et al., Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries. Journal of Power Sources, 2010. 195(11): p. 3668-3675.
49.Chaurasia, S.K., R.K. Singh, and S. Chandra, Structural and transport studies on polymeric membranes of PEO containing ionic liquid, EMIM-TY: evidence of complexation. Solid State Ionics, 2011. 183(1): p. 32-39.
50.Wang, M., et al., Investigation of PEO-imidazole ionic liquid oligomer electrolytes for dye-sensitized solar cells. Solar energy materials and solar cells, 2007. 91(9): p. 785-790.
51.Zardalidis, G., et al., Influence of chain topology on polymer crystallization: poly (ethylene oxide)(PEO) rings vs. linear chains. Soft Matter, 2016. 12(39): p. 8124-8134.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *