帳號:guest(3.137.210.16)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張家寧
作者(外文):Zhang, Jia-Ning
論文名稱(中文):可降解之共軛高分子及無甲醛交聯劑之合成與討論
論文名稱(外文):Synthesis and characterization of fluorene-containing conjugated polymers and formaldehyde-free crosslinking agent
指導教授(中文):堀江正樹
指導教授(外文):Horie, Masaki
口試委員(中文):潘詠庭
游進陽
口試委員(外文):Pan, Yung-Tin
Yu, Chin-Yang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:108032466
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:55
中文關鍵詞:共軛高分子高分子合成有機場效應電晶體無甲醛交聯劑
外文關鍵詞:Conjugated polymerPolymer synthesisOrganic Field Effect TransistorFormaldehyde-free crosslinking agent
相關次數:
  • 推薦推薦:0
  • 點閱點閱:22
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本項研究共分為兩部分,第一部分主要是合成可以降解的導電高分子並將其製成元件探討性質。第二部分主要是在現有的製成上對無甲醛樹脂進行改善,來獲得具有更好性能的樹脂。
在第一章主要介紹了導電高分子的發展歷程,以及導電高分子目前所應用到的領域進行介紹。之後介紹了無甲醛樹脂的開發的緣由和無甲醛樹脂所具有的優勢以及如何在目前現有的技術上加以改進。
第二章主要介紹了各個高分的合成方法,以及通過GPC, H NMR, C NMR,等方法對高分子進行檢驗。之後將高分子製成OFET元件以及薄膜來進行進一步對其特性的探究。並且詳細介紹了元件的製作流程以及在製作過程中所用的藥品的作用進行說明。以及在製作過程中需要注意的事項進行說明。
第三章主要介紹了無甲醛交聯劑的合成方法。並且在原有的合成方式上嘗試更換反應物或者在反應中加入添加劑探究對交聯劑性能的影響。通過這些改變期望可以製得更加符合預期的產品。
在第四章對實驗的結果進行說明和討論。第五章主要是描述薄膜的製備以及各個單體製備。
This research is divided into two parts. The first involves the synthesis of fluorene-containing conjugated polymers to explore their properties. The second part involves the synthesis of formaldehyde-free resin to improve the existing products.
The first chapter introduces the development history of conjugated polymers and the current application fields of these polymers. After that, formaldehyde-free resins are introduced. It involves their advantages and improvement methods based on the current existing technology.
The second chapter describes the synthesis methods of each high fraction, and tests the polymers by GPC, 1H NMR, 13C NMR, and UV-Vis spectrometries. After that, the polymer is used for OFET fabrication to further explore its electric characteristics. The production process of the components and the role of the reagents used in the production process are described in detail. The matters needing attention in the production process are explained.
The third chapter describes the synthetic method of formaldehyde-free crosslinking agent. We try to replace the reactants or additives in the reaction to explore the effect on the performance of the crosslinking agent. By changing these factors, we succeeded to obtain expected products.
The experimental results are described and discussed in Chapter 4. Chapter 5 mainly describes the preparation of thin films and the preparation of individual monomers.
Chapter 1 Introduction................................ 1
1-1Introduction of conjugated polymers.............................................. 1
1-1-1 History and overview...............................................1
1-1-2 Development of conjugated polymers.............................................. 1
1-1-3 Fluorene-based conjugated polymers...............................................3
1-2 Applications of conjugated polymers...............................................5
1-2-1 Overview of applications of conjugated polymers.............................................. 5
1-2-2 Organic photovoltaics............................7
1-2-3 Perovskite solar cells................................................. 10
1-2-4 Organic field-effect transistors........................................... 15
1-3 Introduction of Formaldehyde-Free Crosslinker........................................... 23
1-4 Research purposes................................. 26
Chapter 2 Synthesis and characterization of conjugated polymers.............................................. 28
2-1 Synthesis of conjugated polymer............................................... 28
2-2 Film preparation and UV-Vis analysis.............................................. 29
2-3 OFET device........................................31
Chapter 3 Synthesis and characterization of formaldehyde-free crosslinker........................................... 40
3-1 Synthesis of formaldehyde-free crosslinking agent................................................. 40
3-2 Characteristics of formaldehyde-free crosslinking agent................................................. 41
Chapter 4 Conclusions and suggestions for future work.................................................. 48
Chapter 5 Experimental................................ 49
5-1 General methods................................... 49
5-2 Use polymers to make thin films................................................. 49
5-3 Synthesis of monomers.............................................. 49
5-3-1 Synthesis of 9,9-di(2-ethylhexyl)fluorenyl-2,7-dibromide............................................. 49
5-3-2 Synthesis of 9H-Fluorene-2,7-dicarboxaldehyde,9,9-bis(2- ethylhexyl)-
...................................................... 50
5-3-3 Synthesis of Dimethyl 2,5-dibromoterephthalate.................................. 51
References............................................ 54
1.A. J. Heeger, J. Phys. Chem. B, 2001, 105, 8475.
2.Nicolas Giuseppone, Gad Fuks, and Jean-Marie Lehn., Chem. Eur. J., 2006, 12, 1723
3.Sy-Hann Chen, Kai-Yu Shih, Jun-Dar Hwang and Chang-Feng Yu, J. Mater. Chem. C, 2019,7, 13510-13517.
4.K. L. Wang et al., Proceedings of the IEEE, vol. 104, no. 10, pp. 1974-2008, Oct. 2016.
5.Kevin Bonsor, “How smart windows work”, HowStaffWorks. https://home.howstuffworks.com/home-improvement/construction/green/smart-window.htm/printable
6.V.V. Tyagi et al. Renewable, Sustain. Energy Rev., 2013, 20, 443–461
7.Y.-J. Cheng, S.-H. Yang and C.-S Hsu, Chem. Rev., 2009, 109, 5868-5923.
8.B. Qi and J. Wang, Phys. Chem. Chem. Phys., 2013, 15, 8972-8982.
9.M. C. Scharber and N. S. Sariciftci, Prog. Polym. Sci., 2013, 38, 1929-1940.
10.C. Eames, J. M. Frost, P. R. F. Barnes, B. C. O’ Regan, A. Walsh and M. S. Islam, Nat. Commun., 2015, 6, 7497.
11.National Renewable Energy Laboratory, Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.html
12.H. D. Pham, T. Yang, S. Jain, G. Wilson and P. Sonar, Adv. Energy Mater, 2020,10, 1903326.
13.H. S. Jung, N. G. Park. Small, 2015, 11(1), 10-25
14.W. H. Zhang, B. Cai, Chin. Sci. Bull., 2014, 59 2092.
15.H. Baig, H. Kanda, A. M. Asiri, M. K. Nazeeruddin and T. Mallick, Sustain. Energy Fuels, 2020, 4, 528-537.
16.Technical Resources, Technical Notes, MOSFET Physics, MKS. https://www.mks.com/n/mosfet-physics
17.D. Kahng, IEEE T. Electron. Dev., 1976, 23, 655-657.
18.J. Zaumseil and H. Sirringhaus, Chem. Rev., 2007, 107, 1296-1323.
19.Z. A. Lamport, H. F. Haneef, S. Anand, M. Waldrip and O. D. Jurchescu, Jpn. J. Appl. Phys., 2018, 124.
20.Urea Formaldehyde Market Forecast, Trend Analysis & Competition Tracking - Global Review 2018 to 2027, Urea Formaldehyde Market, Fact. MR. https://www.factmr.com/report/2950/urea-formaldehyde-market
21.Kaichang Li, Xinglian Geng. Macromol. Rapid Commun., 2005, 26, 529 – 53
22.K. M. Coakley and M. D. McGehee, Chem. Master. 2004, 16, 4533-4542.
23.O’ Regan, Gratzel M. Nature, 1991, 353, 737.
24.Snaith. H. J, Schmidt-Mende. L., Adv. Mater, 2007, 19, 3187.
25.M. Z. Liu, M. B. Johnston, H. J. Snaith., Nature, 2013, 501, 395.
26.M. Jung, T. J. Shin, J. Seo, G. Kim and S. I. Seok, Energy Environ. Sci., 2018, 11, 2188-2197
27.L. Etgar, P. Gao, Z. Xue, et. al., J. Am. Chem. Soc, 2012, 134(42), 17396-17399.
28.T. H. Lee, The design of CMOS radio-frequency integrated circuits, Cambridge university press, 2003.
29.Facchetti, A., Chem. Mater., 2011, 23, 733-7558
30.J. Mater. Chem. C, 2019,7, 13510-13517
31.H. Klauk, Organic electronics: materials, manufacturing, and applications, John Wiley & Sons, 2006.
32.P. K. Weimer, Proc. IRE, 1962, 50, 1462-1469.
33.Salleo, A; Chabinyc, M.L.; Yang, M.S.; Street. Applied Physics Letters., 2002, 81 (23), 4383–4385.
34.Kaltenbrunner, Martin. Nature, 2013, 499 (7459), 458–463.
35.Nawrocki, Robert. Adv. Electron. Mater., 2016, 2 (4), 1500452.
36.C. Rost-Bietsh, Ambipolar and light-emitting organic field-effect transistors, Cuvillier Verlag, 2005.
37.Klauk, Hagen. Chem. Soc. Rev., 2010, 39 (7), 2643–66.
38.Hasegawa, Tatsuo; Takeya, Jun. Sci. Technol. Adv. Mater., 2009, 10 (2), 024314.
39.K. L. Wang et al., "Electric-Field Control of Spin-Orbit Interaction for Low-Power Spintronics," in Proceedings of the IEEE, vol. 104, no. 10, pp. 1974-2008, Oct. 2016
40.Kevin Bonsor, “How Smart Windows Work”, HowStuffWorks
41.B. F. North, U. S. Patent No. 4,284,758 (Aug. 18, 1981)
42.L. A. Flood, B. A. Lawless, U. S. Patent No. 2010/0297356 A1 (Nov. 25, 2010)
43.R. B. Gupta, L. A. Flood, U. Y. Treasurer, B. A. Lawless, C. Brogan, U. S. Patent No. 2013/0203929 A1 (Aug. 8, 2013)
44.R. B. Gupta, U. Y. Treasurer, L. A. Flood, B. A. Lawless, U. S. Patent No. 2015/0080523 A1 ( Mar. 19, 2015)
45.Bernard F. North, Rock Hill, S.C., United States Patent US4284758A, Appl. No.: 207,248 (Aug. 18, 1981)
46.Byung-Dae Park, Jae-Woo Kim, Department of Wood Science and Technology, Kyungpook National University, Daegu, 702-701, Republic of Korea, October 1, 2007.
47.China Patent CN103865020A, Appl. No.: 201410114207.1 (Jun. 18, 2014)
48.Nozomu Suzuki,Cryst. Growth Des., 2016, 16, 6593−6599
49.Korwin M. Schelkle, Markus Bender, et al., Macromolecules 2016, 49, 9, 3214–3221
50.Yu-Yu Liu, Jin-Yi Lin, et al., Org. Lett. 2016, 18, 172−175
51.Yong Xu, Yun Li, et al., Adv. Funct. Mater. 2020, 30, 1904508
52.Shengjian Liu, Kai Zhang, et al., J. Am. Chem. Soc. 2013, 135, 15326−15329
53.Guangshan Zhu, Jeffrey R. Long, et al., J. Am. Chem. Soc. 2014, 136, 2432−2440
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *